等腰三角形的性质与判定练习题
- 格式:doc
- 大小:163.50 KB
- 文档页数:2
专题01等腰三角形的性质与判定(十六大题型+跟踪训练)题型1:等腰三角形的定义1.用刻度尺测量得出下图()是等腰三角形.A .B .C .D .【答案】B【分析】分别量取各三角形的三边长,然后根据等腰三角形两腰相等,进行判断即可.【解析】解:A 中三边长分别为:1.8,2.6,2.9,不是等腰三角形,故不符合要求;B 中三边长分别为:2.2,2.2,2.2,是等腰三角形,故符合要求;C 中三边长分别为:3.4,3.2,2,不是等腰三角形,故不符合要求;D 中三边长分别为:3.3,1.8,3.7,不是等腰三角形,故不符合要求;故选:B .【点睛】本题考查了等腰三角形的定义.解题的关键在于熟练掌握等腰三角形两腰相等.2.在ABC 中,若AB BC =,则ABC 是()A .不等边三角形B .等边三角形C .直角三角形D .等腰三角形【答案】D【分析】由等腰三角形的定义:有两边相等的三角形,即可判断.【解析】解:在ABC 中,若AB BC =,则ABC 是等腰三角形.故选:D .【点睛】本题考查等腰三角形,关键是掌握等腰三角形的定义.3.以下列线段为边不能组成等腰三角形的是()A .2,2,4B .6,3,6C .4,4,5D .1,1,1【答案】A【分析】根据三角形三边关系和等腰三角形的判定对所给的四个选项逐一判断、解析即可.【解析】解:A .∵224+=,∴以2,2,4为边不能组成三角形,更不可能组成等腰三角形,故此选项符合题意;B.∵以6,3,6为边能组成三角形,且有两边相等,∴以6,3,6为边能组成等腰三角形,故此选项不符合题意;C.∵以4,4,5为边能组成三角形,且有两边相等,∴以4,4,5为边能组成等腰三角形,故此选项不符合题意;D.∵以1,1,1为边能组成三角形,且有两边相等,∴以1,1,1为边能组成等腰三角形,故此选项不符合题意.故选:A.【点睛】本题考查三角形的三边关系、等腰三角形的判定等知识点及其应用问题.牢固掌握三角形的三边关系、等腰三角形的判定是解题的关键.4.等腰三角形两边长分别是2cm和3cm,则周长是()A.7cm B.8cm C.7cm或8cm D.条件不足,无法求出【答案】C【分析】分两种情况讨论:①底边为3cm时;②底边为2cm时,分别求解即可得到答案.【解析】解:分两种情况讨论:①底边为3cm时,等腰三角形的周长为3227cm++=;②底边为2cm时,等腰三角形的周长为2338cm++=,∴等腰三角形的周长为7cm或8cm,故选C.【点睛】本题考查了等腰三角形的性质,利用分类讨论的思想解决问题是解题关键.5.已知等腰三角形的一边长为2cm,另一边长为4cm,则它周长是()A.6cm B.8cm C.10cm D.8cm或10cm【答案】C【分析】根据等腰三角形的性质及三角形的三边关系进行分类讨论,即可得到答案.当AD AC+与BC+即115 22x x x⎛⎫+-+⎪⎝⎭解得:8x=,8,8,5能够组成三角形;当BC BD+与AD+∵BD AC ⊥,∴90ADB ∠=︒,∵46ABD ∠=︒,∴9044A ABD ∠︒-=︒=∠,∵BD AC ⊥,∴90ADB ∠=︒,∵46ABD ∠=︒,∴904644DAB ∠︒=︒-,【分析】根据轴对称的性质,得到ABC 是以AB 和AC 为腰的等腰三角形,再根据对称性可得结果.【解析】解:由题意可得:ABC 是以AB 和AC 为腰的等腰三角形,且不是等边三角形,∴AB AC =,∴ABC 的周长2AB AC BC AB BC =++=+,故选B .【点睛】本题考查了等腰三角形的性质,轴对称图形,解题的关键是根据题意判断出ABC 是等腰三角形.13.如图,在ABC 中,90C ∠=︒,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB ⊥于E ,若5cm AB =,则DBE 的周长是()A .5cmB .6cmC .7cmD .8cm【答案】A 【分析】根据角平分线的定义和性质可得DE CD =,CAD EAD ∠=∠,推出CDA EDA ∠=∠,可得AC AE =,证明再根据等腰直角三角形的性质求出AC BC AE ==,然后求出DBE 的周长AB =,代入数据即可得解.【解析】解:AD 平分CAB ∠,DE AB ⊥,90C ∠=︒,DE CD ∴=,CAD EAD ∠=∠,CDA EDA ∴∠=∠,AC AE ∴=,又AC BC = ,AC BC AE ∴==,DBE ∴△的周长DE BD EB CD BD EB BC EB AE EB AB =++=++=+=+=,5cm AB = ,DBE ∴△的周长5cm =.故选:A .A .80︒B 【答案】C 【分析】根据等边对等角可得【解析】解:∵AB AC =∴B C ∠=∠,∵80B ∠=︒,∴80C ∠=︒,∵180A B C ∠+∠+∠=︒∴20A ∠=︒.故选:C .【点睛】本题考查三角形内角和定理,等腰三角形的性质.解题的关键是掌握三角形的三个内角之和是180°.16.如图,在△ABC 中,AB =AD =DC ,∠C =35°,则∠B 的度数为()A .50︒B .60︒C .70︒D .80︒【答案】C 【分析】首先利用等腰三角形的性质求得∠DAC 的度数,然后求得∠BDA 的度数,最后利用等腰三角形的性质求得∠B 的度数.【解析】解:∵AD =DC ,∴∠DAC =∠C ,∵∠C =35°,∴∠DAC =35°,∴∠BDA =∠C +∠DAC =70°,∵AB =AD ,∴∠BDA =∠B =70°.故选:C .【点睛】本题考查了等腰三角形的性质:等腰三角形两底角相等.17.如图,在ABC 中,90BAC ∠= ,AB AC =,点D 在BC 上,且BD BA =,则CAD ∠的度数为()A .30︒B .25︒C .22.5︒D .21︒【答案】C 【分析】利用ABC 是等腰直角三角形先求出B ∠,再利用BDA △是等腰三角形求出BAD ∠,最后利用直【答案】50︒/50度【分析】首先根据垂直平分线的性质得到据角的和差计算求解即可.∵80ACB ∠=︒∴803050BCE ACB ACE ∠=∠-∠=︒-︒=︒.故答案为:50︒.【点睛】此题考查了垂直平分线的性质,等边对等角性质,解题的关键是熟练掌握以上知识点.21.如图,直线a ∥b ,AB AC =,140 ∠=,则∠BAC 的度数是()A .100B .110C .120D .130【答案】A 【分析】根据直线a ∥b ,140 ∠=,可知140ACB ∠=∠= ,由AB AC =,可得40ACB ABC ∠=∠= ,利用平行的性质即可求出∠BAC 的值.【解析】解:由题意得,∵直线a ∥b ,140 ∠=,∴140ACB ∠=∠= ,∵AB AC =,∴40ACB ABC ∠=∠= ,∴()180118080100BAC ABC ∠=︒-∠+∠=︒-︒=︒,故选:A .【点睛】本题主要考查的是平行线的性质,熟练利用平行线进行角度转化时解题的关键.22.如图,在∠ECF 的边CE 上有两点A 、B ,边CF 上有一点D ,其中BC =BD =DA 且∠ECF =27°,则∠ADF 的度数为()A .54°B .91°C .81°D .101°【答案】C【分析】根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ADF 的度数.【解析】解:∵BC =BD =DA ,∴∠C =∠BDC ,∠ABD =∠BAD ,∵∠ABD =∠C +∠BDC ,∠ECF =27°,∴∠ADF =∠C +∠BAD =3∠ECF =81°.故选:C .【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运用.23.如图,在ABC 中,DE 垂直平分BC ,若6428CDE A ∠=︒∠=︒,,则ABD ∠的度数为()A .100︒B .128︒C .108︒D .98︒【答案】A 【分析】直接利用线段垂直平分线的性质结合三角形内角和定理得出答案.【解析】解:∵DE 垂直平分BC ,∴BD =DC ,∴∠BDE =∠CDE =64°,∴∠ADB =180°-64°-64°=52°,∵∠A =28°,∴∠ABD =180°-28°-52°=100°.故选:A .【点睛】此题主要考查了线段垂直平分线的性质、三角形内角和定理,正确掌握相关定理是解题关键.24.如图,已知D 为ABC 边AB 的中点,E 在AC 上,将ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若70B ∠=︒,则BDF ∠等于()键.题型5:等边对等角的解答证明26.如图,在ABC 中,AB AC =,点D 、E 都在边BC 上,且BE CD =,求证:AD AE =.【答案】见详解【分析】利用等腰三角形的性质可得B C ∠=∠,再由SAS 证明()SAS ABE ACD ≌△△,从而得AD AE =.【解析】证明:∵AB AC =,∴B C ∠=∠,在ABE 和ACD 中,AB AC B C BE CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ACD ≌△△,∴AD AE =.【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.27.如图,,∥DE AB AE 平分DAB ∠,点C 在线段AE 上,AC BC AD ==,求证:AE AB =.【答案】见解析【分析】根据平行和角平分线得出AD DE =,再证△ADE ≌△ACB 即可.【解析】证明:∵AE 平分DAB ∠,∴DAE CAB ∠=∠,∵DE AB ∥,∴E BAE ∠=∠,∵AC BC =,∴B BAE ∠=∠,∴E B ∠=∠,在△ADE 和△ACB 中,E B DAE CAB AD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ACB ,∴AE AB =.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,解题关键是熟练运用等腰三角形的性质得出角相等.28.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD △≌DCE △;(2)若3BD =,5CD =,求AE 的长.【答案】(1)见解析;(2)2【分析】(1)根据等边对等角可得:B C ∠=∠,利用全等三角形的判定定理证明即可;(2)根据全等三角形的性质可得5AB DC ==,3CE BD ==,由图形中各边的关系计算即可得出.【解析】(1)证明:∵AB AC =,∴B C ∠=∠,在ABD 和DCE 中,12B C AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABD DCE ≅ ;(2)解:∵ABD DCE ≅ ,∴5AB DC ==,3CE BD ==,∵5AB AC ==,∴532AE AB CE =-=-=.【点睛】题目主要考查全等三角形及等腰三角形的性质,理解题意,结合图形,熟练运用各个性质是解题关键.29.如图,在ABC 中,AB AC =,延长BC 至D ,使得BD AC =,连接AD ,再延长AB 至E ,使得BE CD =,连接DE .求证:≌BED CDA △△.【答案】见详解【分析】先证明,EBD ACD ∠=∠再根据SAS 判定证明即可.【解析】解:∵在ABC 中,AB AC =,ABC ACB ∴∠=∠,180,180,EBD ABC ACD ACB ∠=︒-∠∠=︒-∠ ,EBD ACD ∴∠=∠BE CD = ,BD AC =,(SAS)BED CDA ≌.【点睛】本题考查了等腰三角形的性质,全等三角形的判定,解题的关键是熟练掌握全等三角形的判定定理.题型6:等腰三角形的“三线合一”30.等腰三角形的“三线合一”指的是()A .中线,高线,角平分线互相重合B .顶角的平分线,中线,高线三线互相重合C .腰上的中线,腰上的高线,底角的平分线互相重合D .顶角的平分线,底边上的中线及底边上的高线三线互相重合【答案】D【分析】根据等腰三角形的性质直接选取答案即可求解.【解析】解:三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线相互重合.【点睛】本题考查等腰三角形的性质,解题的关键是熟练掌握等腰三角形的三线合一的性质,属于中考基础题.33.下列说法错误的是()A .等腰三角形两腰上的高相等B .等腰三角形两腰上的中线相等C .等腰三角形两底角的平分线相等D .等腰三角形高、中线和角平分线重合【答案】D【分析】根据等腰三角形的性质依次判断.【解析】解:A 、等腰三角形两腰上的高相等,故正确;B 、等腰三角形两腰上的中线相等,故正确;C 、等腰三角形两底角的平分线相等,故正确;D 、等腰三角形底边上的高、底边上的中线和顶角的角平分线重合,故错误;故选:D .【点睛】此题考查了等腰三角形的性质,熟记等腰三角形的性质是解题的关键.34.已知点P 到ABC 的两边AB ,AC 所在直线的距离相等,且PB PC =,则下列命题为假命题的是()A .若点P 在边BC 上,则AB AC=B .若点P 在ABC 内部,则AB AC=C .若点P 在ABC 外部,则AB AC=D .若AB AC =,则点P 可能在边BC 上,可能在ABC 内部,也可能在ABC 外部【答案】C【分析】选项A 根据等腰三角形的性质判断;当点P 在ABC 内部时,分别作PE ,PF 垂直AB ,AC 于点E ,F ,先证明Rt Rt (HL)BEP CFP ≌ ,再证明(AAS)ABP ACP ≌可判断选项B ;若AB AC =,都有(SSS)ABP ACP ≌,可判断选项D ;选项C 有两种情况,具体见详解.【解析】∵点P 到ABC 的两边AB ,AC 所在直线的距离相等,∴点P 在BAC ∠的角平分线所在的直线上,即BAP CAP ∠=∠,如图1,当点P 在边BC 上时,即P 为BC 的中点,根据等腰三角形的“三线合一”,得到AB AC =,故选项A 是真命题;如图2,当点P 在ABC 内部时,分别作PE ,PF 垂直AB ,AC 于点E ,F ,,PE PF PB PC == ,Rt Rt (HL)BEP CFP ≌ ,得到EBP FCP ∠=∠,∵BAP CAP ∠=∠,AP AP =,(AAS)ABP ACP ∴ ≌,AB AC ∴=;故选项B 是真命题;若AB AC =,都有(SSS)ABP ACP ≌,故选项D 是真命题;当点P 在ABC 外部时,如图3所示,AB 与AC 不一定相等,故选:C .【点睛】此题考查了等腰三角形的判定与性质以及直角三角形全等的判定与性质.本题的关键是注意数形结合思想的应用,注意掌握辅助线的作法.题型7:等腰三角形的“三线合一”有关的最值问题35.如图,在ABC 中,AB AC =,=4BC ,面积是10;AB 的垂直平分线ED 分别交AC ,AB 边于E 、D 两点,若点F 为BC 边的中点,点P 为线段ED 上一动点,则PBF △周长的最小值为()A .7B .9C .10D .14【答案】A 【分析】连接AP ,根据线段垂直平分线性质得AP BP =,PBF △周长==BP PF BF AP PF BF AF BF ++++≥+,再根据等腰三角形的性质和三角形的面积求出AF ,BF ,即可得出答案.【解析】解:如图所示.连接AP ,∵DE 是AB 的垂直平分线,A.①②③【答案】D【分析】根据三线合一得到A.8cm B.【答案】B【分析】根据等腰三角形三线合一的性质,得【答案】见解析【分析】过点A 作AM BC ⊥于点M ,由等腰三角形的性质得出2BAC BAM ∠=∠,D E ∠=∠,由三角形外角的性质得出2BAC D ∠=∠,即可推出BAM D ∠=∠,最后根据平行线的判定和性质即可证明DE BC ⊥.【解析】证明:如图,过点A 作AM BC ⊥于点M .AB AC = ,2BAC BAM ∠∠∴=,AD AE = ,D E ∴∠=∠,2BAC D E D ∠∠∠∠∴=+=,22BAC BAM D ∠∠∠∴==,BAM D ∠∠∴=,DE AM ∴∥,AM BC ⊥ ,DE BC ∴⊥.【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,平行线的判断和性质,正确作出辅助线,构建等腰三角形三线合一的性质是解题的关键.42.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【答案】(1)相等,理由见解析(2)50︒【分析】(1)连接CE ,根据中垂线的性质得到,AE CE BE CE ==,即可得到AE BE =;(2)利用等边对等角,求出ABC ∠的度数,三线合一,求出BAE ∠的度数,等边对等角得到ABE ∠的度数,利用EBD ABD ABE ∠=∠-∠,即可得解.【解析】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,∵AB AC =,AD 是BC 边上的高,∴BD CD =,∴AD 为BC 的垂直平分线,∵点E 在AD 上,∴BE CE =,又∵线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,∴AE CE =,∴AE BE =;(2)∵AB AC =,40BAC ∠︒=,【答案】见解析【分析】作EF AC ⊥于点F EA EC = ,12AF FC AC ∴==.2AC AB = ,A.3【答案】A【分析】利用等腰三角形三线合一解题即可.∠=【解析】解:∵B【解析】解:如图,在AB 上截取BE BC =,连接DE ,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,在CBD △和EBD △中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩,∴CBD △≌EBD △()SAS ,∴CDB BDE ∠=∠,C DEB ∠=∠,∴2CDE CDB ∠=∠,∵2C CDB ∠=∠,∴CDE DEB C ∠=∠=∠,∴ADE AED ∠=∠,∴AD AE =,∴ABC 的周长=27AD AE BE BC CD AB AB CD ++++=++=,故选:C .【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.题型11:等角对等边证明等腰三角形的解答证明48.已知:如图,在ABC 中,点D 在CA 边的延长线上,AE 平分DAB ∠,AE BC ∥.求证:ABC 为等腰三角形.【答案】见解析【分析】首先依据平行线的性质证明2B ∠=∠,1C ∠=∠,然后结合角平分线的定义可证明B C ∠=∠,故此可证明ABC 为等腰三角形.【解析】证明:∵AE BC ∥,∴2B ∠=∠,1C∠=∠∵AE 平分DAB ∠,∴12∠=∠∴B C∠=∠即ABC 为等腰三角形.【点睛】本题主要考查的是等腰三角形的判定,熟练掌握平行线的性质及等腰三角形的判定定理是解题的关键.49.如图,在ABD △和ACD 中,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)过点D 作∥DE AC 交AB 于点E ,求证:AED △是等腰三角形.【答案】(1)见解析(2)见解析【分析】(1)根据SSS 证明三角形全等即可;(2)证明EAD ADE ∠=∠即可证明AE DE =,进而得到AED △是等腰三角形.【解析】(1)证明:在ABD △和ACD 中,AB AC AD AD DB DC =⎧⎪=⎨⎪=⎩,∴()SSS ABD ACD ≌;(2)证明:∵ABD ACD △≌△,∴∠=∠DAB DAC ,∵∥DE AC ,∴ADE DAC ∠=∠,∴EAD EDA ∠=∠,∴AE DE =,∴AED △是等腰三角形.【点睛】本题考查全等三角形的判定和性质,平行线的性质,等腰三角形的判定等知识,解题的关键是掌握全等三角形的判定方法.50.已知ABC 中,AD 平分BAC ∠交BC 于点D ,且2B C ∠=∠.(1)如图1,求证:AB BD AC +=;(2)如图2,延长CB 至点E ,使BE AB =,连接AE ,若36C ∠=︒,直接写出图中所有的等腰三角形(ABC 和ADE V 除外).【答案】(1)证明见解析(2)ABE 是等腰三角形,ACE △是等腰三角形,ADC △是等腰三角形,ABD △是等腰三角形;【分析】(1)如图所示,在AC 上取一点E ,使得AE AB =,连接DE ,证明()SAS ABD AED ≌△△得到BD ED B AED ==,∠∠,根据三角形外角的性质结合已知条件证明EDC C ∠=∠,得到ED EC BD ==,即可证明AC AE CE AB BD =+=+;(2)根据等腰三角形的判定条件结合三角形内角和定理进行推理即可.