基于单片机的简单频率计课程设计报告
- 格式:docx
- 大小:334.11 KB
- 文档页数:20
《单片机原理与接口技术》课程设计报告频率计1功能分析与设计目标 02频率计的硬件电路设计 (3)2.1 控制、计数电路 (3)2.2 译码显示电路 (5)3频率计的软件设计与调试 (6)3.1软件设计介绍 (6)3.2程序框图 (8)3.3功能实现具体过程 (8)3.4测试数据处理,图表及现象描述 (10)4讨论 (11)5心得与建议 (12)6附录(程序及注释) (13)1 功能分析与设计目标背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。
用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。
题目要求:用两种方法检测(△m ,△ T )要求显示单位时间的脉冲数或一个脉冲的周期。
设计分析:电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M 法),脉冲周期测频法(T 法),脉冲数倍频测频法(AM 法),脉冲数分频测频法(AT 法),脉冲平均周期测频法(M/T 法),多周期同步测频法。
下面是几种方案的具体方法介绍。
脉冲数定时测频法(M 法):此法是记录在确定时间Tc 内待测信号的脉冲个数Mx ,则待测频率为:Fx=Mx/ Tc脉冲周期测频法(T 法):此法是在待测信号的一个周期Tx 内,记录标准频率信号变化次数Mo。
这种方法测出的频率是:Fx=Mo/Tx脉冲数倍频测频法(AM 法):此法是为克服M 法在低频测量时精度不高的缺陷发展起来的。
通过A 倍频,把待测信号频率放大A 倍,以提高测量精度。
其待测频率为:Fx=Mx/ATo脉冲数分频测频法(AT 法):此法是为了提高T 法高频测量时的精度形成的。
由于T 法测量时要求待测信号的周期不能太短,所以可通过A 分频使待测信号的周期扩大A倍,所测频率为:Fx=AMo/Tx脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录待测信号的脉冲数Mx和标准信号的脉冲数Mo。
单片机数字频率计课程设计一、课程目标知识目标:1. 让学生掌握单片机的基本原理,理解数字频率计的工作机制。
2. 使学生能够运用单片机编程实现数字频率计的功能,包括计时、计数和显示。
3. 让学生了解数字频率计在实际应用中的重要性,如信号处理、电子测量等领域。
技能目标:1. 培养学生运用单片机进行数字频率计设计和编程的能力。
2. 培养学生运用相关软件(如Keil、Proteus等)进行电路仿真和调试的能力。
3. 提高学生的动手实践能力,学会在实际操作中发现问题、解决问题。
情感态度价值观目标:1. 激发学生对电子技术和单片机编程的兴趣,培养其创新精神和实践能力。
2. 培养学生严谨的科学态度,注重实验数据的准确性和可靠性。
3. 增强学生的团队协作意识,学会在项目合作中相互支持、共同进步。
课程性质:本课程为实践性较强的课程,要求学生在掌握理论知识的基础上,进行实际操作和项目实践。
学生特点:学生具备一定的单片机基础知识,对编程和电路设计有一定了解,但实际操作能力有待提高。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,以项目为导向,培养学生的动手实践能力和创新能力。
通过课程学习,使学生能够独立完成单片机数字频率计的设计和编程任务,达到课程目标所要求的具体学习成果。
二、教学内容1. 理论知识:- 单片机原理和结构:介绍单片机的内部组成、工作原理及性能特点。
- 数字频率计原理:讲解频率的概念、测量原理及其在电子测量中的应用。
- 编程语言:回顾C语言基础知识,重点掌握单片机编程相关语法。
2. 实践操作:- 电路设计:学习使用Proteus软件设计数字频率计电路,包括单片机、计数器、显示模块等。
- 程序编写:运用Keil软件编写数字频率计程序,实现计数、计时和显示功能。
- 仿真调试:在Proteus环境下进行电路仿真,调试程序,确保其正常运行。
3. 教学大纲:- 第一周:回顾单片机原理和结构,学习数字频率计原理。
基于51单片机的频率计设计报告
在该设计报告中,我将介绍基于51单片机的频率计的设计原理、硬件设计和软件设计。
设计原理:
频率计是一种用于测量信号频率的仪器。
基于51单片机的频率计的设计原理是利用单片机的定时计数器来测量输入信号的脉冲个数,然后将脉冲个数转换为频率。
硬件设计:
硬件设计主要包括输入信号的采集电路、计数电路和显示电路。
输入信号的采集电路使用一个比较简单的电路,包括一个电阻和一个电容,用于将输入信号转换为脉冲信号。
计数电路使用单片机的定时计数器来进行计数。
在这个设计中,我们使用TIMER0和TIMER1作为计数器,分别用于测量输入信号的高电平时间和低电平时间,然后将两个时间相加得到一个完整的周期,再根据周期反推频率。
显示电路使用一个LCD模块来显示测量得到的频率。
在这个设计中,我们使用IO口将计算得到的频率发送给LCD模块,通过LCD模块来显示频率。
软件设计:
软件设计主要包括信号采集、脉冲计数和频率计算。
