第九章MAPK信号转导通路
- 格式:ppt
- 大小:6.58 MB
- 文档页数:122
信号通路9—MAPK SignalingAPExBIO图▲ MAPK信号通路图丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK, MAP kinase)是一种对丝氨酸,苏氨酸和酪氨酸特异的蛋白激酶(即丝氨酸/苏氨酸特异性蛋白激酶)。
由于MAPK是培养细胞在受到生长因子等丝裂原刺激时被激活而被鉴定的,因而得名。
MAPKs参与引导细胞反应至各类刺激物,如有丝分裂原,渗透压,热休克和促炎细胞因子。
MAPKs调节多种细胞功能,包括增殖,基因表达,分化,有丝分裂,细胞存活和凋亡。
MAPKs仅在真核生物中发现。
MAPKs属于CMGC(CDK / MAPK / GSK3 / CLK)激酶组。
CDK相关程度最大。
MAPK链由3类蛋白激酶组成:上游激活蛋白→MAPK激酶激酶(MAPKKK)→MAPK激酶(MAPKK)→MAPK,通过依次磷酸化将上游信号传递至下游应答分子。
经典的MAPK通路激活开始于细胞膜,在这里,小GTP酶和各种蛋白激酶磷酸化并激活MAPKKK(MAP kinase kinase kinase,MAP3K或MKKK,MAPK激酶激酶)。
随后,MAPKKK直接磷酸化MAPKK(MAP kinase kinase,MAP2K 或MKK,MAPK激酶),MAPKK一旦被激活就会磷酸化并激活MAPK。
MAPK 的激活导致特异性MAPK激活蛋白激酶(MAPKAPK,MAPK-activated protein kinase)的磷酸化和活化,例如RSK,MSK或MNK家族成员和MK2/3/5。
MKKK的4个亚族已得到鉴定:A. Raf亚族。
研究的最为透彻,包括B-Raf、A-Raf、Raf1。
B. MEKK亚族。
由4种MEKK构成:MEKK1~MEKK4。
C. 第三个亚族:ASK1和Tpl2。
D. 第四个亚族与上述三个有较大不同,它包括MST(mammalian sterile 20-like)、SPRK、MUK(MAPK upstream kinase)、TAK1,以及相关程度最小的MOS (molony sarcoma oncoprotein)。
MAPK细胞最基本的生命活动是细胞的生长、分化与分裂。
细胞分裂周期可分为DNA 及蛋白质合成作准备的G1 期、DNA 合成的S 期、为有丝分裂作准备的G2 期与有丝分裂的M 期以及细胞呈相对稳定状态的G0 期。
生物信息通过一系列复杂的信号传递过程来诱导相关基因的表达、调控细胞分裂,决定细胞的转归。
衰老细胞的细胞周期常阻滞于G1/ S 期或G2/M期,尤其是G1 末期的限制性调控点“R”点的阻滞。
促分裂素原活化蛋白激酶(mitogen-activated protein kinases,MAP激酶,MAPK)链是真核生物信号传递网络中的重要途径之一,在基因表达调控和细胞质功能活动中发挥关键作用。
MAPK 链由3类蛋白激酶MAP3K-MAP2K-MAPK组成,通过依次磷酸化将上游信号传递至下游应答分子.MAPK信号通路包括:MAP激酶(MAPK)、MAPK激酶(MEK、MKK或MAPK 激酶)和MEK 激酶(MEKK、MKKK或MAPK激酶激酶)。
在哺乳动物机体中,已经发现五种不同的MAPK 信号转导通路。
其中ERK1/2信号转导通路调控细胞生长和分化,JNK和p38 MAPK信号转导通路在炎症与细胞凋亡等应激反应中发挥重要作用。
使用这一芯片试剂盒检测RNA实验标本,操作者通过杂交反应技术,即可研究实验系统中与MAPK信号通路相关基因表达水平改变。
MAPK属于一种Ser/Thr蛋白激酶,可在多种不同的信号转导途径中充当一种共同的信号转导成份,且在细胞周期调控中发挥重要的作用。
目前MAPK家族中至少有4个成员已被纯化和深入研究。
如p42mapk,p44erk1,p54MAPK及p44mpk。
MAPK可促进血管内皮细胞增殖和新血管生成。
新血管生成后可为肿瘤提供更多的营养,加速肿瘤的生长,促进癌细胞的扩散。
MAPK有4个主要亚族:ERK、JNK、p38MAPK和ERK5。
MAPK信号通路2008-06-04 21:50MAPK,丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)是细胞内的一类丝氨酸/苏氨酸蛋白激酶。
研究证实,MAPKs信号转导通路存在于大多数细胞内,在将细胞外刺激信号转导至细胞及其核内,并引起细胞生物学反应(如细胞增殖、分化、转化及凋亡等)的过程中具有至关重要的作用。