【解析】(1)证明:如图所示,在AC 上取一点E ,使得AE AB =,连接DE ,∵AD 平分BAC ∠,∴BAD EAD ∠=∠,又∵AB AE AD AD ==,,∴()SAS ABD AED ≌△△,∴BD ED B AED ==,∠∠,∵2B C ∠=∠,∴2AED C ∠=∠,∵AED C EDC ∠=∠+∠,∴EDC C ∠=∠,∴ED EC BD ==,∴AC AE CE AB BD =+=+;(2)解:∵BE AB =,∴BEA BAE ∠=∠,ABE 是等腰三角形,∵BEA BAE ABC +=∠∠∠,∴2ABC BEA =∠∠,又∵272ABE C ==︒∠∠,∴36BEA BAE C ===︒∠∠∠,∴AE AC =,即ACE △是等腰三角形,∵18072BAC C ABC =︒--=︒∠∠∠,AD 平分BAC ∠,∴36BAD CAD ∠=∠=︒,∴36DAC C ∠=∠=︒,∴72ADB C DAC =+=︒∠∠∠,ADC △是等腰三角形,∴72ADB ABD ∠∠==︒,∴ABD △是等腰三角形.【点睛】本题主要考查了等腰三角形的判定,全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义等,灵活运用所学知识是解题的关键.题型12:等角对等边证明边长相等、求边长51.如图,已知12∠=∠,B C ∠=∠,不正确的等式是()A .AB AC=B .BAE CAD ∠=∠C .BE DC =D .BD DE=【答案】D 【分析】根据等腰三角形的判定和全等三角形的判定和性质定理即可得到结论.【解析】解:∵B C ∠=∠,∴AB AC =,故A 选项正确,不符合题意;在ABE 和ACD 中,12B C AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABE ACD ≌,∴BE CD =,BAE CAD ∠=∠,∵BE CD =,∴BE DE CD DE -=-,∴BD CE =,故B 选项、C 选项正确,D 选项错误,故选:D .【点睛】本题考查等腰三角形的判定,全等三角形的判定和性质,掌握等腰三角形的判定是解题的关键.52.如图,ABC 中,BD 平分ABC ∠交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若12AB =,7DE =,则AE 的长为()A .5B .6C .7D .8【答案】A【分析】由角平分线的定义和平行线的性质,得到ABD EDB ∠=∠,则7BE DE ==,即可求出答案.【解析】解:∵在ABC 中,BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ∥,∴CBD EDB ∠=∠,∴ABD EDB ∠=∠,∴7BE DE ==,∴1275AE AB BE =-=-=;故选:A .【点睛】本题考查了角平分线的定义和平行线的性质,解题的关键是掌握所学的知识进行计算.53.如图,点P 是AOB ∠的角平分线OC 上一点,点Q 是OA 上一点,且PQ OB ∥,若2PQ =,则线段OQ 的长是()A .1.8B .2.5C .3D .2【答案】D 【分析】利用角平分线的定义以及平行线的性质推出QPO QOP ∠=∠,据此即可求解.【解析】解:∵点P 是AOB ∠的角平分线OC 上一点,∴QOP POB ∠=∠,∵PQ OB ∥,∴QPO POB ∠=∠,∴QPO QOP ∠=∠,∴2OQ PQ ==,故选:D .【点睛】本题考查了平行线的性质,等角对等边,掌握“两直线平行内错角相等”是解题的关键.54.如图,在ABC 中,BE 平分ABC ∠,DE BC ∥.若8DE =,5AD =,则AB 的长为()A .13B .12C .10D .9【答案】A 【分析】先根据平行线的性质和角平分线的定义证明DBE DEB ∠=∠,得到8DE DB ==,则13AB AD BD =+=.【解析】解:∵BE 平分ABC ∠,∴DBE CBE ∠=∠,∵DE BC ∥,∴DEB CBE ∠=∠,∴DBE DEB ∠=∠,∴8DE DB ==,∴8513AB AD BD =+=+=,故选A .【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的判定,证明DBE DEB ∠=∠是解题的关键.55.如图,在ABC 中,45AB AC ==,,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB AC ,于M ,N ,则AMN 的周长为()A .8B .9C .10D .不确定【答案】B 【分析】根据角平分线的定义和MN BC ∥可以得出MB ME =,NC NE =,继而可以得出AMN 的周长AB AC =+,从而可以得出答案.【解析】解:∵MN BC ∥,∴∠∠=MEB EBC .∵BE 平分ABC ∠,∴MBE EBC =∠∠,∴MEB MBE ∠=∠.∴MB ME =.同理,NC NE =,∴9AMN C AM ME EN AN AB AC =+++=+=△.故选:B .【点睛】本题考查了等腰三角形的性质,等角对等边,利用角平分线及平行线的性质得出MEB MBE ∠=∠是解题的关键.56.如图,ABC DEF ≌△△,点E 在AC 上,B ,F ,C ,D 四点在同一条直线上.若40,35A CED ∠=︒∠=︒,则下列结论正确的是()A .,EF EC AB FC==B .,EF EC AE FC ≠=C .,EF EC AE FC=≠D .,EF EC AE FC≠≠【答案】C 【分析】根据全等三角形的性质得到ACB DFE ∠=∠,40D A AC DF ==︒=∠∠,,则EF EC =,由于D CED ∠≠∠,则CE CD ≠,则AE CF ≠,由此即可得到答案.【解析】解:∵ABC DEF ≌△△,∴ACB DFE ∠=∠,40D A AC DF ==︒=∠∠,,∴EF EC =,∵4035D CED ∠=︒≠∠=︒,∴CE CD ≠,∴AE CF ≠,∴四个选项中只有C 选项符合题意,故选C .【点睛】本题主要考查了全等三角形的性质,等腰三角形的判定,熟知全等三角形的性质是解题的关键.57.如图,在ABC 中,AB AC =,AD BC ⊥于点D .(1)若37B ∠=︒,求CAD ∠的度数;(2)若点E 在边AC 上,EF AB ∥交AD 的延长线于点F .求证:AE FE =.【答案】(1)53︒(2)见解析【分析】(1)根据等腰三角形底角相等,再根据直角三角形的性质即可求得CAD ∠;(2)根据两直线平行内错角相等,再根据AD 是BAC ∠的角平分线即可得到DAC F ∠=∠,从而证得AE FE =.【解析】(1)解:AB AC = ,AD BC ⊥,37B C ∴∠=∠=︒,90ADC ∠=︒,9053CAD C ∴∠=︒-∠=︒;(2)证明:E F A B ∥ ,BAF F ∴∠=∠,AB AC = ,AD BC ⊥,AD ∴是BAC ∠的角平分线,BAF DAC ∴∠=∠,DAC F ∴∠=∠,AE FE ∴=.【点睛】本题考查等腰三角形的性质、平行线的性质、直角三角形的性质,解题的关键是熟练掌握等腰三角形、平行线、直角三角形的相关知识.58.如图,在四边形ABCD 中,AD BC ∥,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在边BC 上,且GDF ADF ∠=∠.连接EG ,判断EG 与DF 的位置关系,并说明理由.【答案】EG 与DF 的位置关系是EG DF ⊥;理由见解析【分析】证明()AAS ADE BFE ≌△△,得出DE EF =,证明GDF BFE ∠=∠,得出GD GF =,根据垂直平分线的判定得出GE 垂直平分DF ,即可得出答案.【解析】解:EG 与DF 的位置关系是EG DF ⊥;理由见如下:∵AD BC ∥,∴ADE BFE ∠=∠,E 是AB 的中点,AE BE ∴=,又∵FEB DEA ∠=∠,∴()AAS ADE BFE ≌△△,DE EF ∴=,∵GDF ADF ∠=∠,ADE BFE ∠=∠,∴GDF BFE ∠=∠,GD GF ∴=,DE EF = ,∴GE 垂直平分DF ,∴EG DF ⊥.【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的判定,垂直平分线的判定,解题的关键是熟练掌握三角形全等的判定方法,得出ADE BFE V V ≌.题型13:直线上与已知两点组成等腰三角形的点59.如图,ABC ,点P 为直线AC 上的一个动点,若使得ABP 是等腰三角形.则符合条件的点P 有()A .1个B .2个C .3个D .4个【答案】D【分析】根据等腰三角形的判定定理即可得到结论.【解析】解:作AB 垂直平分线与AC 的交点,可得22P A P B =,以A 为圆心,AB 为半径画圆,交AC 有两个交点,13P A AB P A ==,以B 为圆心,AB 为半径画圆,交AC 有一个交点,4P B AB =,故选:D .【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.60.如图,线段AB 的一个端点B 在直线m 上,直线m 上存在点C ,使ABC 为等腰三角形,这样的点C 有()A .2个B .3个C .4个D .5个【答案】C 【分析】以A 为圆心,以BA 的长为半径画弧与直线m 交于点D ,此时BA AD =,同理以B 为圆心以BA 的长为半径画弧与直线m 交于E 、C ,此时BC BA =,BE BA =,再作BA 的垂直平分线与直线m 交于点F ,此时BF AF =,据此可得答案.【解析】解:如图所示,以A 为圆心,以BA 的长为半径画弧与直线m 交于点D ,此时BA AD =,同理以B 为圆心以BA 的长为半径画弧与直线m 交于E 、C ,此时BC BA =,BE BA =,再作BA 的垂直平分线与直线m 交于点F ,此时BF AF =,∴直线m 上存在4个点C ,使ABC 为等腰三角形,故选:C .【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,解题的关键在于能够熟练掌握等腰三角形的定义.61.如图,直线a b ,相交于点O ,150∠=︒,点A 在直线a 上,直线b 上存在点B ,使以点O A B 、、为顶点的三角形是等腰三角形,这样的B 点有()A .1个B .2个C .3个D .4个【答案】D 【分析】分别以点O A B 、、为顶点的等腰三角形有3种情况,分别为OA OB =,OA AB =,OB AB =,从这三方面考虑点B 的位置即可;【解析】解:当OA OB =时;以点O 为圆心,OA 的长为半径作圆,与直线b 在O 点两侧各有一个交点,此时B 点有2个;当OA AB =时;以点A 为圆心,OA 的长为半径作圆,与直线b 有一个交点,此时B 点有1个;当OB AB =时;作OA的垂直平分线,与直线b有一个交点,此时B点有1个;∴满足条件的B点总共有4个;故选:D.【点睛】本题考查了等腰三角形的判定,两条边相等的三角形为等腰三角形,因此要注意分类讨论,由每种情况的特点选择合适的方法确定点B是解题的关键.题型14:等腰三角形有关的尺规作图62.如图,给出了尺规作等腰三角形的三种作法,认真观察作图痕迹,下面的已知分别对应作图顺序正确的是()①已知等腰三角形的底边和底边上的高;②已知等腰三角形的底边和腰;③已知等腰三角形的底边和一底角.A.①②③B.②①③C.③①②D.②③①【答案】B【分析】根据等腰三角形的性质即可求解.【解析】解:图形①的作图依据是“②已知等腰三角形的底边和腰”;图形②的作图依据是“①已知等腰三角形的底边和底边上的高”;图形③的作图依据是“③已知等腰三角形的底边和一底角”.故选:B .【点睛】本题主要考查尺规作图等腰三角形,掌握等腰三角形的性质,作图的方法是解题的关键.63.如图(1),锐角ABC 中,AB BC AC >>,要用尺规作图的方法在AB 边上找一点D ,使ACD 为等腰三角形,关于图(2)中的甲、乙、丙三种作图痕迹,下列说法正确的是()A .甲、乙、丙都正确B .甲、丙正确,乙错误C .甲、乙正确,丙错误D .只有甲正确【答案】A【分析】根据圆、线段垂直平分线、角的尺规作图进行分析即可.【解析】解:甲图:以点A 为圆心,AC 为半径作弧,交AB 于点D ,∴AD AC =,∴ACD 为等腰三角形,乙图:作AC 的垂直平分线,交AB 于点D ,∴AD DC =,∴ACD 为等腰三角形,丙图:∵所作的A DCA ∠=∠,∴AD DC =,∴ADC △是等腰三角形,∴甲、乙、丙都正确,故选A .【点睛】本题考查等腰三角形的定义、尺规作图−圆、角、垂直平分线,熟练掌握等腰三角形的判定与圆、角和线段垂直平分线的基本作图的方法是解题的关键.64.已知锐角40AOB ∠=︒,如图,按下列步骤作图:①在OA 边取一点D ,以O 为圆心,OD 长为半径画 MN,交OB 于点C .②以D 为圆心,DO 长为半径画 GH, GH 与OB 交于点E ,连接DC 并延长,使DC 的延长【答案】见解析【分析】以AB为腰和底两种情况作图即可.【解析】如图,以AB为腰,AO为对称轴;如图,以AB为底作等腰三角形,CM为对称轴;【点睛】本题考查利用网格作图,掌握等腰三角形的判定定理是解题的关键.66.图1,图2均是44⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A,B,C均为格点.只用无刻度的直尺,分别在给定的网格中找一格点M,按下列要求作图:=;(1)在图1中,连接MA,MB,使MA MB==.(2)在图2中,连接MA,MB,MC,使MA MB MC【答案】(1)见解析(2)见解析=;【分析】(1)根据勾股定理得MA MB==.(2)连接AC,取AC中点M,MA MB MC【解析】(1)解:如图1正确画图.(2)如图2正确画图.【点睛】本题主要考查尺规作图,熟练根据题意作出符合题意的图形是解题的关键.67.如图,在每个小正方形的边长均为方形的顶点上.(1)在方格纸中画出以AB为底的等腰ABC(2)在方格纸中画出以DE为一边的等腰DEF直接写出DC的长度.【答案】(1)图见解析;(2)图见解析,22DC .(2)如图所示,DEF 即为所求;CD =【点睛】本题考查的是作图:应用与设计作图,根据题意找出符合条件的点是解题的关键.题型16:等腰三角形的性质和判定综合题68.如图,在ABC 中,90BAC ∠=︒,AB 90EDF ∠=︒,下列结论:①BED AFD △≌△积,则1211142S S S ≤≤;④EF AD =;所有正确的结论是(。
等腰三角形的判定与性质(北京习题集)(教师版)一.选择题(共6小题)1.(2019秋•丰台区期末)如图,每个小方格的边长为1,A,B两点都在小方格的顶点上,点C也是图中小方格的顶点,并且ABC∆是等腰三角形,那么点C的个数为()A.1B.2C.3D.42.(2019秋•海淀区校级月考)在ABCDE BC交BA于点D,∠的平分线交于点I,过点I作//∠与ACB∆中,ABC交AC于点E,且5∠=︒,则下列说法错误的是()AAC=,50AB=,3A.DBI∆和EICDI IE=∆是等腰三角形B. 1.5C.ADE∆的周长是8D.115?∠=BIC3.(2018秋•海淀区校级期中)如图,已知ABCMN BA,分+=,AO,BO分别是角平分线,且//∆中,24AC BC别交AC于N,BC于M,则CMN∆的周长为()A.12B.24C.36D.不确定4.(2017秋•北京期中)如图,ABCDE=,5CE=,∠的平分线,//DE AB交AC于点E,若6∆中,AD是BAC则AC的长为()A.11B.12C.13D.145.(2013秋•石景山区期末)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D ,交AC 于F ,若4AB =,3AC =,则ADF ∆周长为( )A .6B .7C .8D .106.(2013秋•西城区期末)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若7DE =,5CE =,则(AC = )A .11B .12C .13D .14二.填空题(共7小题)7.(2018秋•东城区期末)已知在ABC ∆中,AB AC =.(1)若36A ∠=︒,在ABC ∆中画一条线段,能得到2个等腰三角形( 不包括)ABC ∆,这2个等腰三角形的顶角的度数分别是 ;(2)若36A ∠≠︒,当A ∠= 时,在等腰ABC ∆中画一条线段,能得到2个等腰三角形( 不包括)ABC ∆.(写出两个答案即可)8.(2018秋•顺义区期末)如图,在Rt ABC ∆中,90C ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为 .9.(2019秋•海淀区校级期中)ABC ∆中,AB AC =.设ABC ∆的面积为S , ①图1中,D 为BC 中点,E ,F ,M ,N 是AD 上的四点;②图2中,60BAC ∠=︒,AD BC ⊥,BE AC ⊥,CF AB ⊥,AD ,BE ,CF 交于点O ; ③图3中,90BAC ∠=︒,D 为BC 中点,90MDN ∠=︒.其中,阴影部分面积为12S 的是 (填序号).10.(2017秋•房山区期末)用一条长为16cm 的细绳围成一个等腰三角形,已知其中有一边的长为4cm ,那么该等腰三角形的腰长为 cm .11.(2018秋•西城区校级期中)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若7DE =,6CE =,则AC 的长为 .12.(2017秋•海淀区期末)如图,在ABC ∆中,4AB =,6AC =,ABC ∠和ACB ∠的平分线交于O 点,过点O 作BC 的平行线交AB 于M 点,交AC 于N 点,则AMN ∆的周长为 .13.(2015秋•北京校级期中)如图,ABC ∆中,BO 、CO 分别平分ABC ∠、ACB ∠,//OM AB ,//ON AC ,10BC cm =,则OMN ∆的周长= .三.解答题(共2小题)14.(2019秋•大兴区期末)如图,在ABC ∆中,点D ,E 在边BC 上,BD CE =,且AD AE =.求证:AB AC =.15.(2019秋•朝阳区校级期中)已知,如图,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,请你通过观察和测量,猜想线段AB 、AC 之和与线段AM 有怎样的数量关系,并证明你的结论.猜想B ∠,ACM ∠,BCM ∠有怎样的数量关系,并证明你的结论.等腰三角形的判定与性质(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2019秋•丰台区期末)如图,每个小方格的边长为1,A ,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且ABC ∆是等腰三角形,那么点C 的个数为( )A .1B .2C .3D .4【分析】分AB 为腰和为底两种情况考虑,画出图形,即可找出点C 的个数. 【解答】解:当AB 为腰时,点C 的个数有2个; 当AB 为底时,点C 的个数有1个, 故选:C .【点评】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.2.(2019秋•海淀区校级月考)在ABC ∆中,ABC ∠与ACB ∠的平分线交于点I ,过点I 作//DE BC 交BA 于点D ,交AC 于点E ,且5AB =,3AC =,50A ∠=︒,则下列说法错误的是( )A .DBI ∆和EIC ∆是等腰三角形B . 1.5DI IE =C .ADE ∆的周长是8D .115?BIC ∠=【分析】由角平分线以及平行线的性质可以得到等角,从而可以判定IDB ∆和IEC ∆是等腰三角形,所以BD DI =,CE EI =,ADE ∆的周长被转化为ABC ∆的两边AB 和AC 的和,即求得ADE ∆的周长为8.【解答】解:BI 平分DBC ∠,DBI CBI ∴∠=∠, //DE BC , DIB IBC ∴∠=∠,DIB DBI ∴∠=∠,BD DI ∴=.同理,CE EI =.DBI ∴∆和EIC ∆是等腰三角形;ADE ∴∆的周长8AD DI IE EA AB AC =+++=+=;50A ∠=︒,130ABC ACB ∴∠+∠=︒, 65IBC ICB ∴∠+∠=︒, 115BIC ∴∠=︒,故选项A ,C ,D 正确, 故选:B .