信号采集主要通过定时器的中断来进行。
在采集到一个脉冲之后,中
断程序会使计数器加1
脉冲计数是通过对输入信号高电平时间和低电平时间计数来完成的。
在脉冲计数的过程中,我们需要启动TIMER0和TIMER1,并设置正确的工
作模式和计数值。
频率计算是通过将高电平时间和低电平时间相加得到一个完整的周期,然后再根据周期反推频率来完成的。
最后,将计算得到的频率发送给LCD
模块进行显示。
总结:。
基于单片机简易频率计设计一、前言频率计是一种测量电信号频率的仪器,其应用广泛。
本文将介绍如何基于单片机设计一个简易的频率计。
二、设计思路本次设计采用单片机作为核心控制芯片,通过捕获输入信号的上升沿和下降沿来计算出信号的周期,从而得到信号的频率。
具体实现过程如下:1. 选择合适的单片机选择一款适合本次设计要求的单片机,需要考虑其性能、价格、易用性等因素。
常见的单片机有STC89C52、AT89C51等。
2. 硬件电路设计硬件电路主要包括输入端口、捕获定时器模块、显示模块等。
其中输入端口需要接收待测信号,捕获定时器模块用于捕获信号上升沿和下降沿的时间,显示模块则用于显示测得的频率值。
3. 软件程序设计软件程序主要包括初始化程序、捕获中断服务函数和主函数等。
其中初始化程序用于设置捕获定时器模块和显示模块参数,捕获中断服务函数则是实现对输入信号上升沿和下降沿时间的捕获与计算,主函数则用于控制程序流程和显示结果。
三、硬件设计1. 输入端口设计输入端口需要接收待测信号,一般采用BNC接头。
由于输入信号可能存在较高的电压和噪声,因此需要加入滤波电路以保证输入信号的稳定性。
2. 捕获定时器模块设计捕获定时器模块是本次设计的核心部分,其主要功能是捕获输入信号的上升沿和下降沿时间,并通过计算得到信号周期和频率值。
常见的捕获定时器模块有16位定时器/计数器、32位定时器/计数器等。
在本次设计中,我们选择了16位定时器/计数器。
3. 显示模块设计显示模块主要用于显示测得的频率值。
常见的显示模块有LED数码管、LCD液晶屏等。
在本次设计中,我们选择了LCD液晶屏。
四、软件程序设计1. 初始化程序初始化程序主要包括设置捕获定时器模块参数、设置LCD液晶屏参数等。
2. 捕获中断服务函数捕获中断服务函数是实现对输入信号上升沿和下降沿时间的捕获与计算,其具体实现过程如下:(1)当捕获定时器模块捕获到输入信号上升沿时,记录当前时间值。
《频率计》实验报告班级:电子094 姓名:刘洋学号:0910910408班级:电子094 姓名:王铁柱学号:0910910414实验日期:2011-11-14至2011-12-14一.设计要求1.1实验目的及原理(1)利用单片机计数器功能实现正弦波频率的检测。
(2),频率计又称为频率计数器是一种专门对被测信号频率进行测量的电子测量仪器。
1.2实验要求(1)输入信号为峰峰值为5V的正弦信号,信号频率为1~60KHz,设计整形电路将正弦信号整形为方波。
(2)利用单片机定时/计数器的计数功能对整形后方波进行计数从而实现频率的测量。
(2)在数码管或LCD实时显示输入信号的频率。
1.3实现部分(1)输入信号峰峰值可在1V~10V范围变化。
(2)实现了方波和正弦波的频率检测,通过按键进行方波或正弦波检测模式的改变,在数码管或LCD进行检测模式的显示。
(3)正弦波测量范围达到1Hz~3.8MHz,正弦波测量范围达到1Hz~4.7MHz,测量精度达到10Hz单位,高于实验要求。
二.总体设计2.1频率计测频原理概论:简而言之就是:“通过测量单位时间内出现的方波个数,进行频率计算”。
将输入的正弦波信号经波形转换模块转换为方波,高频信号再经过分频模块进行分频。
由晶体振荡器产生的基频,按十六进制分频得出的分频脉冲,经过驱动电路增加带载能力。
在时间间隔T内累计周期性的重复变化次数N,则频率的表达式为式:数字频率计的原理框图如下:电路总设计图2.2 系统组成及工作原理数字频率计由以下模块组成:单片机控制模块、驱动模块、施密特电路波形转换模块、按键模块、分频模块和显示模块。
(1)STC89C52单片机简介TN清零信号锁存信号III IIIIV VSTC89C52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。
在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
《单片机原理与接口技术》课程设计报告频率计目录1功能分析与设计目标02频率计的硬件电路设计32。
1 控制、计数电路32。
2 译码显示电路53频率计的软件设计与调试63.1 软件设计介绍63。
2 程序框图83。
3 功能实现具体过程83。
4 测试数据处理,图表及现象描述104讨论115心得与建议126 附录(程序及注释)131功能分析与设计目标背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要.为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。
