红外光谱
- 格式:ppt
- 大小:14.94 MB
- 文档页数:158
红外光谱汇总————————————————————————————————作者:————————————————————————————————日期:第2章红外光谱通常红外光谱(infrared spectroscopy, IR)是指波长2~25 μm的吸收光谱(即中红外区),这段波长范围反映出分子中原子间的振动和变角运动。
分子在振动的同时还会发生转动运动,虽然分子的转动所涉及的能量变化较小,处在远红外区域,但转动运动影响振动的偶极矩变化,因而在红外光谱区实际所测的谱图是分子的振动与转动运动的加和表现,因此红外光谱又称为分子振转光谱。
红外光谱可以应用于化合物分子结构的测定、未知物鉴定以及混合物成分分析。
2.1 红外光谱的基本原理2.1.1 红外吸收光谱1. 当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
2. 红外光波通常分为三个区域:中红外区、近红外区和远红外区。
波谱区近红外光中红外光远红外光波长/m 0.75~2.5 2.5~50 50~1000 波数/cm-113333~4000 4000~200 200~10 跃迁类型分子振动分子转动近红外区:O-H、N-H和C-H键的倍频吸收或组频吸收,吸收强度一般比较弱;中红外区:绝大多数有机和无机化合物的基频吸收所在,主要是振动能级的跃迁;远红外区:分子纯转动能级跃迁及晶体的晶格振动。
3. 波数(ν̅)单位是cm-1。
波长和波数的关系是:ν̅(cm−1)=104λ(μm)4. 胡克定律:ν̅=12πc√Kμ其中:μ——折合质量,μ=m1m2m1+m2,单位为kg;K——化学键力常数,与化学键的键能呈正比,单位为N·m-1;ν̅——波数;c——真空中的光速。
什么是红外光谱
红外光谱又称分子振动转动光谱,属分子吸收光谱。
样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。
红外光谱与紫外光谱、质谱、核磁共振并称物质结构分析“四大谱”,是仪器分析中重要的分析手段之一。
通过与标准谱图比较,可以确定化合物的结构;对于未知样品,通过官能团、顺反异构、取代基位置、氢键结合以及络合物的形成等结构信息可以推测结构。
以上信息仅供参考,建议查阅专业书籍或咨询专业人士。
红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。
通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。
红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。
原理红外光谱分析基于物质分子的振动和转动产生的谱线。
大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。
红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。
不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。
2.波数:红外光谱中使用波数来表示振动频率。
波数与波长的倒数成正比,常用的单位是cm-1。
波数越大,振动频率越高。
3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。
力常数与振动能量相关,可以通过红外光谱数据计算得到。
4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。
FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。
实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。
在制备过程中需要注意去除杂质和保持样品的均匀性。
2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。
校准样品通常是有明确红外光谱特征的化合物,如苯环等。
3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。
扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。
得到光谱数据后,可以进行后续的数据处理和分析。
4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。
红外光谱鉴定
红外光谱鉴定是一种利用红外光谱技术对物质分子进行的分析和鉴定方法。
当一束不同波长的红外射线照射到物质的分子上时,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。
其原理是样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
这种方法通常用于鉴定未知化合物的类别,也可以用于确定未知物的化学结构式或立体结构。
主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;也可利用红外光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定未知物的化学结构式或立体结构。
这种方法具有分析速度快、用量少、不破坏样品、与色谱联用定性功能强大等优点。
几乎所有有机物均有红外吸收,特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;也可用于定量分析。