【点评】此题考查了等腰三角形的性质与判定以及角平分线的定义.此题难度适中,注意掌握数形结合思想与转化思想的应用.3.(2018秋•海淀区校级期中)如图,已知ABC ∆中,24AC BC +=,AO ,BO 分别是角平分线,且//MN BA ,分别交AC 于N ,BC 于M ,则CMN ∆的周长为( )A .12B .24C .36D .不确定【分析】由AO ,BO 分别是角平分线求得12∠=∠,34∠=∠,利用平行线性质求得,16∠=∠,35∠=∠,利用等量代换求得26∠=∠,45∠=∠,即可解题.【解答】解:由AO ,BO 分别是角平分线得12∠=∠,34∠=∠, 又//MN BA ,16∴∠=∠,35∠=∠, 26∴∠=∠,45∠=∠, AN NO ∴=,BM OM =.24AC BC +=,24AC BC AN NC BM MC ∴+=+++=,即24MN MC NC ++=,也就是CMN ∆的周长是24. 故选:B .【点评】此题考查学生对等腰三角形的判定与性质和平行线行至的理解和掌握,此题主要求得ANO BMO ∆∆是等腰三角形,这是解答此题的关键.4.(2017秋•北京期中)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若6DE =,5CE =,则AC 的长为( )A .11B .12C .13D .14【分析】先根据角平分线的性质得出BAD CAD ∠=∠,再根据平行线的性质得出CAD ADE ∠=∠,故可得出6AE DE ==,再根据AC AE CE =+即可得出结论.【解答】解:ABC ∆中,AD 是BAC ∠的平分线, BAD CAD ∴∠=∠,//DE AB ,6DE =,5CE =, CAD ADE ∴∠=∠, 6AE DE ∴==,6511AC AE CE ∴=+=+=.故选:A .【点评】本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两底角相等是解答此题的关键.5.(2013秋•石景山区期末)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D ,交AC 于F ,若4AB =,3AC =,则ADF ∆周长为( )A .6B .7C .8D .10【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】(1)证明:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠, DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+, 即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =, ADF ∴∆的周长437=+=,故选:B .【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.6.(2013秋•西城区期末)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若7DE =,5CE =,则(AC = )A .11B .12C .13D .14【分析】先根据角平分线的性质得出BAD CAD ∠=∠,再根据平行线的性质得出CAD ADE ∠=∠,故可得出7AE DE ==,再根据AC AE CE =+即可得出结论.【解答】解:ABC ∆中,AD 是BAC ∠的平分线, BAD CAD ∴∠=∠,//DE AB ,7DE =,5CE =, CAD ADE ∴∠=∠, 7AE DE ∴==,7512AC AE CE ∴=+=+=.故选:B .【点评】本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两底角相等是解答此题的关键. 二.填空题(共7小题)7.(2018秋•东城区期末)已知在ABC ∆中,AB AC =.(1)若36A ∠=︒,在ABC ∆中画一条线段,能得到2个等腰三角形( 不包括)ABC ∆,这2个等腰三角形的顶角的度数分别是 108︒,36︒ ;(2)若36A ∠≠︒,当A ∠= 时,在等腰ABC ∆中画一条线段,能得到2个等腰三角形( 不包括)ABC ∆.(写出两个答案即可)【分析】(1)根据等腰三角形的性质和三角形的内角和即可得到结论; (2)当90A ∠=︒或108︒时,根据等腰三角形的性质即可得到结论. 【解答】解:(1)如图1所示:AB AC =,36A ∠=︒,∴当AE BE =,则36A ABE ∠=∠=︒,则108AEB ∠=︒,则36EBC ∠=︒,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108︒,36︒;(2)当90A ∠=︒或108︒时,在等腰ABC ∆中画一条线段,能得到2个等腰三角形, 故答案为:90︒或108︒.【点评】此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形是解题关键.8.(2018秋•顺义区期末)如图,在Rt ABC ∆中,90C ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为 7个 .【分析】①以B 为圆心,BC 长为半径画弧,交AB 于点D ,BCD ∆就是等腰三角形; ②以A 为圆心,AC 长为半径画弧,交AB 于点E ,ACE ∆就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F ,BCF ∆就是等腰三角形; ④以C 为圆心,BC 长为半径画弧,交AB 于点K ,BCK ∆就是等腰三角形; ⑤作AB 的垂直平分线交AC 于G ,则AGB ∆是等腰三角形; ⑥作BC 的垂直平分线交AB 于I ,则BCI ∆和ACI ∆是等腰三角形. 【解答】解:如图:可以画出7个等腰三角形;故答案为7.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力. 9.(2019秋•海淀区校级期中)ABC ∆中,AB AC =.设ABC ∆的面积为S , ①图1中,D 为BC 中点,E ,F ,M ,N 是AD 上的四点;②图2中,60BAC ∠=︒,AD BC ⊥,BE AC ⊥,CF AB ⊥,AD ,BE ,CF 交于点O ; ③图3中,90BAC ∠=︒,D 为BC 中点,90MDN ∠=︒. 其中,阴影部分面积为12S 的是 ①②③ (填序号).【分析】由等腰三角形的性质可判断①,由等边三角形的性质可判断②,由ASA 可证ADF DBE ∆≅∆,可得ADF DBE S S ∆∆=,即可判断③.【解答】解:如图1,AB AC =,点D 是BC 中点,BD CD ∴=,AD 垂直平分BC ,BDN DCN S S ∆∆∴=,BMN MNC S S ∆∆=,BFM CFM S S ∆∆=,EFB EFC S S ∆∆=,AEB AEC S S ∆∆=,∴阴影部分面积为12S ;如图2,AB AC =,60BAC ∠=︒,ABC ∴∆是等边三角形,且AD BC ⊥,BE AC ⊥,CF AB ⊥,AD ∴垂直平分BC ,BE 垂直平分AC ,CF 垂直平分AB ,BDO CDO S S ∆∆∴=,AEO CEO S S ∆∆=,AFO BFO S S ∆∆=,∴阴影部分面积为12S ; 如图3,连接AD ,AB AC =,90BAC ∠=︒,D 为BC 中点,AD BD ∴=,45B DAC ∠=∠=︒,AD BC ⊥,90ADM BDM ∴∠+∠=︒,且90MDA ADN ∠+∠=︒,BDM ADN ∴∠=∠,且AD BD =,45B DAC ∠=∠=︒,()ADF DBE ASA ∴∆≅∆ ADF DBE S S ∆∆∴=,∴阴影部分面积为12S ; 故答案为:①②③.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,灵活运用等腰三角形的性质是本题的关键.10.(2017秋•房山区期末)用一条长为16cm 的细绳围成一个等腰三角形,已知其中有一边的长为4cm ,那么该等腰三角形的腰长为 6 cm .【分析】分已知边4cm 是腰长和底边两种情况讨论求解.【解答】解:4cm 是腰长时,底边为16428-⨯=,448+=,4cm ∴、4cm 、8cm 不能组成三角形;4cm 是底边时,腰长为1(164)62cm -=, 4cm 、6cm 、6cm 能够组成三角形;综上所述,它的腰长为6cm .故答案为:6;【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.11.(2018秋•西城区校级期中)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若7DE =,6CE =,则AC 的长为 13 .【分析】先根据角平分线的性质得出BAD CAD ∠=∠,再根据平行线的性质得出CAD ADE ∠=∠,故可得出6AE DE ==,再根据AC AE CE =+即可得出结论.【解答】解:ABC ∆中,AD 是BAC ∠的平分线,BAD CAD ∴∠=∠,//DE AB ,7DE =,6CE =,CAD ADE ∴∠=∠,7AE DE ∴==,7613AC AE CE ∴=+=+=.故答案为:13.【点评】本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两底角相等是解答此题的关键.12.(2017秋•海淀区期末)如图,在ABC ∆中,4AB =,6AC =,ABC ∠和ACB ∠的平分线交于O 点,过点O 作BC的平行线交AB 于M 点,交AC 于N 点,则AMN ∆的周长为 10 .【分析】利用角平分线及平行线性质,结合等腰三角形的判定得到MB MO =,NC NO =,将三角形AMN 周长转化,求出即可.【解答】解:BO 为ABC ∠的平分线,CO 为ACB ∠的平分线,ABO CBO ∴∠=∠,ACO BCO ∠=∠,//MN BC ,MOB OBC ∴∠=∠,NOC BCO ∠=∠,ABO MOB ∴∠=∠,NOC ACO ∠=∠,MB MO ∴=,NC NO =,MN MO NO MB NC ∴=+=+,4AB =,6AC =,AMN ∴∆周长为10AM MN AN AM MB AN NC AB AC ++=+++=+=,故答案为:10【点评】此题考查了等腰三角形的性质,以及平行线的性质,熟练掌握各自的性质是解本题的关键.13.(2015秋•北京校级期中)如图,ABC ∆中,BO 、CO 分别平分ABC ∠、ACB ∠,//OM AB ,//ON AC ,10BC cm =,则OMN ∆的周长= 10cm .【分析】由BO 为ABC ∠的平分线,得到一对角相等,再由OM 与AB 平行,根据两直线平行内错角相等得到一对角相等,等量代换得到MBO MOB ∠=∠,再由等角对等边得到OM BM =,同理ON CN =,然后利用三边之和表示出三角形OMN 的周长,等量代换得到其周长等于BC 的长,由BC 的长即可求出三角形OMN 的周长.【解答】解:BO 平分ABC ∠,ABO DBO ∴∠=∠,又//OM AB ,ABO MOB ∴∠=∠,MBO MOB ∴∠=∠,OM BM ∴=,同理ON CM =,10BC cm =,则OMN ∆的周长10c OM MN ON BM MN NC BC cm =++=++==.故答案为10cm .【点评】此题考查了等腰三角形的判定与性质,以及平行线的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.三.解答题(共2小题)14.(2019秋•大兴区期末)如图,在ABC ∆中,点D ,E 在边BC 上,BD CE =,且AD AE =.求证:AB AC =.【分析】作AF BC ⊥于点F ,由AD AE =,可得DF EF =,证出BF CF =,则结论得证.【解答】证明:作AF BC ⊥于点F ,AD AE =,DF EF ∴=,BD CE =,BD DF CE EF ∴+=+,即BF CF =,AF BC ⊥,AB AC ∴=.【点评】本题考查了等腰三角形的性质和中垂线的判定与性质,解题的关键是正确作出辅助线.15.(2019秋•朝阳区校级期中)已知,如图,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,请你通过观察和测量,猜想线段AB 、AC 之和与线段AM 有怎样的数量关系,并证明你的结论.猜想B ∠,ACM ∠,BCM ∠有怎样的数量关系,并证明你的结论.【分析】根据题目提供的条件和图形中线段的关系,做出猜想2AB AC AM +=,过点C 作//CE AB ,CE 与AM 的延长线交于点E ,进一步证明AB AC AB CE AD ED AE +=+=+=,从而得到2AB AC AM +=,由B ADB EDC ECD ∠=∠=∠=∠,ACM MCE ∠=∠,可得B ACM BCM ∠-∠=∠.【解答】猜想:2AB AC AM +=,证明:过点C 作//CE AB ,CE 与AM 的延长线交于点E ,则ECD B ∠=∠,E BAD ∠=∠, AD 平分BAC ∠,∴∠=∠,BAD CAD∴∠=∠,E CAD∴=,AC EC又CM AD⊥于M,AM ME∴=,即2=,AE AM=,AD AB∴∠=∠,B ADB又EDC ADB∠=∠,∴∠=∠,ECD EDC∴=,ED EC∴+=+=+=,AB AC AB CE AD ED AE∴+=.AB AC AM2∠=∠,B ADB EDC ECD∠=∠=∠=∠,ACM MCE∴∠-∠=∠.B ACM BCM【点评】本题考查了等腰三角形的性质,解题的关键是正确地做出猜想,然后向着这个目标努力即可.。
等腰三角形性质与判定练习题一、选择题1、等腰三角形一腰上的中线把等腰三角形的周长分成9和12两部分,则腰长为()A、6B、8C、10D、6或82、等腰三角形的周长为19cm,其中一边长为5cm,则该等腰三角形的底边边长为()A、9cmB、5cmC、9cm或5cmD、10cm3、等腰三角形的腰长等于2m,面积等于1m2,则它的顶角等于()A、150°B、30°C、150°或30°D、60°4、若等腰三角形的周长为10,一边长为4,则此等腰三角形的腰长为()A、2B、3C、4D、3或45、下列说法中正确的是()A、等腰三角形的两个底角的角平分线所夹的角是这个等腰三角形顶角的两倍B、在等腰三角形中“三线合一”是指等腰三角形的中线、高线、角平分线重合C、等边对等角D、有一个角等于60°的等腰三角形是等边三角形6、等腰三角形有两条边长为3和5,则它的周长可以是()A、12B、11C、10D、11或137、等腰三角形的对称轴有( )A、一条B、二条C、三条D、一条或三条8、等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A、16cmB、4cmC、20cmD、16cm或4cm9、等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A、4cm,10cmB、7cm,7cmC、4cm,10cm或7cm,7cmD、无法确定10、一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A、9B、6C、7D、311、已知等腰三角形的两边长分别为8与16,则其周长为()A、32B、40C、32或40D、8或1612、一个等腰三角形的周长是16,其中一边长是6,另两边长分别是()A、6和10B、6和4C、5和5D、5和5或4和613、等腰三角形ABC,其中AB=8cm,周长为20cm,则这个等腰三角形的腰长是( )A、8cmB、4cmC、6cmD、6cm或8cm14、等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的腰长为()A、4cm或10cmB、4cm或7cmC、4cmD、7cm15、如右图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是( )A、30°B、45°C、60°D、20°16、有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A、2个B、3个C、4个D、5个17、等腰三角形中一个角是40°,则另外两个角的度数分别是()A、70°,70°B、40°,100°C、40°,40°D、70°,70°或40°,100°18、如右图,一钢架中,∠A=15°,焊上等长的钢条来加固钢架.若A P1=P1P2,则这样的钢条最多只能焊上()条.A、4B、5C、6D、719、若△ABC的三边a,b,c满足(a﹣b)(b﹣c)(c﹣a)=0,那么△ABC的形状是( )A、等腰三角形B、直角三角形C、等边三角形D、锐角三角形20、如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形一定是( )A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形二、填空题1、一个等腰三角形的两边长分别是2cm、5cm,则它的周长为_______2、等腰三角形的两边长分别为4和9,则第三边长为_________ .3、等腰三角形的对称轴最多有_________ 条.4、一个等腰三角形周长为5,它的三边长都是整数,则底边长为_________ .5、若等腰三角形的三条边长分别为a2+1,a+1,4a﹣3,则a可以取的值为_________ .6、等腰三角形一个底角为36°,则此等腰三角形顶角为_________ 度.7、等腰三角形的两边长为5cm,10cm,则它的周长等于_________ cm.8、一个等腰三角形的顶角是底角的2倍,则它的各个内角的度数是_________ .9、在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为_________ .10、如图,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_______度.10题图 11题图 13题图 15题图11、如图,在△ABC中,∠C=25°,AD⊥BC,垂足为D,且AB+BD=CD,则∠BAC的度数是_______ 度.12、一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为_________ cm.13、如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形有______个.14、在△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC= _________ .15、如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是_________ cm.16、如右图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有_________个.17、如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是(填序号)______三、解答题1、如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD.试判断△OBC的形状,并证明2、已知:如图,△ABC是等腰三角形,AB=AC,∠1=∠2.求证:OA平分∠BAC.3、已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.4、如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.5、已知,如图△ABC中,AB=AC,D点在BC上,且BD=AD,DC=AC.求∠B的度数.6、如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC 的长为5cm,求△ABC的周长.7、△ABC中,AB=AC,BD是△ABC的角平分线,E在BC的延长线上,且CE=CD。