用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高.题目要求:用两种方法检测(Δm,ΔT)要求显示单位时间的脉冲数或一个脉冲的周期. 设计分析:电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M法),脉冲周期测频法(T法),脉冲数倍频测频法(AM法),脉冲数分频测频法(AT法),脉冲平均周期测频法(M/T法),多周期同步测频法。
下面是几种方案的具体方法介绍。
脉冲数定时测频法(M法):此法是记录在确定时间Tc内待测信号的脉冲个数Mx,则待测频率为:Fx=Mx/Tc脉冲周期测频法(T法):此法是在待测信号的一个周期Tx内,记录标准频率信号变化次数Mo。
这种方法测出的频率是:Fx=Mo/Tx脉冲数倍频测频法(AM法):此法是为克服M法在低频测量时精度不高的缺陷发展起来的。
通过A倍频,把待测信号频率放大A倍,以提高测量精度.其待测频率为:Fx=Mx/ATo脉冲数分频测频法(AT法):此法是为了提高T法高频测量时的精度形成的。
由于T法测量时要求待测信号的周期不能太短,所以可通过A分频使待测信号的周期扩大A倍,所测频率为:Fx=AMo/Tx脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录待测信号的脉冲数Mx和标准信号的脉冲数Mo。
基于单片机的频率计的设计一、频率计的基本原理频率是指单位时间内信号周期性变化的次数。
频率计的基本原理就是在一定的时间间隔内对输入信号的脉冲个数进行计数,从而得到信号的频率。
常用的测量方法有直接测频法和间接测频法。
直接测频法是在给定的闸门时间内测量输入信号的脉冲个数,计算公式为:频率=脉冲个数/闸门时间。
这种方法适用于测量高频信号,但测量精度会受到闸门时间和计数误差的影响。
间接测频法是先测量信号的周期,然后通过倒数计算出频率。
其适用于测量低频信号,但测量速度较慢。
在实际设计中,通常会根据测量信号的频率范围选择合适的测量方法,或者结合两种方法来提高测量精度和范围。
二、系统硬件设计1、单片机选型在基于单片机的频率计设计中,单片机是核心控制部件。
常用的单片机有 51 系列、STM32 系列等。
选择单片机时需要考虑其性能、资源、价格等因素。
例如,对于测量精度和速度要求不高的应用,可以选择51 单片机;而对于复杂的系统,可能需要选择性能更强的 STM32 单片机。
2、信号输入电路为了将输入信号接入单片机,需要设计合适的信号输入电路。
一般需要对输入信号进行放大、整形等处理,使其成为标准的脉冲信号。
常见的整形电路可以使用施密特触发器来实现。
3、显示电路频率计的测量结果需要通过显示电路进行显示。
常用的显示器件有液晶显示屏(LCD)和数码管。
LCD 显示效果好,但驱动较为复杂;数码管显示简单直观,驱动相对容易。
4、时钟电路单片机需要一个稳定的时钟信号来保证其正常工作。
时钟电路可以采用外部晶振或内部振荡器,根据系统的精度和稳定性要求进行选择。
5、复位电路为了确保单片机在系统启动时能够正常初始化,需要设计复位电路。
复位电路可以采用上电复位和手动复位两种方式。
三、系统软件设计1、主程序流程系统启动后,首先进行初始化操作,包括设置单片机的工作模式、初始化显示、设置定时器等。
然后进入测量循环,等待输入信号,在给定的闸门时间内进行计数,并计算频率,最后将结果显示出来。
. -课程名称:单片机应用课程设计设计题目:简易频率计的设计院系:电气工程专业:年级:姓名:指导教师:- -年月日课程设计任务书专业姓名学号开题日期:年月日完成日期年月日题目简易频率计的设计一、设计的目的频率计作为测量仪器的一种,它的基本功能是测量信号的频率和周期频率计的应用X围很广,但是目前,市场上有各种多功能、高精度、高频率的数字频率计,但价格不菲。
为适应工作的需要,可以用一种较小规模和单片机(AT89C51)相结合的频率计的设计方案,不但切实可行,而且体积小、设计简单、成本低、精度高、可测频带宽,大大降低了设计成本和实现复杂度。
二、设计的内容及要求本设计以AT89C51单片机为控制核心,将外部的频率脉冲信号通过单片机计数端输入,由定时器/计数器T0负责定时,定时器/计数器T1负责对被测信号计数,该频率计的测量X围为1Hz~65534Hz,被测脉冲信号的频率可以随时进行调整,通过LCD液晶显示模块对被测信号的频率进行实时显示。
该系统包括被测频率脉冲信号、单片机晶振电路、以AT89C51单片机为核心的频率测量模块、LCD液晶显示模块。
三、指导教师评语四、成绩指导教师(签章)年月日摘要在电子领域内,频率是一种最基本的参数,由于频率信号抗干扰能力强、易于传输,可以获得较高的测量精度。
因此,频率的测量就显得尤为重要,测频方法的研究越来越受到重视。
频率计作为测量仪器的一种,常称为电子计数器,它的基本功能是测量信号的频率和周期频率计的应用X围很广,它不仅应用于一般的简单仪器测量,目前,市场上有各种多功能、高精度、高频率的数字频率计,但价格不菲。
为适应实际工作的需要,本次设计给出了一种设计方案,不但切实可行,而且体积小、设计简单、成本低、精度高、可测频带宽,大大降低了设计成本和实现复杂度。
