抛物线的性质归纳及证明说课讲解
- 格式:docx
- 大小:134.04 KB
- 文档页数:9
《抛物线的几何性质》讲义一、抛物线的定义在平面内,到一个定点 F 和一条定直线 l(F 不在 l 上)的距离相等的点的轨迹叫做抛物线。
点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。
我们可以这样来理解抛物线的定义:假如有一个点 M,它到定点 F的距离和到定直线 l 的距离总是相等,那么点 M 的运动轨迹就是一条抛物线。
二、抛物线的标准方程抛物线的标准方程有四种形式:1、\(y^2 = 2px (p > 0)\),焦点为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。
2、\(y^2 =-2px (p > 0)\),焦点为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。
3、\(x^2 = 2py (p > 0)\),焦点为\((0, \frac{p}{2})\),准线方程为\(y =\frac{p}{2}\)。
4、\(x^2 =-2py (p > 0)\),焦点为\((0, \frac{p}{2})\),准线方程为\(y =\frac{p}{2}\)。
这里的 p 表示焦点到准线的距离,它决定了抛物线的开口大小和方向。
例如,对于方程\(y^2 = 8x\),这里\(2p = 8\),所以\(p =4\),焦点为\((2, 0)\),准线方程为\(x =-2\)。
三、抛物线的几何性质1、范围对于\(y^2 = 2px (p > 0)\),因为\(y^2 \geq 0\),所以\(x \geq 0\),即抛物线在 x 轴的右侧。
对于\(y^2 =-2px (p > 0)\),同理可得\(x \leq 0\),抛物线在 x 轴的左侧。
对于\(x^2 = 2py (p > 0)\),\(x \in R\),\(y \geq0\),抛物线在 y 轴的上方。
对于\(x^2 =-2py (p > 0)\),\(x \in R\),\(y \leq 0\),抛物线在 y 轴的下方。
抛物线几何性质说课稿尊敬的各位评委、老师大家好!今天我说课的内容是人教A版数学第二册·上第八章第6节《抛物线的简单几何性质》.新课标指出,学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系.本节课的教学中,我将尝试这种理念.下面我将从教材分析、教法学法分析、教学过程及教学评价四个方面进行说明一教材分析1.1 教材地位与作用本节课是在学习了抛物线的定义及其标准方程的基础上,第一次系统地按照抛物线方程来研究抛物线的简单几何性质,该内容是高中数学的重要内容,也是高考的重点与热点内容。
本课时的主要内容是:探究抛物线的简单几何性质及应用。
1.2 教学目标1、知识与技能■探究抛物线的简单几何性质,初步学习利用方程研究曲线性质的方法。
■掌握抛物线的简单几何性质,理解抛物线方程与抛物线曲线间互逆推导的逻辑关系及利用数形结合解决实际问题。
2、过程与方法■通过抛物线的方程研究抛物线的简单几何性质,使学生经历知识产生与形成的过程,培养学生观察、分析、逻辑推理,理性思维的能力。
■通过掌握抛物线的简单几何性质及应用过程,培养学生对研究方法的思想渗透及运用数形结合思想解决问题的能力。
3、情感、态度与价值观通过数与形的辩证统一,对学生进行辩证唯物主义教育,通过对抛物线对称美的感受,激发学生对美好事物的追求。
1.3教学重难点得出抛物线几何性质的思维过程,掌握运用抛物线的几何性质去解决问题的方法.二教法学法分析2.1 学情分析由于学生智力水平参差不齐,基础和发展不平衡,呈现两头尖中间大的趋势。
学生已熟悉和掌握抛物线定义及其标准方程,有亲历体验发现和探究的兴趣,有动手操作,归纳猜想,逻辑推理的能力,有分组讨论、合作交流的良好习惯,从而愿意在教师的指导下主动与同学探究、发现、归纳数学知识。
2.2 教法分析本节课以启发式教学为主,综合运用演示法、讲授法、讨论法、有指导的发现法及练习法等教学方法。
数学物理教案:抛物线的性质与应用一、抛物线的性质实践教案1.1 抛物线的定义与基本性质抛物线是二次函数的图像,具有特殊的几何性质和应用价值。
在数学中,我们常用一般式方程 y=ax^2+bx+c (其中a≠0 )来描述抛物线。
在这个教案中,我们将重点探讨抛物线的性质与应用。
首先,我们来介绍抛物线的基本性质。
抛物线的对称轴与 x 轴平行,方程形式为 x= -b/2a。
对称轴上的点称为抛物线的顶点,也是对称中心。
通过点对称性,可以得出抛物线关于顶点对称。
抛物线在顶点处取得最值,当 a>0 时,最小值为 -D/4a;当 a<0 时,最大值为 -D/4a。
其中 D=b^2 - 4ac 称为方程的判别式。
抛物线的开口方向由 a 的正负决定,当 a>0 时,抛物线开口向上;当 a<0 时,抛物线开口向下。
1.2 抛物线的性质之焦点与准线接下来,我们将讨论抛物线的焦点和准线。
对于给定的抛物线,焦点F(p, q)是位于对称轴上的一个点,满足距离的性质:焦点到抛物线上任意一点的距离等于焦点到准线上的相应点的距离。
准线是过焦点 F 且垂直于对称轴的一条直线,其方程为 y=-(D/4a)。
我们可以利用这一性质来确定焦点的坐标,通过解方程组将焦点的坐标表示为(p, q)=(-b/2a, -D/4a)。