等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为________.2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm.第2题图第3题图3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为() A.35° B.45° C.55° D.60°4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为() A.50° B.80°C.50°或80° D.40°或65°5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数.6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.第2课时等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________.3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________.第3题图第4题图4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形.5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC.6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G.求证:△EFG是等腰三角形.13.3.2等边三角形第1课时等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为________.第1题图第3题图2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B.能判定△ABC为等边三角形的有________.3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=________.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD 的度数.5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD.求证:(1)△ABE≌△ACD;(2)△ADE为等边三角形.第2课时含30°角的直角三角形的性质1.如图,在Rt△ABC,∠C=90°,∠A=30°,AB=10,则BC的长度为( ) A.3 B.4 C.5 D.6第1题图第2题图第3题图2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( )A.3.5 B.4.2 C.5.8 D.73.如图,△ABC是等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则BE的长为________.4.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF ⊥AC于点F,求BE+CF的值.5.如图所示是某种帐篷支架屋顶的侧面示意图,它是底角为30°的等腰三角形.已知中柱BD垂直于底边AC,支柱DE垂直于腰AB,测得BE=1米,求AB的长.13.4 课题学习最短路径问题1.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB 的值最小,则下列作法正确的是( )2.如图,已知直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的一个内角第2题图第3题图3.如图,点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是( )A.点P为点A到直线l的垂线的垂足B.点P为点B到直线l的垂线的垂足C.PB=PAD.PB=AB4.如图,在直线l的两侧分别有A和B两点,试在直线l上确定一点P,使点P到点A和到点B的距离之和最短,并说明理由.等腰三角形第1课时 等腰三角形的性质1.80° 2.3 3.C 4.C5.解:∵AB =AD ,∴∠B =∠ADB .由∠BAD =40°,得∠B =∠ADB =70°.∵AD =DC ,∴∠DAC =∠C ,∴∠C =12∠ADB =35°.6.证明:如图,连接AD .∵AB =AC ,D 是BC 的中点,∴AD 平分∠BAC ,∴∠EAD =∠F AD .在△AED 和△AFD 中,⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠F AD ,AD =AD ,∴△AED ≌△AFD (SAS),∴DE =DF .第2课时 等腰三角形的判定1.A 2.5cm 3.BD =CD (答案不唯一) 4.35.证明:∵D 是BC 的中点,∴BD =CD .在Rt △BDE 和Rt △CDF 中,∵DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF (HL),∴∠B =∠C ,∴AB =AC .6.证明:∵FG 平分∠EFD ,∴∠GFD =∠EFG .∵AB ∥CD ,∴∠EGF =∠GFD ,∴∠EFG=∠EGF ,∴△EFG 是等腰三角形.13.3.2 等边三角形第1课时 等边三角形的性质与判定1.60° 2.①②③ 3.2 4.解:∵△ABC 是等边三角形,∴AB =BC ,∠ABC =60°.∵BD =BC ,∴AB =BD ,∴∠BAD =∠BDA .∵∠CBD =90°,∴∠ABD =90°+60°=150°,∴∠BAD =12×(180°-150°)=15°.5.证明:(1)∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC .在△ABE 与△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,BE =CD ,∴△ABE ≌△ACD . (2)由(1)知△ABE ≌△ACD ,∴AE =AD ,∠CAD =∠BAE =60°,∴△ADE 是等边三角形.第2课时 含30°角的直角三角形的性质1.C 2.D 3.44.解:∵△ABC 是边长为20的等边三角形,∴∠B =∠C =60°,∴在Rt △BED 中,∠EDB=30°,∴BE =12BD .同理可得,CF =12CD ,∴BE +CF =12BD +12CD =12BC =10.5.解:∵BD ⊥AC ,DE ⊥AB ,∴∠ADB =∠DEB =90°.∵在Rt △ABD 中,∠A =30°,∴∠ABD=60°,AB =2BD .∴在Rt △BDE 中,∠BDE =30°,∴BD =2BE =2米,∴AB =4米.13.4 课题学习 最短路径问题1.D 2.D 3.C4.解:连接AB 与直线l 的交点即为点P ,图略.因为两点之间,线段最短.。
【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A.16 B.17C.16或17D.10或122. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是()A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有( )①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个∆沿过D的直线折叠,使点A落在BC上F处,若5. 如图,D是AB边上的中点,将ABC∠=︒,则BDF50B∠度数是()A.60° B.70° C.80° D.不确定6.(2020•沂源县校级模拟)有3cm,3cm,6cm,6cm,12cm,12cm的六条线段,任选其中的三条线段组成一个等腰三角形,则最多能组成等腰三角形的个数为()A.1 B.2 C.3 D.4二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为.9. 如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12.(2020春•锦州月考)如图,在△ABC中,BI、CI分别平分∠ABC、∠AC F,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. (2020春•黄冈校级期末)在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.15. 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.【答案与解析】一.选择题1. 【答案】C;【解析】注意分类讨论.2. 【答案】D;【解析】三个外角度数分别为360°×=90°,360°×=135°,135°,所以三角形为等腰直角三角形.3. 【答案】B;4. 【答案】C;【解析】①②③正确.5. 【答案】C;=180°-50°-50°=80°.【解析】AD=DF=BD,∠B=∠BFD=50°,BDF6. 【答案】C;【解析】解:由题意可得,3cm作腰,6cm作底或12cm作底,则三边分别为3cm,3cm,6cm,不能构成三角形,3cm,3cm,12cm,不能构成三角形;6cm作腰,3cm作底或12cm作底,则三边分别为6cm,6cm,3cm,能构成三角形,6cm,6cm,12cm,不能构成三角形;12cm作腰,3cm或6cm作底,则三边分别为12cm,12cm,3cm,能构成三角形,12cm,12cm,6cm,能构成三角形,故最多能组成3个等腰三角形,故选:C.二.填空题7. 【答案】20;【解析】∠A=∠ABD=40°,∠BDC=∠C=80°,所以∠CBD=20°.8. 【答案】80°;【解析】设顶角为x,则底角为x-30°,所以x+x-30°+x-30°=180°,x=80°.9. 【答案】8;【解析】DE=DC,AC=BC=BE,△ADE的周长=AD+DE+AE=AC+AE=AB=8.10.【答案】70°或40o;【解析】这个角可能是底角,也可能是顶角.11.【答案】10;【解析】OM=BM,ON=CN,∴△OMN的周长等于BC.12.【答案】3cm;【解析】解:∵BI、CI分别平分∠ABC、∠ACF,∴∠ABI=∠CBI,∠ECI=∠ICF,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠ICF,∴∠ABI=∠DIB,∠ECI=∠EIC,∴DI=BD=8cm,EI=CE=5cm,∴DE=DI﹣EI=3cm.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,∴∠ADE=1802902xx ︒-=︒-即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设三角形的腰AB=AC=x若AB+AD=24cm,则:x+x=24∴x=16三角形的周长为24+30=54cm所以三边长分别为16,16,22;若AB+AD=30cm,则:x+x=30∴x=20∵三角形的周长为24+30=54cm∴三边长分别为20,20,14;因此,三角形的三边长为16,16,22或20,20,14.15.【解析】证明:延长AB至E,使BE=BP,连接EP∵在△ABC中,∠BAC=60°,∠ACB=40°,∴∠ABC=80°∴∠E=∠BPE=802︒=40°∵AP 、BQ 分别为∠BAC 、∠ABC 的角平分线,∴∠QBC =40°,∠BAP =∠CAP∴BQ =QC (等角对等边)在△AEP 与△ACP 中,EAP CAP E C AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△ACP (AAS )∴AE =AC∴AB +BE =AQ +QC ,即AB +BP =AQ +BQ.第二课时【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由.(1)()a x y ax ay +=+;(2)2221(2)(1)(1)x xy y x x y y y ++-=+++-;(3)24(2)(2)ax a a x x -=+-;(4)221122ab a b =; (5)222112a a a a ⎛⎫++=+ ⎪⎝⎭. 【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断.【答案与解析】解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的21a 、1a都不是整式,所以(4)(5)也不是因式分解, 只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解.【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】下列变形是因式分解的是 ( )A.243(2)(2)3a a a a a -+=-++B.2244(2)x x x ++=+C. 11(1)x x x +=+D.2(1)(1)1x x x +-=-【答案】B ; 类型二、提公因式法分解因式2、下列因式分解变形中,正确的是( )A .()()()()1ab a b a b a a b a b ---=--+B .()()()()262231m n m n m n m n +-+=+++C .()()()()232332y x x y y x y x -+-=--+D .()()()()2232x x y x y x y x y +-+=++ 【答案】A ;【解析】解:A.()()()()1ab a b a b a a b a b ---=--+,正确;B.()()()()2622331m n m n m n m n +-+=++-,故本选项错误;C.()()()()232332y x x y y x y x -+-=---,故本选项错误;D.()()()()223331x x y x y x y x xy +-+=++-,故本选项错误. 【总结升华】解题的关键是正确找出公因式,提取公因式后注意符号的变化.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.举一反三:【变式】(2020春•濉溪县期末)下列分解因式结果正确的是( )A.a 2b+7ab ﹣b=b (a 2+7a )B.3x 2y ﹣3xy+6y=3y (x 2﹣x ﹣2)C.8xyz ﹣6x 2y 2=2xyz (4﹣3xy )D.﹣2a 2+4ab ﹣6ac=﹣2a (a ﹣2b+3c )【答案】D.解:A 、原式=b (a 2+7a+1),错误;B 、原式=3y (x 2﹣x+2),错误;C 、原式=2xy (4z ﹣3xy ),错误;D 、原式=﹣2a (a ﹣2b+3c ),正确.故选D . 类型三、提公因式法分解因式的应用3、若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?【答案与解析】解:∵()()()()a b b a b a a c a b a c -+-=-+-∴()()()()a b b a a b a c a b c a ---=---()()()()a b b a c a a b --=--当a b =时,等式成立,当a b ≠时,原式变为a b a c -=-,得出b c =,∴a b b c ==或∴ABC ∆是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型.4、对任意自然数n (n >0),422n n +-是30的倍数,请你判定一下这个说法的正确性,并说说理由.【答案与解析】解:()44422222221152n n n n n n +-=⨯-=-=⨯∵n 为大于0的自然数,∴2n 为偶数,15×2n 为30的倍数,即422n n +-是30的倍数.【总结升华】判断422n n +-是否为30的倍数,只需要把422n n +-分解因式,看分解后有没有能够整除30的因式.举一反三:【变式】说明200199198343103-⨯+⨯能被7整除. 【答案】解:200199198343103-⨯+⨯()198219833431073=-⨯+=⨯ 所以200199198343103-⨯+⨯能被7整除.5、(2020春•湘潭县期末)已知xy=﹣3,满足x+y=2,求代数式x 2y+xy 2的值.【思路点拨】将原式提取公因式xy ,进而将已知代入求出结果即可.【答案与解析】解:∵xy=—3,x+y=2,∴x 2y+xy 2=xy (x+y )=﹣3×2=﹣6.【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.。
等腰三角形性质及判定等腰三角形的性质知识点一:等腰三角形的定义1.等腰三角形的两边的长为3和5,则其周长为_____________2.等腰三角形的两边的长分别为2和4,则取周长为__________3.等腰三角形的周长为29,其中一边长为7,则它的底边长为________4.等腰三角形的一个角为40°,则其余角度为_____________5.等腰三角形的一个角为120°,则其余角为____________知识点二等边对等角6.△ABC中,AB=AC,∠B=70°,则∠A的度数是___________7.如图,AB∥CD,点E在BC上,且CD=CE,∠D=80°,则∠B的度数为_________。
第7题第8题第9题8.如图,在△ABC中,AB=AC,AD∥BC,若∠1=70°,则∠BAC=___________9.如图,△ABC中,AB=AC,∠B=40°,CD=AC,则∠DAC=_________,∠DAB=__________-10.如图,△ABC中,AB=AC,AE平分△ABC的外角∠DAC,求证:AE∥BC。
知识点三:等腰三角形的“三线合一”11.在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长为_________-12.在△ABC中,AB=AC,D为BC的中点,若∠BAD=20°,则∠C=_________13.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF14.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D15.在△ABC中,AC=AB,点D在AB上,BC=BD,∠ACD=15°,求∠B的度数。
16.如图,AB=AC=CD,AD=BD,求∠BAC的度数。
17.如图1.在△ABC中,AB=AC,BD⊥AC于D.(1)若∠A=50°,则∠DBC=__________,∠A= ,则∠DBC=____________(2)如图2,若∠BAC为钝角,猜想:∠DBC与∠BAC之间的数量关系,并给予证明。