设计主要以AT89C51单片机为控制核心,将外部的频率脉冲信号通过单片机计数端输入,由定时器/计数器T0负责定时,定时器/计数器T1负责对被测信号计数,该频率计的测量X围为1Hz~65534Hz,被测脉冲信号的频率可以随时进行调整,通过LCD液晶显示模块对被测信号的频率进行实时显示。
单片机课程设计报告简易频率计学院:信息工程学院班级:09级电子信息工程一班姓名:学号:引言单片机课程设计是一门实践课程,要求学生具有制作调试单片机最小系统及外设的能力,能够掌握单片机内部资源的使用。
单片机课程设计内容包括硬件设计、制作及软件编写、调试,学生在熟练掌握焊接技术的基础上,能熟练使用单片机软件开发环境Keil C51编程调试,并使用STC ISP调试工具采用串口下载方式联调制作的单片机最小系统。
单片机课程设计题目包含基本部分及扩展部分,基本部分即单片机最小系统部分,扩展部分是对单片机内部资源及外部IO口的功能扩展,使制作的单片机系统具有一定的功能。
一、课程设计要求:自制一个单片机最小系统,包括串口下载、复位电路,采用外部计数器T0或T1作为外部频率输入,外部频率由信号源提供,计算出来的频率显示在四位一体的数码管上。
二、频率计设计概述:本频率计的设计以AT89C51单片机为核心,利用他内部的定时/计数器完成待测信号频率的测量。
单片机AT89C51内部具有2个16位定时/计数器,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。
设计将定时/计数器0设置工作在定时方式,定时/计数器1设置工作在计数方式。
在定时器工作方式下,在被测时间间隔内,每来一个机器周期,计数器自动加1(使用12 MHz时钟时,每1μs加1),这样以机器周期为基准可以用来测量时间间隔。
在计数器工作方式下,加至外部引脚的待测信号发生从1到0的跳变时计数器加1,这样在计数闸门的控制下可以用来测量待测信号的频率。
外部输入在每个机器周期被采样一次,这样检测一次从1到0的跳变至少需要2个机器周期(24个振荡周期),所以最大计数速率为时钟频率的1/24(使用12 MHz 时钟时,最大计数速率为500 kHz)。
三.程序框图四、源程序如下:#include<reg51.h>bit int_flag;unsigned char volatile T0Count;unsigned char volatile T1Count;unsigned char code table[] ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; unsigned char code temp[] = {0xfe,0xfd,0xfb,0xf7};unsigned long sum;unsigned char Led[4];void delay(unsigned int num ){while(--num);}void init(void){TMOD=0x15;//TMOD=0x51; //T1定时,T0计数TH1=(65536-50000)/256;//TH0=(65536-50000)/256; //定时50msTL1=(65536-50000)%256;// TL0=(65536-50000)%256;TH0=0x00; //TH1=0x00;TL0=0x00;//TL1=0x00;}开始 初始化T1定时,T0计数 T0计数满 T1定时1秒满 计算脉冲个数 送数码管显示T1count++void disp(void){unsigned char i;for(i=0;i<4;i++){P2=temp[i];//片选P0=table[Led[i]]; //取数据显示delay(100); //延时1毫秒}}void main(void){EA=1;init();TR0=1;TR1=1;ET1=1;ET0=1;while(1){if(int_flag==1){int_flag=0;sum=TL0+TH0*256+T0Count*65536; //计算脉冲个数Led[3]=sum%10000/1000;//显示千位Led[2]=sum%1000/100;//显示百位Led[1]=sum%100/10;//显示十位Led[0]=sum%10;//显示个位T1Count=0x00;T0Count=0;TH0=0x00;TL0=0x00;TR0=1;}disp();}}void int_t1(void) interrupt 3{TH1=(65535-50000)/256;TL1=(65536-50000)%256;T1Count++;if(T1Count==20){TR0=0;int_flag=1;T1Count=0x00;}}void int_T0(void) interrupt 1{T0Count++;}五.元器件:AT89C51、四位一体数码管、排阻、晶振等。
单片机频率测量课程设计一、课程目标知识目标:1. 学生能理解单片机的基本原理,掌握其编程方法。
2. 学生能掌握频率测量的基本原理和实现方法。
3. 学生能了解单片机在频率测量中的应用。
技能目标:1. 学生能运用单片机进行简单的程序编写,实现频率测量功能。
2. 学生能通过实验操作,熟练使用相关仪器设备进行频率测量。
3. 学生能分析实验数据,解决实际频率测量问题。