二、抛物线的应用实践教案2.1 抛物线的应用之物体运动轨迹抛物线不仅在数学领域有重要性质,而且在物理学中也具有广泛的应用。
抛物线可用于描述和分析物体在自由落体或斜抛运动中的轨迹。
在物理学中,我们知道自由落体运动是指只受重力作用的运动。
当一个物体以初速度 v₀进行向下抛掷时,其运动轨迹可以用抛物线来描述。
根据抛物线的性质,我们可以计算物体的最高点、最大高度以及落地点等重要信息。
2.2 抛物线的应用之天体运动除了物体运动轨迹外,抛物线还可以用于描述天体的运动。
在天文学中,行星、卫星和彗星等天体在星际空间中的运动轨迹往往呈现出抛物线形状。
抛物线总结知识点一、抛物线的定义1、几何定义抛物线实际上是一个平面上的曲线,其特点是所有点到焦点的距离与直线上的点到焦点的距离相等。
在几何上,抛物线可以用一定的数学方法来绘制,比如几何学中的反射法则,就是一个通过抛物线的特性进行绘制的方法。
2、代数定义抛物线也可以用数学式子来表示,通常来说,一个一般形式的抛物线方程可以表示为:y=ax^2+bx+c。
其中a、b、c为常数,且a≠0。
这个方程就是抛物线的代数表示方法。
二、抛物线的性质1、对称性抛物线具有对称性,即其焦点与直线的对称轴关于抛物线是对称的。
也就是说,如果你在抛物线上选取一个点,并且在该点的正上方或是正下方做等距的另外一个点,那么这两个点与抛物线的焦点的距离是一样的。
2、焦点抛物线的焦点是抛物线中的一个重要点,所有在抛物线上的点到焦点的距离,是和这根线上的点到焦点的距离是相等的。
这也是抛物线对称性的基础。
3、直线抛物线的对称轴是一条直线,这条直线被称为抛物线的直线。
直线与抛物线的焦点以及对称轴是彼此有特殊的关系的,这样的直线通常是抛物线的对称轴。
4、距离性质抛物线上的任意一点到焦点的距离与该点到抛物线的对称轴的距离之间的关系。
通常,这个距离关系就是抛物线的形成依据之一。
三、抛物线的方程1、标准形式标准形式的抛物线通常以y=ax^2+bx+c的数学形式表示。
这种数学形式可以清楚的展现抛物线的双曲性。
2、顶点形式抛物线的顶点形式方程也是一种比较通用的表示方法。
顶点形式的抛物线方程是一种通过抛物线的顶点来表示其位置的方法。
其数学表达式通常为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。
3、焦点形式焦点形式的抛物线方程则是基于抛物线的焦点和直线来展现其形状和位置的。
该类型的方程通常为x^2=4py,其中p为焦点的距离。
四、抛物线的几何意义1、抛物线的几何意义作为一条特殊的曲线,抛物线在实际中有着丰富的几何意义。
通过抛物线的特性和性质,我们可以从几何角度来认识抛物线。
抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
初三抛物线知识点归纳总结抛物线是数学中的一种重要曲线,具有许多特殊的性质和应用。
在初三数学中,学生将接触到抛物线的相关知识,并需要进行归纳总结。
本文将对初三抛物线的知识点进行系统整理,以帮助学生更好地掌握和运用这一知识。
一、抛物线的定义和性质抛物线是一个平面曲线,其定义为到定点(焦点)和直线(准线)的距离相等的点所构成的轨迹。
抛物线有以下性质:1. 对称性:抛物线关于准线对称,焦点和准线的中点是抛物线的对称中心。
2. 准线上的点:准线上的点到焦点的距离等于到抛物线的顶点的距离。
3. 焦点和直线关系:焦点到直线的距离等于焦距(焦点到抛物线顶点的距离)。
二、抛物线的方程及其性质抛物线的方程有两种常见形式:一般形式和顶点形式。
1. 一般形式:$y=ax^2+bx+c$,其中$a$、$b$和$c$是常数。
- 当$a>0$时,抛物线开口向上;当$a<0$时,抛物线开口向下。
- 抛物线的平移:通过改变常数$b$和$c$,可以使抛物线平移。
2. 顶点形式:$y=a(x-h)^2+k$,其中$(h,k)$是抛物线的顶点。
- 顶点坐标$(h,k)$为抛物线的最低点或最高点。
- 抛物线的平移:通过改变顶点坐标$(h,k)$,可以使抛物线平移。
三、抛物线的焦点和准线1. 焦点的坐标:对于一般形式的抛物线,焦点的横坐标为$x=-\frac{b}{2a}$,纵坐标为$y=\frac{1}{4a}-\frac{b^2}{4ac}+c$。
2. 焦距的计算:焦距等于$\frac{1}{4a}$。
3. 准线的方程:对于一般形式的抛物线,准线方程为$y=\frac{-b^2+4ac}{4a}$。
四、与抛物线相关的常见问题1. 抛物线的判别式:对于一般形式的抛物线,判别式$D=b^2-4ac$可以判断抛物线的开口方向和与坐标轴的交点情况。
- 当$D>0$时,抛物线与$x$轴有两个交点。
- 当$D=0$时,抛物线与$x$轴有一个交点,抛物线为切线。
抛物线的性质与方程解析抛物线是数学中一种常见的曲线,具有许多独特的性质和方程解析。
本文将重点探讨抛物线的性质以及如何通过方程解析抛物线的特征。
一、抛物线的性质1. 对称性:抛物线关于其焦点轴的对称性是其最基本的性质。
抛物线上任意一点与焦点的距离相等于该点到焦点轴的垂直距离。
这种对称性使得抛物线在很多实际问题中具有重要应用,如天文学、物理学等。
2. 焦点和直线的关系:抛物线上的每一点到焦点的距离等于该点到准线的垂直距离。
焦点是抛物线的一个重要属性,影响着抛物线的形状和位置。
3. 切线和法线:抛物线上的任意一点的切线与该点到焦点的连线垂直相交于准线。
这个性质使得我们可以利用切线和法线求解抛物线的各种问题。