2019年中考数学知识点过关培优训练卷:等腰三角形的性质与判定一.选择题1.如图,在△ABC中,AB=AC,点D在AC上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.80°B.75 C.65°D.60°2.如图,在△ABC中,CE平分∠ACB,点D在BC的延长线上,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.1253.如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 分别交AB、AC于M、N,则△AMN的周长为()A.12 B.10C.8 D.不确定4.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm25.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个6.如图,△ABC的面积为10cm2,BP是∠ABC的平分线,AP⊥BP于P,则△PBC的面积为()A.4cm2B.5cm2C.6 cm2D.7 cm27.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论.①EF=BE+CF②∠BOC=90°+∠A③点O到△ABC各边的距离相等④设OD=m,AE+AF=mn,正确的结论有()个.=n,则S△AEFA.1个B.2个C.3个D.4个8.如图,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN经过点O,与AB,AC 相交于点M,N,且MN∥BC,则BM,CN之间的关系是()A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN 9.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5 B.3 C.4.5 D.910.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF 的费马点,则PD+PE+PF=()A.2B.1+C.6 D.3二.填空题11.如图,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于点E,若DE=6cm,AE=5cm,则AC=cm.12.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB,AC相交于点M,N,且MN∥BC.若AB=7,AC=6,那么△AMN的周长是.13.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为.14.如图,在Rt△ABC中,∠C=90°,D为AB上的点,BD=CD=5,则AD=.15.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东 60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距m.16.如图,已知BD⊥AG,CE⊥AF,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=3,ED =2,GC=5,则△ABC的周长为.17.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF =2,BF=3,则CE的长度为.18.如图,△ABC中,∠B=90°.∠BAC的平分线交BC于点E,CD⊥AE于点D,若AC=13,AD=12,则AB=.19.如图,△ABC中,AD是∠BAC的平分线,DE∥AB交AC于点E,若DE=7,CE=6,则AC 的长为.20.如图,在△ABC中,BC=8cm,∠BPC=118°,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm,∠DPE=°.三.解答题21.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,22.已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线,交BP 的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,AQ=MN.求证:(1)△APM是等腰三角形;(2)PC=AN.23.如图,已知在四边形ABCD中,AB=10cm,∠A=∠C=90°,点E、点F分别在边AB、CD上,且EF∥BC,∠DEF=∠FBC.(1)求证:∠AED=∠EBF;(2)当∠EBF=∠FBC时,EF=cm.24.如图,在等腰△ABC中,AB=AC,D为底边BC延长线上任意一点,过点D作DE∥AB,与AC延长线交于点E.(1)则△CDE的形状是;(2)若在AC上截取AF=CE,连接FB、FD,判断FB、FD的数量关系,并给出证明.25.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.26.如图1,在四边形ABCD中,DC∥AB,BD平分∠ABC,CD=4.(1)求BC的长;(2)如图2,若∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.请判断△DEF的形状并证明你的结论.27.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.28.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=°,∠C=°;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.29.如图,已知BD平分∠ABC,AD∥BC,且AC=AD.(1)求证:△ABD为等腰三角形;(2)判断∠C与∠D的数量关系,并说明理由.30.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E,交AC于F,∠CDE=∠ACB=30°.(1)求证:△FCD是等腰三角形;(2)若BC=DE,求∠CAD的度数.31.如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S 的取值范围.参考答案一.选择题1.解:∵∠CDE=160°,∴∠ADE=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=(180°﹣∠A)=(180°﹣20°)=80°.故选:A.2.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.3.解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN∥BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=6+4=10.故选:B.4.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP =S△EBP,S△ACP=S△ECP,∴S△PBC =S△ABC=×9cm2=4.5cm2,故选:C.5.解:如图,满足条件的所有点P的个数为2,故选:B.6.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,,∴△ABP ≌△EBP (ASA ),∴AP =PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =S △ABC =×10=5(cm 2),故选:B .7.解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+∠A ;故②正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF ,∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠F OC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,∴S △AEF =S △AOE +S △AOF =AE •OM +AF •OD =OD •(AE +AF )=mn ;故④正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O到△ABC各边的距离相等,故③正确.故选:D.8.证明:∵ON∥BC,∴∠MO C=∠OCD∵CO平分∠ACD,∴∠ACO=∠DCO,∴∠NOC=∠OCN,∴CN=ON,∵ON∥BC,∴∠MOB=∠OBD∵BO平分∠ABC,∴∠MBO=∠CBO,∴∠MBO=∠MOB,∴OM=BM∵OM=ON+MN,OM=BM,ON=CN,∴BM=CN+MN,∴MN=BM﹣CN.故选:B.9.解:延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB =AH ,∵AD ⊥B H ,∴BD =DH ,∵DC =CA ,∴∠CDA =∠CAD ,∵∠CAD +∠H =90°,∠CDA +∠CDH =90°,∴∠CDH =∠H ,∴CD =CH =AC ,∵AE =EC ,∴S △ABE =S △ABH ,S △CDH =S △ABH ,∵S △OBD ﹣S △AOE =S △ADB ﹣S △ABE =S △ADH ﹣S △CDH =S △ACD ,∵AC =CD =3,∴当DC ⊥AC 时,△ACD 的面积最大,最大面积为×3×3=.故选:C .10.解:如图:过点D 作DM ⊥EF 于点M ,在△BDE 内部过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF =∠FPD =∠EPD =120°,点P 就是费马点,在等腰Rt △DEF 中,DE =DF =,DM ⊥EF ,∴EF =DE =2∴EM =DM =1,故cos30°=,解得:PE =,则PM =,故DP =1﹣,同法可得PF =则PD +PE +PF =2×+1﹣=+1. 故选:B .二.填空题(共10小题)11.解:∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠ECD,∴DE=EC=4cm,∵AE=5cm,∴AC=AE+EC=5+6=11(cm).故答案为:11.12.解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=7,AC=6,∴△AMN的周长=AM+MN+AN=AB+AC=6+7=13.故答案为:13.13.解:如图:可以画出7个等腰三角形;故答案为7.14.解:在Rt△ABC中,∠C=90°,∵BD=DC,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴AD=DC=5,故答案为5.15.解:∵B在A的正东方,C在A地的北偏东 60°方向,∴∠BAC=90°﹣60°=30°,∵C在B地的北偏东30°方向,∴∠ABC=90°+30°=120°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣30°﹣120°=30°,∴∠BAC=∠C,∴BC=AB=200m.故答案为:200.16.解:∵AG⊥BD,AF⊥CE,BD,CE分别是∠ABC和∠ACB的角平分线,∴AB=BG,AC=FC.∴AE=EF,AD=GD∴ED是△AFG中位线,∴FG=2ED=4;∴BG=AB=BF+FG=7,CF=AC=CG+FG=9,=3+7+9+9=28.∴C△ABC17.证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.18.解:∵∠BAC的平分线交BC于点E,∴∠BAE=∠CAD,∵CD⊥AE,∴∠D=∠B=90°,∵AC=13,AD=12,∴CD=5,∵∠AEB=∠CED,∴∠BAE=∠DCE,∴∠DCE=∠DAC,∵∠D=∠D,∴△CDE∽△ADC,∴=,∴=,∴DE=,∴AE=,∵∠BAE=∠DAC,∠B=∠D,∴△ABE∽△ADC,∴,∴=,∴AB=,故答案为:.19.解:∵△ABC中,AD是∠BAC的平分线,∴∠BAD=∠CAD,∵DE∥AB,DE=7,CE=6,∴∠CAD=∠ADE,∴AE=DE=7,∴AC=AE+CE=7+6=13.故答案为:13.20.解:(1)∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.故答案为8(2)∵∠PBD=∠BPD,∠PCE=∠CPE,∠BPC=118°,∴∠DPE=118°﹣∠PBC﹣∠PCB∵∠BPC+∠PBC+∠PCB=180°,∴∠PBC+∠PCB=180°﹣118°,∴∠DPE=118°﹣(∠PBC+∠PCB)=118°﹣180°+118°=56°.故答案为56.三.解答题(共11小题)21.解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.22.证明:(1)∵BA⊥AM,MN⊥AC,∴∠BAM=∠ANM=90°,∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,∴∠PAQ=∠AMN,∵PQ⊥AB MN⊥AC,∴∠PQA=∠ANM=90°,∴在△PQA与△ANM中,,∴△PQA≌△ANM(ASA)∴AP=AM,∴△APM是等腰三角形;(2)由(1)知,△PQA≌△ANM,∴AN=PQ AM=AP,∴∠AMB=∠APM∵∠APM=∠BPC,∠BPC+∠PBC=90°,∠AMB+∠ABM=90°∴∠ABM=∠PBC∵PQ⊥AB,PC⊥BC∴PQ=PC(角平分线的性质),∴PC=AN.23.解:(1)∵EF∥BC,∴∠EFB=∠FBC,∵∠DEF=∠FBC,∴∠DEF=∠EFB,∴ED∥BF,∴∠AED=∠EBF;(2)∵EF∥BC,∠A=∠C=90°,∴∠DFE=∠C=∠A=90°,∵DE∥BF,∴∠DEF=∠EFB,∵∠DEF=∠FBC,∴∠EFB=∠FBC,∵∠AED=∠FBC,∴∠AED=∠DEF,在△AED与△FED中,,∴△AED≌△FED(AAS),∴AE=EF,∵∠EBF=∠FBC,∴∠EFB=∠EBF,∴BE=EF,∴AE=BE=AB=5,∴EF=5.故答案为:5.24.解:(1)△CDE是等腰三角形,理由:∵AB=AC,∴∠ABC=∠ACB,∵DE∥AB,∴∠ABC=∠CDE,∴∠DCE=∠CDE,∴△CDE是等腰三角形;故答案为:等腰三角形;(2)BF=DF,理由:∵AB∥DE,∴∠A=∠E,∵AF=CE,∴AF=DE,AF+CF=CE+CF,即EF=AC=AB,在△AFB与△EDF中,∴△ABF≌△EDF(SAS),∴BF=DF.25.解:(1)∵CM平分∠ACB,MN平分∠AMC,∴∠ACM=∠BCM,∠AMN=∠CMN,又∵MN∥BC,∴∠AMN=∠B,∠CMN=∠BCM,∴∠B=∠BCM=∠ACM,∵∠A=90°,∴∠B=×90°=30°;(2)由(1)得,∠AMN=∠B=30°,∠MCN=∠CMN,∠A=90°,∴MN=2AN=2,MN=CN,∴CN=2.26.解:(1)∵DC∥AB,∴∠CDB=∠ABD,∵∠ABD=∠CBD,∴BC=CD=4;(2)△DEF是等边三角形,理由:∵BC=CD,CF⊥BD,∴BF=DF,又∵DE⊥AB,∴EF=BD=DF,∵∠BDE=90°﹣∠EBD=90°﹣×60°=60°,∴△DEF是等边三角形.27.证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠FAD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.28.解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.29.(1)证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵AD∥BC,∴∠D=∠BDC,∴∠ABD=∠D,∴△ABD为等腰三角形;(2)∠C=2∠D,理由:∵△ABD为等腰三角形;∴AB=AD,∵AD=AC,∴AB=AC,∴∠ABC=∠C,∴∠C=2∠D.30.(1)证明:∵∠B=90°,∠ACB=30°,∴∠BAC=60°∵AB∥DE,∴∠EFC=∠BAC=60°,∵∠CDE=30°,∴∠FCD=∠EFC﹣∠CDE=60°﹣30°=30°,∴∠FCD=∠FDC,∴FD=FC,即△FCD为等腰三角形;(2)解:∵DE∥AB,∴∠DEC=∠B,在△DCE和△CAB中,,∴△DCE≌△CAB,(ASA),∴CA=CD,∴∠CAD=∠ADC==75°.31.解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.。
等腰三角形的性质及判定一.选择题(共30小题)1.如图,已知AB=AC=BD,那么()A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°2.如图,△ABC中,CA=CB,∠A=20°,则三角形的外角∠BCD的度数是()A.20°B.40°C.50°D.140°3.若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有()个.A.2个B.3个C.4个D.5个4.如果某等腰三角形的两条边长分别为4和8,那么它的周长为()A.16B.20C.20或16D.不确定5.△ABC中,AB=AC,顶角是120°,则一个底角等于()A.120°B.90°C.60°D.30°6.已知等腰三角形ABC的两边满足+|6﹣BC|=0,则此三角形的周长为()A.12B.15C.12或15D.不能确定7.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或139.若等腰三角形的周长为26cm,底边为11cm,则腰长为()A.11cm B.11cm或7.5cmC.7.5cm D.以上都不对10.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.911.已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的等腰三角形有几个?()A.2个B.3个C.4个D.5个12.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或1613.若等腰三角形的顶角为70°,则它的一个底角度数为()A.70°或55°B.55°C.70°D.65°14.如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个15.等腰三角形的一个角是30°,则这个等腰三角形的底角为()A.75°B.30°C.75°或30°D.不能确定16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于E,CD平分∠ACB 交BE于D,图中等腰三角形的个数是()A.3个B.4个C.5个D.6个17.如图,直线l1,l2相交于点A,点B是直线外一点,在直线l1,l2上找一点C,使△ABC 为一个等腰三角形,满足条件的点C有()A.2个B.4个C.6个D.8个18.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°19.如图,△ABC中,∠B=∠C,BD=CD,则下列判断不一定正确的是()A.AB=AC B.AD⊥BCC.∠BAD=∠CAD D.△ABC是等边三角形20.等腰三角形的边长为2和3,那么它的周长为()A.8B.7C.8或7D.以上都不对21.等腰三角形的顶角是40°,则它的底角是()A.55°B.70°C.40°或70°D.55°或70°22.如图所示,在三角形ABC中,AB=AC,∠BAC=108°,在BC上分别取点D,E使∠BAD=∠B,∠CAE=∠C,则图中的等腰三角形有()A.3个B.4个C.5个D.6个23.三角形三个内角的比是∠A:∠B:∠C=1:1:2,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定24.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为()A.11B.13C.8D.11或1325.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.若P1A =P1P2,且恰好用了4根钢条,则α的取值范围是()A.15°≤a<18°B.15°<a≤18°C.18°≤a<22.5°D.18°<a≤22.5°26.已知等腰△ABC中,∠A=120°,则底角的大小为()A.60°B.30°或120°C.120°D.30°27.如图,在△ABC中,AB=AC=13,该三角形的面积为65,点D是边BC上任意一点,则点D分别到边AB,AC的距离之和等于()A.5B.6.5C.9D.1028.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC=70°,则∠1的大小为()A.20°B.40°C.35°D.70°29.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°30.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A.5、5B.2、8C.5、5或2、8D.以上结果都不对二.填空题(共15小题)31.等腰三角形的一个内角为30°,那么其它两个角的度数为______.32.已知AD是△ABC的高,若AB=AC,BC=4,则CD=______,33.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在y轴上找一点P,使△P AB是等腰三角形,则符合条件的P点共有______个.34.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有______.35.若等腰三角形的两边的长分别为3和10,则它的周长为______.36.如果等腰三角形的两边长分别是6、8,那么它的周长是______.37.