情感态度价值观目标:1. 学生培养对单片机技术及电子技术的兴趣,激发创新意识。
2. 学生养成合作、探究的学习态度,勇于面对挑战,克服困难。
3. 学生认识到单片机技术在现实生活中的应用价值,增强社会责任感。
课程性质:本课程为实践性较强的课程,结合理论教学,注重培养学生的动手能力和实际操作技能。
学生特点:学生具备一定的单片机基础知识和编程能力,对电子技术有一定的兴趣。
教学要求:教师应引导学生通过实践操作,掌握频率测量技术,提高学生的实际应用能力。
同时,关注学生的情感态度,激发学生的学习兴趣,培养其创新精神和合作意识。
在教学过程中,将目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 理论部分:- 单片机原理及编程基础:复习单片机的基本结构、工作原理,重点掌握编程语言(如C语言)的基本语法和应用。
- 频率测量原理:介绍频率的定义、测量方法及其在实际工程中的应用。
2. 实践部分:- 单片机编程实践:设计简单的频率测量程序,掌握定时器/计数器的使用方法,实现频率的测量。
- 频率测量实验:使用单片机及相关外围电路,搭建频率测量实验系统,进行实际操作。
3. 教学大纲安排:- 第一课时:复习单片机原理及编程基础,介绍频率测量原理。
- 第二课时:讲解单片机编程方法,设计频率测量程序。
- 第三课时:搭建实验电路,进行频率测量实践操作。
- 第四课时:分析实验结果,优化程序,提高测量精度。
4. 教材章节及内容:- 教材第3章:单片机原理及编程基础。
- 教材第6章:定时器/计数器及其应用。
基于单片机的简易频率计设计一、课题任务本设计是基于AT89S51单片机设计的简易频率计。
技术指标:频率(F)为:1Hz~100MHz,周期(T)为:1S~10E-7S,精度为:10%。
二、方案比较与选择1、方案比较方案一:本方案主要以数字器件为核心,主要分为时基电路,逻辑控制电路,放大整形电路,闸门电路,计数电路,锁存电路,译码显示电路七大部分。
其原理框图如图1所示图1.方案一原理框图方案二:本方案主要以单片机为核心,利用单片机的计数定时功能来实现频率的计数并且利用单片机的动态扫描把测出的数据送到数字显示电路显示。
其原理框图如2所示图2. 方案二原理图2、方案论证方案一:本方案使用大量的数字器件,被测量信号经过放大整形电路变成计数器所要求的脉冲信号,其频率与被测信号的频率相同。
同时时基电路提供标准时间基准信号,其高电平持续时间1s,当1s信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到1s信号结束闸门关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率F(X)=N Hz。
逻辑控制电路的作用有两个:一是产生锁存脉冲,使显示器上的数字稳定;二是产生清零脉冲,使计数器每次测量从零开始计数。
方案二:本方案主要以单片机为核心,被测信号先进入信号放大电路进行放大,再被送到波形整形电路整形,把被测正弦波或者三角波转换为方波,利用单片机的计数器和定时器的功能对被测信号进行计数。
编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示。
3、方案选择比较以上两种方案可以知道,方案二的核心是单片机,使用的元器件少,原理电路简单,调试简单只要改变程序的设定值则可以实现不同频率范围的测量,能自动选择测试的量程。
与方案二相比较方案一则使用了大量的数字元器件,原理电路复杂,硬件调试麻烦。
如要测量高频的信号还需要加上分频电路,价格相对高。
鉴于我们是第一次做与单片机有关的电子设计作品,为了减少一定的难度以及为今后更好的实现频率计的精细化和准确化,经过小组讨论,我们决定从基础的频率计出发。
单片机课程设计题目基于单片机简易的频率计专业班级11级电子科学与技术2班院(系)电气工程完成时间 2015年 1月 9日单片机课程设计任务书一、设计题目基于单片机简易的频率计二、设计任务与要求1.本品主要由信号输入、放大整形、分频、单片机控制模块、驱动显示电路等组成2.设计过程中,频率计采用外部10分频,以便测量1Hz~1MHz的信号频率,并且实现量程自动切换。
三、参考文献[1] 吴钟珍.最新实用电子电工技术手册.徐氏基金会出版社2010,23(3):97~98[2] 深圳市中源单片机发展有限公司STC89C52[3] 张友德.单片微型机原理、应用和实验. 复旦大学出版社2009.342~344[4] 陈大钦.电子技术基础.(第二版)高等教育出版社2009,13:25~26[5] 曾建唐.电工电子基础实践设计.机械工业出版社2007,10(4):278~280[6] 马淑华.单片机原理与接口技术.北京邮电大学出版社2004.49~77.四、设计时间2014 年12 月29 日至2015 年1月9 日指导教师签名:年月日目录1 总体方案设计 (1)1.1 设计要点 (1)1.2 系统方案 (1)2 理论分析与计算 (2)2.1 频率计概述 (2)2.2 频率测量原理 (2)2.3精度保证 (3)3 电路与程序 (3)3.1 电路设计 (3)3.2 程序设计 (4)4 测试与调整 (5)4.1 测试方案及测试条件 (5)4.2 测试结果完整性 (6)5 总结与体会 (6)参考文献 (8)附录1:总体电路原理图 (9)附录2:实物图 (10)附录3:元器件清单 (11)附录4:C语言程序 (12)1 总体方案设计1.1 设计要点本次课程设计有以下要点:①设计一个频率计。