二、抛物线的方程解析抛物线可以通过不同的方程来表示,以下是几种常见的形式:1. 顶点形式:设抛物线的顶点为(Vx, Vy),则抛物线的顶点形式方程可以表示为: y = a(x - Vx)² + Vy。
其中,a为控制抛物线开口方向和大小的参数。
2. 标准形式:标准形式方程是最简单、最常用的表示抛物线的形式。
标准形式方程为:y = ax² + bx + c,其中a、b、c为常数,分别控制抛物线的形状、位置和与x轴的交点。
3. 参数方程:通过参数方程可以描述抛物线上各个点的坐标。
常见的参数方程有:x = at²,y = 2at。
这种表示方式更适用于描述抛物线的轨迹和运动。
4. 对称方程:对称方程利用焦点和准线来表示抛物线。
一个常见的对称方程为:(x - p)² = 4a(y - q),其中(p, q)表示焦点的坐标,a为常数。
通过这些方程解析,我们可以更好地理解抛物线的特征和性质。
在实际问题中,根据抛物线的方程,我们可以进行求解、推导和应用。
三、抛物线的应用抛物线的性质和方程解析在许多领域中得到广泛应用,下面简单介绍几个应用场景。
1. 抛物物体运动轨迹分析:抛物线可以描述空中抛射物的运动轨迹,如抛出的石子、发射的炮弹等。
抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =αsin 22p .证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |=| RF |1-cos θ=p1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1|+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2=p 22sin θ.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.(122111212111111222x x p p pp AF BF AA BB x x x x +++=+=+=+++()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p2,y 1),由此得M (-p 2,y 1+y 22). ∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒ ∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒ 【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =py 1,k CF =-y 2+p 2+p 2=-y 2p =p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒ ∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y 212p )图6与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x=(2px )'x , 得2y ·y 'x=2p ,y 'x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线. 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)图9∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.图107. A 、O 、B ’三点共线,B 、O 、A ’三点共线. 【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2 =-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2p y 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=1 1| AF |+1| BF |=p2【见⑵证】∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线. 【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p 2·y 1-x 1 y 2=-p 2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p =0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:图118. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n ;【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 .则E 的坐标为( p2+x 1 2,y 12),则点E 到y 轴的距离为d = p2+x 1 2=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p 2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 22 8p = ⎝⎛⎭⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.图16。