如图,Rt△ABC中,AC⊥BC,AE=AO,BF=BO,则∠EOF的度数是______.38.等腰△ABC的边长分别为6和8,则△ABC的周长为______.39.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是______.40.已知等腰三角形的周长为20,底长为x,则x的取值范围是______.41.用一条长为20cm的细绳围成一个等腰三角形,已知一边长是另一边长的2倍,则腰长为______cm.42.如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC =______.43.如图,△ABC中,AB=AC,∠C═30°,DA⊥BA于点A,BC=16cm,则AD=______.44.如图,AB=AC=CD,∠BAC=56°,则∠B=______,∠D=______.45.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有______个.三.解答题(共5小题)46.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.47.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.48.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.49.已知等腰三角形的周长为24cm,其中两边之差为6cm,求这个等腰三角形的腰长.50.如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.等腰三角形的性质及判定参考答案与试题解析一.选择题(共30小题)1.解:∵AB=AC=BD,∴∠B=∠C,∠BAD=∠1,∵∠1=∠C+∠2,∴∠BAD=∠1=∠C+∠2,∵∠B+∠1+∠BAD=180°,∴∠C+2∠1=180°,∵∠C=∠1﹣∠2,∴∠1﹣∠2+2∠1=180°,即3∠1﹣∠2=180°.故选:D.2.解:∵CA=CB,∠A=20°,∴∠B=∠A=20°,∴∠BCD=∠A+∠B=40°,故选:B.3.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有2个.故选:C.4.解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.5.解:∵△ABC中,AB=AC,顶角是120°,∴∠B=∠C,∠A=120°∵∠A+∠B+∠C=180°,∴∠B=∠C==30°,故选:D.6.解:∵+|6﹣BC|=0,∴AB﹣3=0,6﹣BC=0,解得AB=3,BC=6,(1)若AB是腰长,BC为底,则三角形的三边长为:3、3、6,不能能组成三角形,(2)若AB是底边长,BC为腰,则三角形的三边长为:3、6、6,能组成角形,周长为3+6+6=15.故此三角形的周长为15.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:当等腰三角形的腰为1时,三边为1,1,6,1+1=2<6,三边关系不成立,当等腰三角形的腰为6时,三边为1,6,6,三边关系成立,周长为1+6+6=13.故选:A.9.解:∵11cm是底边,∴腰长=(26﹣11)=7.5cm,故选:C.10.解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.11.解:在Rt△ABC中,AB==10,①如图1,当AB=AD=10时,CD=CB=6时,CD=CB=6,得△ABD的等腰三角形.②如图2,当AB=BD=10时,△ABD是等腰三角形;③如图3,当AB为底时,AD=BD时,△ABD是等腰三角形.故选:B.12.解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.13.解:∵等腰三角形的顶角为70°,∴它的一个底角度数为(180°﹣70°)=55°,故选:B.14.解:如图所示:由勾股定理得:AB==,①若AB=BC,则符合要求的有:C1,C2,C3共4个点;②若AB=AC,则符合要求的有:C4,C5共2个点;若AC=BC,则不存在这样格点.∴这样的C点有5个.故选:D.15.解:①当这个角为顶角时,底角=(180°﹣30°)÷2=75°;②当这个角是底角时,底角=30°;故选:C.16.解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形.∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于E,∴∠ABE=∠EBC=36°,∵∠A=∠ABE=36°,∴△ABE是等腰三角形.∵∠BEC=∠A+∠ABE=72°=∠C,∴△BEC是等腰三角形.∵∠DBC=∠DCB=36°,∴△BCD是等腰三角形,∵∠EDC=∠DBC+∠DCB=72°=∠DEC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.17.解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;以B为圆心,AB长为半径画弧交l1、l2于2个点,再作AB的垂直平分线交l1、l2于2个点,共有8个点,故选:D.18.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.19.解:∵∠B=∠C,∴AB=AC,∴选项A不符合题意;∵∠B=∠C,∴AB=AC,BD=CD,∴AD⊥BC,∠BAD=∠CAD,∴选项B、选项C不符合题意;当△ABC中有一个角为60°时,△ABC是等边三角形,∴选项D符合题意;故选:D.20.解:分两种情况讨论:当这个三角形的底边是2时,三角形的三边分别是2、3、3,能够组成三角形,则三角形的周长是8;当这个三角形的底边是3时,三角形的三边分别是2、2、3,能够组成三角形,则三角形的周长是7.故等腰三角形的周长为8或7.故选:C.21.解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:B.22.解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAD=∠B=36°,∴△ABD是等腰三角形,∵∠CAE=∠C=36°,∴△AEC是等腰三角形,∴∠ADC=∠DAC=72°,∴△ADC是等腰三角形,同理,△ABE是等腰三角形,∴∠ADE=∠AED=72°,∴△ADE是等腰三角形,故选:D.23.解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:1:2,∴∠A=∠B=45°,∠C=90°.则该三角形的等腰直角三角形.故选:B.24.解:由题意知,应分两种情况:(1)当腰长为3时,能构成三角形,周长=2×3+5=11;(2)当腰长为5时,能构成三角形,周长=2×5+3=13.故选:D.25.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A=4α°,∵要使得这样的钢条只能焊上4根,∴∠P5P4B=5α°,由题意,∴18°≤α<22.5°.故选:C.26.解:∵在等腰△ABC中,∵∠A=120°,∴∠A为等腰三角形的顶角,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°;故选:D.27.解:连接AD,∵在△ABC中,AB=AC=13,该三角形的面积为65,∴三角形ABC的面积=△ABD的面积+△ACD的面积=AB•DN+AC•DM=AB•(DN+DM)=×13×(DN+DM)=65,解得:DN+DM=10.故选:D.28.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.29.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.30.解:当腰长为8时,底长为:18﹣8×2=2;2+8>8,能构成三角形;当底长为8时,腰长为:(18﹣8)÷2=5;5+5>8,能构成三角形.故另两条边的长是5、5或2、8.故选:C.二.填空题(共15小题)31.解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案为75°、75°或30°、120°.32.解:∵AD是△ABC的高,AB=AC,∴CD=BD=BC=4=2,故答案为:2.33.解:①当AB=AP时,在y轴上有2点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P.③当AP=BP时,在y轴上有一点满足条件的点P.综上所述:符合条件的点P共有4个.故答案为:434.解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故答案为:435.解:(1)若3为腰长,10为底边长,由于3+3<10,则三角形不存在;(2)若10为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+3=23.故答案为:23.36.解:当6是腰长时,周长=6+6+8=20;当8是腰长时,周长=6+8+8=22.故周长是20或22.故答案为:20或22.37.解:∵Rt△ABC中,AC⊥BC,∴∠A+∠B=90°,∵AE=AO,BF=BO,∴∠AOE=∠AEO=,∠BOF=∠BFO=,∴∠EOF=180°﹣∠AOE﹣∠BOF=180°﹣(+)=(∠A+∠B)=45°,故答案为45°.38.解:当6为底时,三角形的三边为6,8、8可以构成三角形,周长为6+8+8=22;当8为底时,三角形的三边为8,6、6可以构成三角形,周长为8+6+6=20.则△ABC的周长为22或20.故答案为:22或20.39.解:设底角为x°,则顶角为3x°,根据题意得:x+x+3x=180解得:x=36;故答案为:36°.40.解:根据三角形的三边关系,x<(20﹣x),解得x<10,∴x的取值范围是0<x<10.故答案为:0<x<10.41.解:设较短的边长为xcm,则较长的边长为2xcm,①若较短的边为底边,较长的边为腰,则x+2x+2x=20,解得x=4,此时三角形三边长分别为4cm,8cm,8cm,能组成三角形;②若较短的边为腰,较长的边为底边,则x+x+2x=20,解得x=5,此时三角形三边长分别为5cm,5cm,10cm,∵5+5=10,∴不满足三角形任意两边之和大于第三边,故不能围成三角形;综上所述,等腰三角形的腰长8cm,故答案为8.42.证明:∵BE=6,DE=4,∴BD=BE﹣DE=2,过A作AP⊥BC于P,∵AB=AC,AP⊥BC,∴BP=CP,同理有DP=EP,∴CE=BD=2,故答案为:2.43.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=16cm,∴AD=cm,故答案为:cm.44.解:∵AB=AC,∠BAC=56°∴∠B=∠ACB==62°,∵AC=CD,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D,∴∠D=∠ACB=31°,故答案为:62°,31°.45.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故答案为:8.三.解答题(共5小题)46.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.47.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.48.解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x ∴∠DAE=∠BAC.49.解:设三角形的腰为x,底为y,根据题意得或,解得或,又知6+6<12,不能构成三角形,即等腰三角形的腰长为:10cm.50.解:(1)∵EA=EC,∴设∠A=∠2=x,∵EC平分∠ACB,∴∠ACB=2x,∵AB=AC,∴∠ABC=∠ACB=2x,在△ABC中,∴x+2x+2x=180°,∴x=36°,∴∠A=36°;(2)∵∠A=∠2,∴∠2=36°,∵BD⊥AC,∴∠DFC=90°﹣36°=54°,∴∠1=∠DFC=54°.第1页(共1页)。
初三数学等腰三角形的性质和判定试题1.等腰三角形的底边长为6,它的周长不大于20,则腰长x的取值范围是_______。
【答案】【解析】根据等腰三角形的性质结合周长不大于20即可列不等式求解.由题意得,.【考点】等腰三角形的性质点评:不等式的应用在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2.如图,在⊿ABC中,AB=AC,过∠ABC和∠ACB的平分线的交点O作DE∥BC,交AB于D,交AC于E,则图中的等腰三角形有___________个,它们分别是____________。
【答案】5,△ABC,△ADE,△DBO,△ECO,△BCO【解析】由AB=AC可得∠ABC=∠ACB,再根据角平分线的性质结合平行线的性质即可判断.∵AB=AC∴∠ABC=∠ACB∵OB平分∠ABC,OC平分∠ACB∴∠ABO=∠OBC,∠ACO=∠OCB∵DE∥BC∴∠DOB=∠OBC,∠EOC=∠OCB∴∠DOB=∠ABO=∠EOC=∠ACO∴BD=OD,CE=OE,OB=OC∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴∠ADE=∠AED∴AD=AE∴等腰三角形有△ABC,△ADE,△DBO,△ECO,△BCO共5个.【考点】角平分线的性质,平行线的性质点评:角平分线的性质与平行线的性质在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3.如图,在⊿ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD=6cm,DC=3cm,则D到AB的距离为______。
【答案】3cm【解析】角平分线的性质:角平分线上的点到角两边的距离相等.∵∠C=90°,AD平分∠BAC,DC=3cm∴D到AB的距离为3cm.【考点】角平分线的性质点评:角平分线的性质在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.4.将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=________。
专题:等腰三角形的性质与判定※题型讲练考点一等腰三角形的性质定理1:“等边对等角”1.等腰三角形的性质定理:(1)性质定理1:等腰三角形的两个相等(该定理可以简写成“”).注意:等腰三角形是轴对称图形,对称轴是底边上的中线(顶角平分线、底边上的高) .【例1】(1)已知等腰三角形的一个外角是100°,则其底角的度数是50°或80°.(2)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=___18°_____.(3)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠BAC的度数是108°.(4)如图,AD是△ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连接AF.求证:∠BAF=∠ACF.变式训练1:1.已知等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角为60°或120°.2.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数度数是50°.3.如图,在△ABC中,AB=AC,D是AB上一点,延长CA到点E,使AE=AD,求证:ED⊥BC.考点二等腰三角形的性质定理2:“三线合一”(2)性质定理2:等腰三角形的的角平分线、底边上的、底边上的互相重合,简写成“”.【例2】(1)如图,在△ABC中,AB=AC,D为BC中点,∠BAD =35°,则∠C的度数为___55°_____.(2)如图,△ABC的周长为32,且AB=AC,AD⊥BC于点D,△ACD的周长为24,则AD的长为____8___.(3)如图,△ABC中,AB=AC=10cm,S△ABC=48cm2,AD平分∠BAC,DE⊥AC于点E,则DE等于___4.8____.变式训练2:1.如图,在△ABC中,AB=AC,AD,CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是___35°___.2.如图,△ABC中,AB=AC,点D是BC边的中点,作∠EAB =∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连接CF.试证明:BE=CF.考点三等腰三角形的判定定理:“等角对等边”1.等腰三角形的判定定理:如果一个三角形有相等,那么这两个角所对的边也相等(简写成“”).【例2】(1)如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形的个数为( D )A.3个B.4个C.5个D.6个(2)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.(3)如图,AD是△ABC的角平分线,BE⊥AD交AD的延长线于点E,EF∥AC交AB于点F.求证:AF=FB.变式训练3:1.如图,在△ABC中,BP平分∠CBA,AP平分∠CAB,且DE∥AB,若CB=12,AC=18,则△CDE的周长是____30____.2.如图,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AC=AB+BD.考点四等腰三角形的综合问题【例4】如图,在△ABC中,AB=AC,点D、E、F分别在AB 、BC 、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.※课后练习1.等腰三角形是轴对称图形,它的对称轴是( D )A.过顶点的直线B.腰上的高所在的直线C.顶角的角平分线D.底边的垂直平分线2.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC 的长为半径画弧,交AC于点D,连接BD,则∠ABD=(B) A.30°B.45°C.60°D.90°3.如图所示,已知AB=AC=BD,那么∠1和∠2之间的关系是(D)A.∠1=2∠2 B.2∠1-∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°4.已知等腰三角形中有一个内角为70°,则该等腰三角形的顶角度数为70°或40°.5.如图,已知OC平分∠AOB,CD∥OB,若OD=4 cm,则CD等于____4 cm ___.6.如图,在△ABC中,∠B=∠C,点E在CA延长线上,EP⊥BC于点P,交AB于点F.若AF=3,BF=5,则CE的长度为11.7.在平面直角坐标系中,O为坐标原点,已知点A(2,4),在坐标轴上确定一点P,使△AOP为等腰三角形,则所有符合条件的点P有8 个.8.如图,在△ABC中,AB=AC,D,E分别在AC,AB边上,且BC=BD,AD=DE=EB.则∠A的度数为45°.9.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE 交AD于F,交AC于E.(1)若BE平分∠ABC,试判断△AEF的形状,并说明理由;(2)若AE=AF,请证明BE平分∠ABC.10.如图,AD是∠BAC的平分线,AB=AC+DC.求证:∠C=2∠B.证明:在AB上截取AE=AC,连接DE.∵AB=AC+DC,AE=AC,∴BE=DC.∵AD是∠BAC的平分线,∴∠EAD=∠CAD,∴△AED≌△ACD( SAS ).∴DE=DC=BE,∠AED=∠C,∴∠B=∠EDB.∵∠AED=∠B+∠EDB,∴∠AED=2∠B,∴∠C=2∠B.11.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D 分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?请给出证明.(2)过点C作AB边上的高CG,请问DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.解:(1)当D为BC的中点时,DE=DF.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∴△BED≌△CFD( AAS ),∴DE=DF.(2)CG=DE+DF.连接AD,∵S△ABC=S△ADB+S△ADC,AB×CG=AB×DE+AC×DF,又∵AB=AC,∴CG=DE+DF.12.在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC,CB于点D,E,图1,图2,图3是旋转得到的三种图形.(1)以图2为例证明:PD=PE;(2)△PBE能否构成等腰三角形?若能,求出∠PEB的度数;若不能,请说明理由.。