要求用4位7段数码管显示待测频率,格式为0000Hz。
②测量频率范围:10~9999Hz。
③测量信号类型:正弦波、方波和三角波。
④测量信号幅值:0.5~5V。
基于单片机的简易频率计设计频率是电信号的基本参数之一,频率的测量在科学研究、工程应用、工业控制等领域具有重要价值。
单片机作为一种微型计算机,具有高性能、低功耗、易于编程等优点,因此,基于单片机的简易频率计设计具有实际的应用价值。
系统架构:基于单片机的简易频率计主要由单片机、信号源、频率计和显示模块组成。
其中,单片机是整个系统的核心,控制信号源的启动和停止,读取频率计的数据,并通过显示模块显示测量结果。
信号源:信号源是用来产生需要测量的交流信号。
一般可以使用函数发生器或信号发生器作为信号源。
频率计:频率计是用来测量交流信号的频率。
可以使用专用的频率计芯片,也可以使用单片机内部的计数器功能。
显示模块:显示模块用于显示测量结果。
可以使用LED显示屏、液晶显示屏等。
主程序:主程序主要负责控制整个系统的运行。
主程序需要初始化单片机和各个模块。
然后,主程序需要从频率计读取频率数据,并计算出频率值。
主程序需要将测量结果显示在显示模块上。
中断服务程序:中断服务程序用于处理外部中断事件,例如信号源的启动和停止。
当外部中断触发时,中断服务程序会执行相应的操作,例如启动或停止测量过程。
定时器程序:定时器程序用于控制测量周期和读取频率计数据的时间间隔。
定时器程序需要在主程序的控制下启动和停止。
测试环境:在实验室环境下进行测试,使用函数发生器作为信号源,输出不同频率的交流信号。
测试方法:将设计的频率计连接到函数发生器的输出端,启动频率计进行测量,并观察显示模块上的测量结果。
验证结果:经过测试和验证,基于单片机的简易频率计能够准确测量不同频率的交流信号,测量结果稳定可靠。
本文设计了一种基于单片机的简易频率计,该频率计具有结构简单、成本低、易于实现等优点。
通过测试和验证,该频率计能够准确测量不同频率的交流信号,具有实际的应用价值。
本设计可以为科学研究、工程应用、工业控制等领域提供一种实用的测量工具。
频率计是一种用于测量信号频率的电子仪器,被广泛应用于各种领域。
《单片机原理与接口技术》课程设计报告频率计目录测试数据处理,图表及现象描述 (10)126 附录(程序及注释) (13)1功能分析与设计目标背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。
用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。
题目要求:用两种方法检测(Δm ,ΔT )要求显示单位时间的脉冲数或一个脉冲的周期。
设计分析:电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M法),脉冲周期测频法(T法),脉冲数倍频测频法(AM法),脉冲数分频测频法(AT法),脉冲平均周期测频法(M/T法),多周期同步测频法。
下面是几种方案的具体方法介绍。
脉冲数定时测频法(M法):此法是记录在确定时间Tc内待测信号的脉冲个数Mx,则待测频率为:Fx=Mx/ Tc脉冲周期测频法(T法):此法是在待测信号的一个周期Tx内,记录标准频率信号变化次数Mo。
这种方法测出的频率是:Fx=Mo/Tx脉冲数倍频测频法(AM法):此法是为克服M法在低频测量时精度不高的缺陷发展起来的。
通过A倍频,把待测信号频率放大A倍,以提高测量精度。
其待测频率为:Fx=Mx/ATo脉冲数分频测频法(AT法):此法是为了提高T法高频测量时的精度形成的。
由于T法测量时要求待测信号的周期不能太短,所以可通过A分频使待测信号的周期扩大A倍,所测频率为:Fx=AMo/Tx脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录待测信号的脉冲数Mx和标准信号的脉冲数Mo。
若标准信号的频率为Fo,则待测信号频率为:Fx=FoMx/Mo多周期同步测频法:是由闸门时间Tc与同步门控时间Td共同控制计数器计数的一种测量方法,待测信号频率与M/T法相同。
《单片机原理与接口技术》课程设计报告频率计1功能分析与设计目标 (1)2频率计的硬件电路设计 (3)2.1 控制、计数电路 (3)2.2 译码显示电路 (5)3频率计的软件设计与调试 (6)3.1软件设计介绍 (6)3.2程序框图 (8)3.3功能实现具体过程 (8)3.4测试数据处理,图表及现象描述 (10)4讨论 (11)5心得与建议 (12)6附录(程序及注释) (13)1功能分析与设计目标背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。
用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。