研究表明,MAPKs信号转导通路在细胞内具有生物进化的高度保守性,在低等原核细胞和高等哺乳类细胞内,目前均已发现存在着多条并行的MAPKs信号通路,不同的细胞外刺激可使用不同的MAPKs信号通路,通过其相互调控而介导不同的细胞生物学反应。
1并行MAPKs信号通路的组成及其活化特点在哺乳类细胞目前已发现存在着下述三条并行的MAPKs信号通路[1]。
1.1ERK(extracellular signal-regulated kinase)信号通路1986年由Sturgill等人首先报告的MAPK。
最初其名称十分混乱,曾根据底物蛋白称之为MAP2K、ERK、MBPK、RSKK、ERTK等。
此后,由于发现其具有共同的结构和生化特征,而被命名为MAPK。
近年来,随着不同MAPK家族成员的发现,又重新改称为ERK。
在哺乳类动物细胞中,与ERK相关的细胞内信号转导途径被认为是经典MAPK信号转导途径,目前对其激活过程及生物学意义已有了较深入的认识。
研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。
如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域则同时与鸟苷酸交换因子SOS(Son of Sevenless)结合,后者使小分子鸟苷酸结合蛋白Ras的GDP解离而结合GTP,从而激活Ras;激活的Ras进一步与丝/苏氨酸蛋白激酶Raf-1的氨基端结合,通过未知机制激活Raf-1;Raf-1可磷酸化MEK1/MEK2(MAP kinase/ERK kinase)上的二个调节性丝氨酸,从而激活MEKs;MEKs为双特异性激酶,可以使丝/苏氨酸和酪氨酸发生磷酸化,最终高度选择性地激活ERK1和ERK2(即p44MAPK和p42MAPK)。
MAPK 信号通路2008-06-04 21:50 MAPK, 丝裂原活化蛋白激酶( mitogen-activatedprotein kinases,MAPKs )是细胞内的一类丝氨酸/苏氨酸蛋白激酶。
研究证实,MAPKs 信号转导通路存在于大多数细胞内,在将细胞外刺激信号转导至细胞及其核内,并引起细胞生物学反应(如细胞增殖、分化、转化及凋亡等)的过程中具有至关重要的作用。
研究表明,MAPKs 信号转导通路在细胞内具有生物进化的高度保守性,在低等原核细胞和高等哺乳类细胞内,目前均已发现存在着多条并行的MAPKs 信号通路,不同的细胞外刺激可使用不同的MAPKs 信号通路,通过其相互调控而介导不同的细胞生物学反应。
1 并行MAPKs 信号通路的组成及其活化特点在哺乳类细胞目前已发现存在着下述三条并行的MAPKs 信号通路 [1]。
1.1 ERK (extracellular signal-regulated kinase)信号通路1986 年由Sturgill 等人首先报告的MAPK 。
最初其名称十分混乱,曾根据底物蛋白称之为MAP2K 、ERK、MBPK 、RSKK 、ERTK 等。
此后,由于发现其具有共同的结构和生化特征,而被命名为MAPK 。
近年来,随着不同MAPK 家族成员的发现,又重新改称为ERK 。
在哺乳类动物细胞中,与ERK 相关的细胞内信号转导途径被认为是经典MAPK 信号转导途径,目前对其激活过程及生物学意义已有了较深入的认识。
研究证实,受体酪氨酸激酶、G 蛋白偶联的受体和部分细胞因子受体均可激活ERK 信号转导途径。
如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2( Grb2)的SH2 结构域相结合,而Grb2 的SH3 结构域则同时与鸟苷酸交换因子SOS( Son of Sevenless)结合,后者使小分子鸟苷酸结合蛋白Ras的GDP 解离而结合GTP,从而激活Ras;激活的Ras进一步与丝/苏氨酸蛋白激酶Raf-1 的氨基端结合,通过未知机制激活Raf-1;Raf-1 可磷酸化MEK1 /MEK2 (MAP kinase/ERK kinase)上的二个调节性丝氨酸,从而激活MEKs ;MEKs 为双特异性激酶,可以使丝/苏氨酸和酪氨酸发生磷酸化,最终高度选择性地激活ERK1和ERK2(即p44MAPK 和p42MAPK )。