等腰三角形的性质和判定一、单选题1.以下判断中错误的是( )A .等边三角形的每条高线都是角平分线和中线B .有一内角为60︒的等腰三角形是等边三角形C .等腰三角形一定是锐角三角形D .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合2.如图,在ABC 中,AB AC =,65C ︒∠=,点D 是BC 边上任意一点,过点D 作//DF AB 交AC 于点E ,则FEC ∠的度数是( ).A .120︒B .130︒C .145︒D .150︒3.如图,直线a ,b 相交形成的夹角中,锐角为52°,交点为O ,点A 在直线a 上,直线b 上存在点B ,使以点O ,A ,B 为顶点的三角形是等腰三角形,这样的点B 有( )A .1个B .2个C .3个D .4个4.等腰三角形一腰上的高与另一腰的夹角为30,则顶角的度数为( )A .60︒B .120︒C .60︒或150︒D .60︒或120︒5.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则△E =( )A .15°B .20°C .25°D .30°二、填空题6.已知△ABC 是等腰三角形.若△A =40°,则△ABC 的顶角度数是____.7.如图,AB AC =,若AD 平分BAC ∠,则AD 与BC 的位置关系是_______.8.已知:如图,ABC 中,,BO CO 分别是ABC ∠和ACB ∠的平分线,过O 点的直线分别交AB 、AC 于点D 、E ,且//DE BC .若6cm,8cm AB AC ==,则ADE 的周长为______.9.如图,在ABC 中,AB AC =,点E 在CA 延长线上,EP BC ⊥于点P ,交AB 于点F ,若10CE =,3AF =,则BF 的长度为______.三、解答题10.等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.11.如图,BD 是ABC 的角平分线,DE BC ∥,交AB 于点E .(1)求证:EBD EDB ∠=∠.(2)当AB AC =时,请判断CD 与ED 的大小关系,并说明理由.12.如图,已知点D 、E 在ABC 的边BC 上,AB AC =,AD AE =.(1)求证:BD CE =;(2)若AD BD DE CE ===,求BAE ∠的度数.13.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分△ABC 交AC 于点E ,过点E 作EF △BC 交AB 于点F .(1)若△C =36°,求△BAD 的度数.(2)求证:FB =FE .。
考点05 等腰三角形的性质与判定1.(2020·湖南·期末试卷)等腰三角形的两边长分别为3cm,6cm,则该三角形的周长为()A.12cmB.15cmC.12cm或15cmD.以上都不对【答案】B【解析】当相等的两边是3时,3+3=6,不能组成三角形,应舍去;当相等的两边是6时,能够组成三角形,此时周长是6+6+3=15.2.(2020·河南·期中试卷)等腰三角形的一个角是70∘,则它的底角是( )A.70∘B.40∘C.55∘或70∘D.40∘或55∘【答案】C【解析】当70∘为顶角时,底角为:(180∘−70∘)÷2=55∘.70∘为底角时,70∘+70∘<180∘,故成立.3.(2020·山东·月考试卷)在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9B.13C.9或13D.10或12【答案】C【解析】题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.4.(2020·湖南·月考试卷)如图,已知AB=AC,∠A=36∘,AB的中垂线MD交AC于点D、交AB于点M.下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③△ABC∼△BCD;④△AMD≅△BCD.正确的有( )个.A.4B.3C.2D.1【答案】B【解析】解:∵AB的中垂线MD交AC于点D,交AB于点M,∴AD=BD,∴∠ABD=∠A=36∘,∵AB=AC,∴∠ABC=∠C=72∘,∴∠DBC=∠ABC−∠ABD=36∘,∴∠ABD=∠CBD,∴BD是∠ABC的平分线;故①正确;∴∠BDC=180∘−∠DBC−∠C=72∘,∴∠BDC=∠C=72∘,∴△BCD是等腰三角形,故②正确;∵∠C=∠C,∠BDC=∠ABC=72∘,∴△ABC∼△BCD,故③正确;∵△AMD中,∠AMD=90∘,△BCD中没有直角,∴△AMD与△BCD不全等,故④错误.5.(2020·福建·月考试卷)如图,已知△ABC为等边三角形,若沿图中虚线剪去∠B,则∠1+∠2等于( )A.315∘B.240∘C.135∘D.120∘【答案】B【解析】解:如图,∵△ABC为等边三角形,∴∠B=60∘.∵∠BDE+∠BED=180∘−∠B=180∘−60∘=120∘,∴∠1+∠2=360∘−(∠BDE+∠BED)=360∘−120∘=240∘.6.(2020·山东·期末试卷)如图,将△ABC绕点B顺时针旋转60∘得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠EB.∠CBE=∠CC.AD // BCD.AD=BC【答案】C【解析】解:∵△ABC绕点B顺时针旋转60∘得△DBE,∴∠ABD=∠CBE=60∘,AB=BD,∴△ABD是等边三角形,∴∠DAB=60∘,∴∠DAB=∠CBE,∴AD // BC,7.(2020·广西·月考试卷)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE、CD,AE交BD于点P,CD交BE于点N,AE与CD交于点F,连接PN、BF.下列结论:①△ABE≅△DBC;②∠DFA=60∘;③△BPN为等边三角形。
等腰三角形的性质与判定(人教版)试卷简介:本套试卷主要考查等腰三角形的判定及性质,等边对等角、等角对等边;三线合一等,以此为载体考查同学们几何学习的有序操作能力.一、单选题(共10道,每道10分)1.已知等腰三角形的一个内角为70°,则另两个内角的度数是( )A.55°,55°B.70°,40°C.55°,55°或70°,40°D.以上都不对答案:C解题思路:此题仅告诉我们等腰三角形的一个内角为70°,并没有确定是顶角还是底角,所以需分两种情况考虑.①当70°为顶角时,另外两个角是底角,度数相等,为(180°-70°)÷2=55°,②当70°为底角时,另外一个底角也是70°,顶角是180°-140°=40°.综上,另两个内角度数为55°,55°或70°,40°.故选C.试题难度:三颗星知识点:等腰三角形的性质2.一个等腰三角形的两边长分别为2和5,则它的周长为( )A.7B.9C.12D.9或12答案:C解题思路:求等腰三角形的周长,即是确定等腰三角形的腰与底的长,题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还需应用三角形的三边关系验证能否组成三角形.①若2为腰长,5为底边长,由于2+2<5,则三角形不存在;②若5为腰长,2为底边长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C试题难度:三颗星知识点:三角形的三边关系3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的角平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个答案:A解题思路:∵AB=AC,∴△ABC是等腰三角形.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD,CE分别是∠ABC,∠BCD的角平分线,∴,,∴∠DBC=∠BCE,∠CED=∠DBC+∠BCE=36°+36°=72°,∠A=∠ABD,∠BDC=180°-∠DBC-∠BCD=180°-72°-36°=72°,∴△EBC,△ABD是等腰三角形;∵∠BDC=∠BCD,∠CED=∠CDE,∴△BCD,△CDE是等腰三角形,∴图中的等腰三角形有5个.故选A试题难度:三颗星知识点:等腰三角形的判定及性质4.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列五个结论:①AD上任意一点到AB,AC两边的距离相等;②AD上任意一点到B,C两点的距离相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中正确的有( )A.2个B.3个C.4个D.5个答案:D解题思路:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一);故AD所在直线可以看成△ABC的对称轴,再根据角平分线的性质、垂直平分线的性质可得①②③④⑤都正确.故选D试题难度:三颗星知识点:全等三角形的判定与性质5.如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③;④△ABD一定是正三角形.请写出正确结论的序号是( )A.①②B.①③C.②④D.①②③答案:B解题思路:①∵AB=AC=AD,AC平分∠DAB∴AC垂直平分BD,①正确;②由①可知DC=CB,DE=BE,∠DEC=90°,∴DC>DE∴BC>DE,②错误;③在Rt△BCE中,∠DBC=90°-∠ACB,在等腰△ABC中,∠BAC=180°-2∠ACB,即∠DAC=180°-2∠ACB,∴,③正确;④△ABD是等腰三角形,但不一定是等边三角形,而且根据题中条件也推导不出△ABD是等边三角形,④错误.正确的为①③,故选B试题难度:三颗星知识点:等腰三角形的判定与性质6.如图,在△ABC中,BC=9cm,BP,CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是( )A.6cmB.9cmC.10cmD.12cm答案:B解题思路:∵BP,CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE.∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴PD+DE+PE=BD+DE+EC=BC=9,即△PDE的周长为9cm.故选B试题难度:三颗星知识点:等腰三角形的判定及性质7.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC的度数为( )A.60°B.65°C.70°D.75°答案:C解题思路:∵AD⊥BC,∠AOC=125°,∴∠C=∠AOC-∠ADC=125°-90°=35°,∵D为BC的中点,AD⊥BC,∴OB=OC,∴∠OBC=∠C=35°,∵BO平分∠ABC,∴∠ABC=2∠OBC=2×35°=70°.故选C试题难度:三颗星知识点:等腰三角形的性质8.如图,在等腰三角形ABC中,AB=AC=8,,点D为底边BC上一动点(不与点B,C重合),DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF的长为( )A.2B.3C.4D.5答案:C解题思路:连接AD,∵AB=AC=8,∴DE+DF=4.故选C试题难度:三颗星知识点:等腰三角形的性质9.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有( )A.4个B.6个C.8个D.10个答案:C解题思路:已知A,B两个定点,再寻找点C使得△ABC为等腰三角形,可知需要利用“两圆一线”解题,即:分别以A,B为圆心,以AB的长为半径画圆;作线段AB的垂直平分线.再来判断点C 的个数.如图所示,图中的10个格点均在圆或垂直平分线上,但是点M,N与A,B在同一直线上,构不成等腰三角形,故舍去,所以有8个点.故选C试题难度:三颗星知识点:等腰三角形的存在性10.如图,在平面直角坐标系中,O为原点,已知A(2,-1),P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2B.3C.4D.5答案:C解题思路:已知O,A两个定点,再寻找点P使得△OAP为等腰三角形,可知需要利用“两圆一线”解题,即:分别以O,A为圆心,以OA的长为半径画圆;作线段OA的垂直平分线,与x轴的交点即为所求.如图所示,图中,,,即为所求.故选C.试题难度:三颗星知识点:等腰三角形的存在性。
等腰三角形的性质与判定典型例题例1.1.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°【分析】利用全等三角形的性质即可解决问题;例2.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,且AE=BC,求∠BAC的度数.【分析】(1)根据等腰三角形三线合一的性质可得AD垂直平分BC,再根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE;(2)根据同角的余角相等求出∠EAF=∠CBF,然后利用“角角边”证明△AEF和△BCF全等,根据全等三角形对应边相等,得到△ABF是等腰直角三角形,根据等腰直角三角形的性质即可得到结论例3.如图,△ACB和△DCE均为等腰三角形,点A、D、E在同一直线上,连接BE,若△CAB =△CBA=△CDE=△CED=50°.(1)求证:AD=BE.(2)求△AEB的度数.【分析】(1)欲证明AD=BE,只要证明△ACD△△BCE(SAS)即可.(2)利用:“8字型”可以证明△OEB=△ACO,即可解决问题.一.选择题1.如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.△ADB=△ACB+△CAD B.△ADE=△AEDC.△CDE=12△BAD D.△AED=2△ECD2.如图,△ABC中,AB=AC,点D是BC边上的中点,点E在AD上,那么下列结论不一定正确的是()A.AD△BC B.△EBC=△ECB C.△ABE=△ACE D.AE=BE3.如图,在△ABC中,AB=AC,D为BC中点,△BAD=35°,则△C的度数为()A.35°B.45°C.55°D.60°4.如图,在△ABC中,BD平分△ABC,ED△BC,已知AB=3,AD=1,则△AED的周长为()A.2B.3C.4D.55.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm6.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°7.等腰三角形的顶角是底角的2倍,则底角度数为()A.35°B.40°C.45°D.50°8.已知等腰三角形的一个外角等于110°,则该三角形的一个底角是()A.35°B.70°或110°C.70°D.55°或70°9.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.△EBC=△BAC D.△EBC=△ABE 10.如图,△A=50°,P是等腰△ABC内一点,AB=AC,且△PBC=△PCA,则△BPC为()A.100°B.140°C.130°D.115°11.如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法中正确的有()△AD平分△EDF;△△EBD△△FCD;△BD=CD;△AD△BC.A.1个B.2个C.3个D.4个12.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,下列说法:△AD平分△EDF;△△EBD△△FCD;△BD=CD;△AD△BC其中正确的有()A.1个B.2个C.3个D.4个二、解答题13.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE 交△DAC的平分线于E,交BC于G,且AE△BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.14.如图,在△ABC中,BD平分△ABC,DE平分△ADB,且DE△BC.(1)找出图中所有的等腰三角形,并加以证明;(2)若△A=90°,AE=1,求BC的长.15.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF;(3)在(2)的条件下,连接CE,若∠BAC=45°,判断△CFE的形状,并说明理由.16.如图,△A=△B,AE=BE,点D在AC边上,△1=△2,AE和BD相交于点O.(1)求证:△AEC△△BED;(2)若AD=CE,BE△AD,求△BDE的度数.。
2020—2021八年级下学期专项冲刺卷(北师大版)专项1.1等腰三角形的性质与判定姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果等腰三角形一腰上的高与另一腰的夹角为45,那么这个等腰三角形的底角为()A.22.5B.67.5C.6750 D.22.5或67.5【答案】D解:有两种情况:(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°-45°=45°,∵AB=AC,∴∠ABC=∠C=12×(180°-45°)=67.5°,(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°-45°=45°,∴∠FEG=180°-45°=135°,∵EF=EG,∴∠EFG=∠G=12×(180°-135°)=22.5°.故选:D.2.如图,纸片△ABC中,AB=AC,∠A=40°,将纸片对折,使点A与点B重合,折痕为DE,连结BE.则∠EBC 的度数为()A.30°B.40°C.60°D.80°【答案】A由题可得,∠ABC=(180°-40°)÷2=70°,由翻折的性质可得:∠A=∠DBE=40°,∴∠EBC=∠ABC-∠DBE=70°-40°=30°,故选:A.3.如图,在△ABC中,∠C=90°,点D在边BC上,AD=BD,DE平分∠ADB交AB于点E.若AC=12,BC=16,则AE的长为()A.6B.8C.10D.12【答案】C解:如图,在△ABC中,∠C=90°,AC=12,BC=16,由勾股定理知:20AB==,∵AD=BD,DE平分∠ADB交AB于点E.∴1102AE BE AB===,故选:C.4.如图,AD是等边ABC∆的中线,E是AC边的中点,F是AD边上的动点,当EF+CF 取得最小值时,则ECF∠的度数为().A.20︒B.30︒C.45︒D.50︒【答案】B解:如图:∵AD是等边ABC∆的中线,∴AD⊥BC,BD=CD,∴BF=CF,∴CF+EF=BF+EF,∴当B、F、E位于同一直线,且BE⊥AC是,EF+CF最小.过点B作BE⊥AC于点E,交AD于点F,连接CF,∵△ABC是等边三角形,∴AE =EC ,AF =FC ,∴∠F AC =∠FCA ,∵AD 是等边△ABC 的BC 边上的中线,∴∠BAD =∠CAD =30°,∴∠ECF =30°.故选:B .5.等腰三角形的一个内角为120°,则底角的度数为( )A .30°B .40°C .60°D .120° 【答案】A解:∵等腰三角形中,一个内角为120°,而三内角的和为180°,∴该内角为顶角,设顶角为∠A ,底角为∠B、∠C,则有∠B=∠C ,∵∠A=120°,∴∠B=∠C=()1180-1202︒︒=30°, 故选:A .6.在△ABC 中,A x ∠=︒,B y ∠=︒,60C ∠≠︒.若1902y x =-,则下列结论正确的是( )A .AB BC =B .AB AC = C .AC BC =D .AB ,AC ,BC 中任意两边都不相等【答案】B【分析】由三角形内角和定理和已知条件得出∠B=∠C ,证出AC=AB .