题目要求:用两种方法检测(Δm,△ T)要求显示单位时间的脉冲数或一个脉冲的周期。
设计分析:电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M法),脉冲周期测频法(T法),脉冲数倍频测频法(AM法),脉冲数分频测频法(AT法),脉冲平均周期测频法(M/T法),多周期同步测频法。
下面是几种方案的具体方法介绍。
脉冲数定时测频法(M法):此法是记录在确定时间TC内待测信号的脉冲个数MX ,则待测频率为:FX=MXZ TC脉冲周期测频法(T法):此法是在待测信号的一个周期TX内,记录标准频率信号变化次数MO。
这种方法测出的频率是:FX=MOZTX脉冲数倍频测频法(AM法):此法是为克服M法在低频测量时精度不高的缺陷发展起来的。
通过A倍频,把待测信号频率放大A倍,以提高测量精度。
其待测频率为:FX=MXZATO脉冲数分频测频法(AT法):此法是为了提高T法高频测量时的精度形成的。
由于T法测量时要求待测信号的周期不能太短,所以可通过A分频使待测信号的周期扩大A倍,所测频率为:FX=AMO/Tx脉冲平均周期测频法(M/T法):此法是在闸门时间TC内,同时用两个计数器分别记录待测信号的脉冲数MX和标准信号的脉冲数Mo。
若标准信号的频率为Fo,则待测信号频率为:FX=FOMXZMO多周期同步测频法:是由闸门时间TC与同步门控时间Td共同控制计数器计数的一种测量方法,待测信号频率与MZT法相同。
以上几种方法各有其优缺点:脉冲数定时测频法,时间TC为准确值,测量的精度主要取决于计数MX的误差。
其特点在于:测量方法简单,测量精度与待测信号频率和门控时间有关,当待测信号频率较低时,误差较大。
脉冲周期测频法,此法的特点是低频检测时精度高,但当高频检测时误差较大。
脉冲数倍频测频法,其特点是待测信号脉冲间隔减小,间隔误差降低;精度比M法高A倍,但控制电路较复杂。
脉冲数分频测频法,其特点是高频测量精度比T法高A倍,但控制电路也较复杂。
脉冲平均周期测频法,此法在测高频时精度较高,但在测低频信号时精度较低。
多周期同步测频法,此法的优点是,闸门时间与被测信号同步,消除了对被测信号计数产生的±个字误差,测量精度大大提高,且测量精度与待测信号的频率无关,达到了在整个测量频段等精度测量。
功能描述:由于水平有限,本次设计采用相对简单的M法和T法两种方法测量简单方波的频率或脉宽(由于是输入简单方波信号,省去了被测输入信号通过脉冲形成电路进行放大与整形这个步骤)。
利用AT89C51单片机的TO、T1的定时计数器功能,来完成对输入的信号进行频率计数或脉宽计时,计数(计时)的频率结果通过5位八段LED数码管显示器显示出来。
设计指标:M法由于TO、T1对外部脉冲信号的最高计数频率为振荡频率的1/24 ,而振荡频率为12MHz得M法最高计数频率为500KHZ而本设计设定最高计数频率即为500KHZ误差要求尽量小。
T法仅设定能测的外部脉宽范围为65536× 20us,以使定时计数器在不产生溢出中断的情况下进行测量。
本设计的频率测量误差要求尽量小,实践证明误差控制在1/100范围内。
2频率计的硬件电路设计原理介绍图2-1数字式频率计原理框图由上图可以看出,待测信号经过放大整形电路后得到一个待测信号的脉冲信号,然后通过计数器计数,可得到需要的频率值,最后送入译码显示电路中显示出来。
但是控制部分相对重要,它在整个系统的运行中起至关重要的作用。
本设计控制电路和计数器电路以AT89C51为核心,译码显示电路采用单片机静态显示计数来显示,采用5位七段LED数码管显示器。
下面分节介绍各部分硬件电路:2.1控制、计数电路单片机作为控制系统和计数器,是本次设计的最重要的部分,AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPERoM—FalSh PrOgrammabIe and EraSabIe Read OnIy MemOry)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
所以本次设计采用AT89C51单片机。
89C51单片机,它提供下列标准特征:4K字节的程序存储器,128字节的RAM,32条I/O线,2个16位定时器/计数器,,一个5中断源两个优先级的中断结构,一个双工的串行口,片上震荡器和时钟电路。
其引脚说明如下:引脚说明:•VCC :电源电压。
•GND:接地。
•P0 口:P0 口是一组8位漏极开路型双向I/O 口,作为输出口用时,每个引脚能驱动8个TTL逻辑门电路。
当对0端口写入1时,可以作为高阻抗输入端使用。
当P0 口访问外部程序存储器或数据存储器时,它还可设定成地址数据总线复用的形式。
在这种模式下,P0 口具有内部上拉电阻。
在EPROM编程时,P0 口接收指令字节,同时输出指令字节在程序校验时。
程序校验时需要外接上拉电阻。
•P0 口:P0 口是一带有内部上拉电阻的8位双向I/O 口。
P0 口的输出缓冲能接受或输出4个TTL逻辑门电路。
当对P0 口写1时,它们被内部的上拉电阻拉升为高电平,此时可以作为输入端使用。
当作为输入端使用时,P0 口因为内部存在上拉电阻,所以当外部被拉低时会输出一个低电流(IIL )。
•P1 口:P2是一带有内部上拉电阻的8位双向的I/O端口。
P1 口的输出缓冲能驱动4个TTL逻辑门电路。
当向P1 口写1时,通过内部上拉电阻把端口拉到高电平,此时可以用作输入口。
作为输入口,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出电流(IlL )P2 口在访问外部程序存储器或16位地址的外部数据存储器(例如MoVX @ DPTR)时,P2 口送出高8位地址数据。
在这种情况下,P2 口使用强大的内部上拉电阻功能当输出1时。
当利用8位地址线访问外部数据存储器时(例MOVX @R1), P2 口输出特殊功能寄存器的内容。
当EPROM编程或校验时,P2 口同时接收高8位地址和一些控制信号。
• P3 口:P3是一带有内部上拉电阻的8位双向的I/O端口。
P3 口的输出缓冲能驱动4个TTL逻辑门电路。
当向P3 口写1时,通过内部上拉电阻把端口拉到高电平,此时可以用作输入口。
作为输入口,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出电流(IIL )。
P3 口同时具有AT89C51的多种特殊功能,P3.0的第二功能是串行输入口RXD,P3.1的第二功能是串行输出口TXD,P3.2的第二功能是外部中断0,P3.3的第二功能是外部中断1,P3.4的第二功能是定时器T0,P3.5的第二功能是定时器T1,P3.6的第二功能是外部数据存储器写选通/WR,P3.7的第二功能是外部数据存储器读选通/RD。
M法主要使用管脚为P3.0、P3.1以及P3.5。
其具体使用方法如下:P3..0 口与寄存器74LS164的A,B端口连接,串行输出待显示的数据。
P3.1 口接移位寄存器74LS164的CLK(第8引脚),输出同步时钟信号。
P3. 5 口(即T1)输入脉冲信号。
T法主要使用管脚为P2.0、P3.0、P3.1以及P3.3。
其具体使用方法如下:P2.0 口接开关用于控制何时输出显示脉宽时间。
P3..0 口与寄存器74LS164的A,B端口连接,串行输出待显示的数据。
P3.1 口接移位寄存器74LS164的CLK(第8引脚),输出同步时钟信号。
P3. 5 口(即T1)输入脉冲信号。
2.2译码显示电路显示电路采用静态显示方式。
频率测量结果经过译码,通过89C51的串行口送出。
串行口工作于模式0 ,即同步移位寄存器方式。
这时从89C51的RXD(P3. 0)输出数据,送至串入并出移位寄存器74164的数据输入口A和B ;从TXD( P3. 1)输出时钟,送至74164的时钟输入口CP O 74164将串行数据转换成并行数据, 进行锁存。
74164输出的8位并行数据送至8段L ED ,实现测量数据的显示。
使用这种方法主程序可不必扫描显示器,从而单片机可以进行下一次测量。
这种方法也便于对显示位数进行扩展。
串行输入7 段LED并行输出74LS1643频率计的软件设计与调试3.1软件设计介绍本设计过程使用到的软件有:WAVE软件模拟器,keil UViSiOn2,PrOtuSeO 软件设计过程:在keil UViSiOn2中输入所编程序,保存为以.c为后缀的文件,新建项目,加入刚保存的文件,编译,调试到程序编译不显示错误。
在option for target项中OUtPUt中选中Creat hex files ,重新编译程序,软件生成以.hex为后缀的文件。
在PrOtUSe软件中画出所设计的电路模拟图,加载入前面生成的以.HeX为后缀的文件,运行,观察,调试数码管显示的数值,并与设置的输入信号频率作比较,调试,分析误差产生原因,改进程序与电路图。
使用伟福软件编译所设计的C程序,调试到正确无误。
并最终通过硬件来验证所设计的频率计是否达到先前设定的设计指标。
图示:曰Ziie £d4 ⅛⅛w Proj⅛rt QfbilJ口冃盘讪⅛rip⅛-rsh TCKfh l SYCS ⅛⅛πι∣⅛w ⅛∣p丙刁R ® 'h- r,∙■∙ r =对⅞ 1 *⅛ ⅛a=LΓ17F Ls r iΓB*tld∣∙i÷∣⅛ςrct GrQUP 1 •国5,TM∣nJFJL5 ZE •圍IIiS工⅜dicfin± U£2NH QUiIgud Lhu⅛d⅛fl∏ril ICSl 血・1 寧⅛∙昌IiEHfe l Xt-J H P S,s⅛ PtLT S=≡fl D?^iEt n∑nι r I C lP W⅛<ι:EP⅛ 4^.∣τ ⅝ril]-ΓCisrc p5⅛^ια*3i s -⅝rj^*4:E li f sj fcla P GJL⅛l UeZ aΠ⅛⅛,Ca*ff p C.κ⅞el∙SKB≡CI⅛E1∙,-1*-,i,≡1-∣-⅛ 中Sj Tmn-CX⅞■: J rm⅛H ⅛⅛=h-a : α TK1B D∣-TUTm-O :,, ⅛⅛⅛j-≡⅛^≡r bU⅛SL ≡ll y l;^ZIJ5-z.;n»; ■—A EDKeil软件程序设计PrOtuSe软件模拟PrOtUSe是数字电路模拟常用的工具,方便易用,如图是工作窗口:3.2程序框图M法:否注:以上两流程图均只表示出程序设计的简单流程,并且只表示出处理一次测量的过程,多次测量重复以上步骤即可。