【详解】∵180A B C ∠+∠+∠=︒,A x ∠=︒,B y ∠=︒,∴180C x y ∠=︒-︒-︒, ∵1902y x =-, ∴∠C=11180(90)(90)22x x x y ︒-︒--︒=-︒=︒, ∴∠B=∠C ,∴AC=AB ,故选:B .7.如图,△ABC 是等边三角形,AQ = PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS ,则四个结论:①点P 在∠A 的平分线上;②AS=AR ;③QP ∥AR ;④△BRP ≌△QSP ,正确的结论是( ).A .①②③④B .①②③C .②③④D .③④【答案】A 解:∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR=PS ,∴P 在∠A 的平分线上,∴①正确;由①可知,PB=PC ,∠B=∠C ,PS=PR ,∴△BPR ≌△CPS ,∴CS=BR∴AS=AR ,②正确;∵AQ=PQ ,∴∠PQC=2∠PAC=60°=∠BAC , ∴PQ ∥AR ,③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,④也正确∵①②③④都正确,故选:A .8.等边三角形的周长为18,则边长为( )A .2B .3C .4D .6 【答案】D解:因为等边三角形的三条边都是相等,所以边长为:18÷3=6 故选:D .9.如图,在ABC 中,AB AC =,D 、E 是ABC 内两点,AD 平分BAC ∠,60EBC E ∠=∠=︒,若7BE =,3DE =,则BC 的长度是( )A .12B .11C .10D .9【答案】C 解:延长DE 交BC 于M,延长AD 交BC 于N,∵AB=AC,AD 平分∠BAC, ∴AN ⊥BC, ∠EBC=∠E=60°,∴△BED 为等边三角形,∴BE=EM∵BE=7,DE=3,∴DM=EM-DE=7-3=4∵△BEM 为等边三角形,∴∠EMB=60°∵AN ⊥BC∴∠DNM=90°∴∠NDM=30°∴NM=2∴BN=5∴BC=2BN=10故答案为:C ..10.如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC ,AD =AO ,若∠BAC =80°,则∠BCA 的度数为( )A .80°B .60°C .40°D .30°【答案】B 解:∵△ABC 三个内角的平分线交于点O ,∴∠ACO =∠BCO ,在△COD 和△COB 中,CD CB OCD OCB CO CO =⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△COB ,∴∠D =∠CBO ,∵∠BAC =80°,∴∠BAD =100°,∴∠BAO =40°,∴∠DAO =140°,∵AD =AO ,∴∠D =20°,∴∠CBO =20°,∴∠ABC =40°,∴∠BCA =60°,故选B .11.如图,分别以ABC ∆的边AB ,AC 所在直线为对称轴作ABC 的对称图形ABD △和ACE △,150BAC ∠=︒,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA .有如下结论:①90EAD ∠=︒;②60BOE ∠=︒;③OA 平分BOC ∠;④BP EQ =.其中正确的结论个数是( )A .1B .2C .3D .4【答案】C ∵ABD ∆和ACE ∆是ABC ∆的轴对称图形,∴BAD CAE BAC ∠=∠=∠,AB AE =,AC=AD ,∴3360315036090EAD BAC ∠=∠-︒=⨯︒-︒=︒,故①正确. ∴1(36090150)602BAE CAD ∠=∠=︒-︒-︒=︒, 由翻折的性质得,AEC ABD ABC ∠=∠=∠,∵EPO BPA ∠=∠,∴60BOE BAE ∠=∠=︒,故②正确.∵ACE ADB ∆≅∆,∴ACE ADB S S ∆∆=,BD CE =,∴BD 边上的高与CE 边上的高相等,即点A 到BOC ∠两边的距离相等,∴OA 平分BOC ∠,故③正确.∵∠EAQ=90°,∴AE <EQ∵AB AE =,∠BAE=60°,∴△ABE 是等边三角形,∴BP <AB ,∴BP <EQ ,故④错误;综上所述,结论正确的是①②③共3个.故选:C .12.在ABC 中,90BAC ∠=︒,6AB AC cm ==,D 为BC 中点,E ,F 分别是AB ,AC 两边上的动点,且90EDF ∠=︒,下列结论:①BE AF =;②EF 的长度不变;③BED CFD ∠+∠的度数不变;④四边形AEDF 的面积为29cm .其中正确的结论个数是( )A .1个B .2个C .3个D .4个【答案】C 解:∵AB=AC ,∠BAC=90°,BD=CD ,∴AD ⊥BC ,AD=BD=DC ,∵∠BDA=∠EDF=90°,∴∠BDE=∠ADF ,∵∠B=∠DAF=45°,∴△BDE ≌△ADF (ASA ),∴BE=AF ,DE=DF ,故①正确,∵DE=DF ,∠EDF=90°,∴△DEF 是等腰直角三角形,∵DE 的长度是变化的,∴EF 的长度是变化的.故②不正确.∵△BDE ≌△ADF ,∴∠BED=∠AFD ,∴∠BED+∠CFD=∠AFD+∠CFD=180°,故③正确;∵△BDE ≌△ADF ,∴BDE ADF SS =, ∴21)11669(222ADE ADF ADE BDE ADB ABC S S S S S S cm +=+===⨯⨯⨯=. 故④正确.故选:C .二、 填空题(本大题共6小题,每小题3分,共18分)13.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若BC =28,则BD 的长为____.【答案】14∵AB=AC ,∴△ABC 为等腰三角形,∵AD ⊥BC ,∴根据“三线合一”知,BD=12BC=14, 故答案为:14.14.如图,在Rt △ABC 中,∠A =90°,∠B =30°,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,若AN =1,则BC 的长为_____.【答案】6.解:3090B A ∠=︒∠=︒,,60ACB ∴∠=︒,∵CM 平分∠ACB ,30ACM BCM ∴∠=∠=︒,//MN BC ,∴3030AMN B NMC BCM ∠=∠=︒∠=∠=︒,,30NCM NMC ∴∠=∠=︒,,NM NC ∴=∵130AN AMN =∠=︒,, ∴2MN =,2NC ∴=,∴3AC AN NC =+=,∴ 6.BC =故答案为:6.15.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1BB 上分别截取1212B A B B =,连接22A B ,……按此规律作下去,若11A B O α∠=,则1010A B O ∠=___________.【答案】512α. 解:∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O 12=α, 同理∠A 3B 3O 12=∠A 2B 2O 212=α, ∠A 4B 4O 312=α, ∴∠A n B n O 112n -=α, ∴∠A 10B 10O 95221αα==. 故答案为:512α. 16.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC ,DE 分别垂直于横梁AC ,若DE =1.8m ,∠A =30°,则斜梁AB 的长为_____m .【答案】7.2由题意,DE ⊥AC ,BC ⊥AC ,∠A=30°,∴在Rt △ADE 中,AD=2DE=3.6m ,∵D 为AB 的中点,∴AB=2AD=7.2m ,故答案为:7.2.17.如图,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD .则∠3=______°.【答案】22.5∵AD 为BC 边上的高,且AD =BD ,∴∠ABD =∠BAD =45°,∵AB =BC ,∴∠BAC =()1180ABC 2-∠=67.5°, ∴∠3=∠BAC -∠BAD =67.5°-45°=22.5°,故填:22.5°.18.如图,已知∠AOB=60°,点P 在边OA 上,OP=24,点M ,N 在边OB 上,PM=PN ,若NM=6,则OM=______________.【答案】9解:过P 作PD ⊥OB ,交OB 于点D ,∵∠AOB=60°,∴∠OPD=30°,∴OD =12OP=12. ∵PM =PN ,PD ⊥MN ,∴MD =ND =12MN =3, ∴OM =OD ﹣MD =12﹣3=9.故答案为:9.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接,CD DE 、已知,6EDB ACD BC ∠=∠=,(1)求证:DEC ∆是等腰三角形(2)当5,8,2BDC EDB EC AD ∠=∠==时,求EDC ∆的面积.【答案】(1)证明见解析;(2)16(1)证明:ABC ∆是等边三角形60ABC ACB ∴∠=∠=,E EDB ACD BCD ∠+∠=∠+∠∴,EDB ACD ∠=∠,E BCD ∴∠=∠,DE DC ∴=,DEC ∴∆是等腰三角形;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,60ACB ∠=60BCD x ∠=∴-,60E x ∠=∴-,在DEC ∆中,180E EDC DCE ∠+∠+∠=︒,60560180x x x x ∴+︒-++︒-=,解得15x =,690EDC x ∴∠==,DEC ∴∆是等腰直角三角形,过点D 作DF EC ⊥于点F ,如图所示,DF EC ⊥,,DFE DFC ∆∆∴都是等腰直角三角形,12DF EC ∴= 8EC =,∴DF=4,EDC ∴∆的面积为:11841622EC DF ⋅⋅=⨯⨯=20.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠B=90°,则线段AB = ,D C= ;(2)如图1,若∠DAB=120°,且∠B=90°.试探究边AD、AB与对角线AC的数量关系并说明理由.(3)如图2,若将(2)中的条件“∠B=90°”去掉,(2)中的结论是否成立?请说明理由.【答案】(1)AD,B C;(2)AC=AD+AB,理由见解析;(3)AB+ AD = A C,成立;理由见解析.解:(1)∵∠B=90°,∠B+∠D=180°,∴∠D=90°=∠B,∵AC平分∠BAD,∴∠BAC=∠DAC,∵AC=AC,∴△ABC≌△ADC,∴AB = AD,DC= BC;(2)AC=AD+AB,证明:∵对角线AC平分∠BAD.∠DAB=120°,∴∠CAD=∠CAB=60°又∵∠B+∠D=180°,∠B=90°∴∠D=90°,∴∠ACD=∠ACB=30°∴AD=12AC,AB=12AC,∴AC=AD+AB;(3)成立证明:以C为顶点,AC为一边作∠ACE=60°∠ACE的另一边交AB延长线于点E∵∠CAB=60°,∴△ACE为等边三角形∴EC= AC ,∠E=60°又∵∠B+∠D=180°,∠DAB=120°,∴∠B CD=60°.∴∠ACD=∠ECB=60°—∠B CA.又∵∠CAD=∠E=60°∴△ACD≌△ECB∴AD=BE∴AB+ AD =AB+BE= AE又∵△ACE为等边三角形∴AE= AC∴AB+ AD = AC.21.已知长方形纸片ABCD,将长方形纸片按如图所示的方式折叠,使点D与点B重合,折痕为EF.(1)△BEF是等腰三角形吗?若是,请说明理由;(2)若AB =4,AD =8,求BE 的长.【答案】(1)BEF 是等腰三角形,理由见解析;(2)5.(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.22.图①、图②均是6×6的正方形网格,小正方形的边长为1,每个小正方形的顶点称为格点,点A 、B 均在格点上.只用无刻度的直尺,在给定的网格中按要求画图. (1)在图①中,画一个以AB 为底边的等腰三角形ABC ,点C 在格点上;(2)在图②中,画一个以AB 为腰的等腰三角形ABD ,点D 在格点上.【答案】(1)见解析图;(2)见解析图(1)如图所示,存在C1,C2,C3,三种情况,画出其中一个即可;(2)如图所示,存在D1,D2,两种情况,画出其中一个即可.23.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于M,交AC于N,(1)请判断△BME与△ECN的形状,并说明理由?(2)若BM+CN=9,求线段MN的长.【答案】(1)△BME与△ECN都是等腰三角形;理由见解析;(2)9(1)△BME 与△ECN 都是等腰三角形;理由如下:∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE =∠EBC ,∠ECN =∠ECB ,∵MN ∥BC ,∴∠EBC =∠MEB ,∠NEC =∠ECB ,∴∠MBE =∠MEB ,∠NEC =∠ECN ,∴BM =ME ,EN =CN ,∴△BME 与△ECN 都是等腰三角形;(2)解:∵MN =ME +EN ,BM =ME ,EN =CN ,∴MN =BM +CN .∵BM +CN =9,∴MN =9.24.如图,已知ABC 中,BE 平分∠ABC ,且BE =BA ,点F 是BE 延长线上一点,且BF =BC ,过点F 作FD ⊥BC 于点D .(1)求证:∠BEC =∠BAF ;(2)判断AFC △的形状并说明理由.(3)若CD =2,求EF 的长.【答案】(1)证明见解析;(2)AFC 是等腰三角形,理由见解析;(3)4 解:(1)∵BE 平分∠ABC ,∴∠EBC =∠ABF ,在△BEC 和△BAF 中,BE BA EBC ABF BC BF =⎧⎪∠=∠⎨⎪=⎩,∴∠BEC =∠BAF ;(2)△AFC 是等腰三角形.证明:过F 作FG ⊥BA ,与BA 的延长线交于点G ,如图,∵BA =BE ,BC =BF ,∠ABF =∠CBF ,∴∠AEB =∠BCF ,∵∠BEC =∠BAF ,∴∠GAF =∠AEB =∠BCF ,∵BF 平分∠ABC ,FD ⊥BC ,FG ⊥BA ,∴FD =FG ,在△CDF 和△AGF 中,90DCF GAF CDF AGF FD FG ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△CDF ≌△AGF (AAS ),∴FC =FA ,∴△ACF 是等腰三角形;(3)设AB =BE =x ,∵△CDF ≌△AGF ,CD =2,∴CD =AG =2,∴BG =BA+AG =x+2,在Rt △BFD 和Rt △BFG 中,FD FG BF BF =⎧⎨=⎩,∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.。
E BAC等腰三角形的性质与判定—专项练习八 年 级 数 学 组1、若OD 平分∠AOB ,DE ∥OB 交OA 于E .求证:EO =ED .2、如图4,AD ∥BC , BD 平分∠ABC .求证: AB =AD .3、如图,在△ABC 中,AB =AC ,∠ABD =∠ACD .求证:△DBC 是等腰三角形.4、已知△ABC 中,∠BAC=90°,AB =AD =AC ,∠CAD=30°, 求∠BCD 和∠DBC 的度数。
D CBA学校_____________ 班级________________ 姓名________________ 学号______________………密…………………封…………………装…………………订…………………线…………FECBAD CBA5、如图,点D 、E 在ABC ∆的边BC 上,AB AC =,AD AE =.求证:BD CE =6、已知:如图,AB=AC ,BD⊥AC,垂足为点D 。
求证:∠DBC=21∠A。
7.如图△ABC 中,∠ACB=90°,AC =AE ,BC=BF ,求∠ECF 的度数。
8.已知:如图,在ABC ∆中,90B ∠=︒,AB BC =,AD 是A ∠的平分线.求证:AB BD AC +=.ABCD9.ABC △中,AB AC =,BD 是∠ABC 的平分线,且∠BDC=75o ,求∠BAC 的度数。
10.如图,ABC ∆中,AC AB =,E 在AC 上,且AE AD =,求证:BC DF ⊥.11.如图,AB AC =,30BAD ∠= ,且AD AE =. 求EDC ∠的度数.12.如图,ABC ∆中,90ACB ∠= ,CD BA ⊥于D ,AE 平分BAC ∠, 求证:CEF ∆是等腰三角形.CFEDCBA13、已知在△ABC 中,AB=AC ,BD⊥AC 于D ,CE⊥AB 于E ,BD 与CE 相交于M 点。
E
D
C
B
A
等腰三角形的判定和性质练习
1.在△ABC 中,AB =AC ,若∠B =56º,则∠C =__________.
2. 若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________. 3. 若等腰三角形的两边长分别为x cm 和(2x -6)cm ,且周长为17cm ,则第
三边的长为________.
4. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,若∠CAD =25°,则∠ABE = ,若BC =6,则CD = .
5.△ABC 中,AB =AC ,∠ABC =36°,D .E 是BC 上的点,∠BAD =∠DAE =∠EAC ,则图中等腰三角形有______个
6.等腰三角形一腰上的高与底边夹角为20°,则其顶角的大小为___________. 7.如图,∠ABC =50°,∠ACB =80°,延长CB 到D ,使BD =AB ,延长BC 到E ,使CE =CA ,连接AD .AE ,则∠DAE =_______.
8.如下图,△MNP 中, ∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延
长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 . 9.△ABC 中,∠C =∠B ,D .E 分别是AB .AC 上的点,AE =2cm ,且DE ∥BC ,则AD =______
<
10.如图,∠AOB 是一个钢架且∠AOB =10°,为了使钢架更加牢固,需在内部添加一些
钢管EF ,FG ,GH ,…,添加的钢管长度都与OE 相等,则最多能添加这样的钢管______
根.
11.如图△ABC 中,AB =AC ,AD 、BE 是△ABC 的高,它们相交于H ,且AE=BE .
求证:AH =2BD .
@
12.△ABC 为非等腰三角形,分别以AB 、AC 为腰向△ABC 外作等腰直角三角形ABD 和等腰直角三角形ACE ,且∠DAB =∠EAC =90°.求证:(1)BE =CD ;(2)BE ⊥CD .
》
13.如图,点D 、E 在ABC ∆的边BC 上,AB AC =,AD AE =. 求证:BD CE =
14.如图,AB AC =,30BAD ∠=,且AD AE =.求EDC ∠的度数.
—
E
D
C
B
A
P
Q
M
N
G
15.如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 平分BAC ∠交CD 于F ,交BC 于E ,求证:CEF ∆是等腰三角形.
^
16.Rt ABC ∆中,AB AC =,90BAC ∠=,O 为 AB 中点,若点M .N 分别在线段AB .AC
上移 动,且在移动过程中保持AN BM =,试判断 OMN ∆的形状,并证明你的结论.
17.已知:如图,△ABC 中,D 在AB 上,E 在AC 延长线上,且BD =CE ,DE 交BC 于M ,MD =ME ,求证:△ABC 是等腰三角形.
—
18. 如图,已知△ABC 是等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)线段AD 与BE 有什么关系试证明你的结论.
【
(2)求∠BFD 的度数.
19. 如图,在△ABC 中,AB=AC ,D 是BC 上任意一点,过D 分别向AB ,AC 引垂线,垂足分别为E ,F ,CG 是AB 边上的高.
(1)DE ,DF ,CG 的长之间存在着怎样的等量关系并加以证明;
(2)若D 在底边的延长线上,(1)中的结论还成立吗若不成立,又存在怎样的
关系请说明理由.
E
M
D
C B A。