“mapk信号转导通路”资料合集目录一、MAPK信号转导通路在肝细胞癌中的作用研究二、MAPK信号转导通路在肝细胞癌中的作用研究三、糖肾平胶囊对STZ诱导糖尿病肾病大鼠肾脏保护及其对TGF1p38MAPK信号转导通路的影响四、MAPK信号转导通路与神经损伤研究进展五、P,pDDE诱导ROS在线粒体和MAPK信号转导通路中的作用六、P38MAPK信号转导通路在大蒜素诱导THP1细胞凋亡中的作用七、MAPK信号转导通路中ERK、JNK和P38在大鼠肝脏缺血再灌注和缺血后处理中表达的变化八、MAPK信号转导通路及凋亡蛋白在子痫前期中的研究MAPK信号转导通路在肝细胞癌中的作用研究肝纤维化动物实验模型的研究进展肝纤维化是一种常见的慢性肝病,其特征是肝脏中胶原蛋白的过度积累。
为了更好地研究肝纤维化的发病机制和寻找有效的治疗方法,建立动物实验模型是至关重要的。
本文将综述近年来肝纤维化动物实验模型的研究进展。
一、肝纤维化动物实验模型概述肝纤维化动物模型主要用于模拟人类肝纤维化的发生和发展过程,以便更深入地了解其病理生理机制。
这些模型可以通过不同的方法建立,包括化学物质诱导、基因工程和无菌炎症等。
二、肝纤维化动物实验模型的建立方法1、化学物质诱导模型:通过给动物注射化学物质,如四氯化碳、二甲基亚硝胺等,来诱导肝脏损伤和纤维化。
这种方法操作简单,但化学物质对肝脏的损伤程度和纤维化进程的调控不够精确。
2、基因工程模型:通过基因工程技术,如转基因或基因敲除技术,来改变动物体内相关基因的表达,以模拟肝纤维化的发生。
这些模型具有更好的可控性和可重复性,但制备过程较为复杂。
3、无菌炎症模型:通过向动物体内注射无菌炎症因子,如脂多糖等,来模拟慢性炎症环境下的肝纤维化。
这种方法可以在一定程度上模拟人类肝纤维化的自然病程。
三、肝纤维化动物实验模型的应用肝纤维化动物实验模型在研究肝纤维化的发病机制、药物筛选和评价等方面具有广泛的应用。
肿瘤细胞的信号转导通路信号传导通路是将胞外刺激由细胞表面传入细胞内,启动了胞浆中的信号转导通路,通过多种途径将信号传递到胞核内,促进或抑制特定靶基因的表达。
一、MAPK信号通路MAPK信号通路介导细胞外信号到细胞内反应。
丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)主要位于细胞浆,很多生长因子所激活,活化后既可以磷酸化胞浆内的靶蛋白,也能进入细胞核作用于对应的转录因子,调节靶基因的表达。
调节着细胞的生长、分化、分裂、死亡各个阶段的生理活动以及细胞间功能同步化过程,并在细胞恶变和肿瘤侵袭转移过程中起重要作用,阻断MAPK途径是肿瘤侵袭转移的治疗新方向。
MAPK信号转导通路是需要经过多级激酶的级联反应,其中包括3个关键的激酶,即MAPK激酶激酶(MKKK)→MAPK激酶(MKK)→MAPK。
(一)MKKK:包括Raf、Mos、Tpl、SPAK、MUK、MLK和MEKK等,其中Raf又分为A-Raf、B-Raf、Raf-1等亚型;MKKK是一个Ser/Thr蛋白激酶,被MAPKKKK、小G蛋白家族成员Ras、Rho激活后可Ser/Thr磷酸化激活下游激酶MKK。
MKK识别下游MAPK分子中的TXY序列(“Thr-X-Tyr”模序,为MAPK第Ⅷ区存在的三肽序列Thr-Glu-Tyr、Thr-Pro-Tyr或Thr-Gly-Tyr),将该序列中的Thr和Tyr分别磷酸化后激活MAPK。
注:TXY序列是MKK活化JNK的双磷酸化位点,MKK4和MKK7通过磷酸化TXY 序列的第183位苏氨酸残基(Thr183)和第185位酪氨酸残基(Tyr185)激活JNK1。
(二)MKK:包括MEK1-MEK7,主要是MEK1/2;(三)MAPK:MAPK是一类丝氨酸/苏氨酸激酶,是MAPK途径的核心,它至少由4种同功酶组成,包括:细胞外信号调节激酶(Extracellular signal Regulated Kinases,ERK1/2)、C-Jun 氨基末端激酶(JNK)/应激激活蛋白激酶(Stress-activated protein kinase,SAPK)、p38(p38MAPK)、ERK5/BMK1(big MAP kinase1)等MAPK亚族,并根据此将MAPK 信号传导通路分为4条途径。
MAPK信号通路2008-06-04 21:50MAPK,丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)是细胞内的一类丝氨酸/苏氨酸蛋白激酶。
研究证实,MAPKs信号转导通路存在于大多数细胞内,在将细胞外刺激信号转导至细胞及其核内,并引起细胞生物学反应(如细胞增殖、分化、转化及凋亡等)的过程中具有至关重要的作用。
研究表明,MAPKs信号转导通路在细胞内具有生物进化的高度保守性,在低等原核细胞和高等哺乳类细胞内,目前均已发现存在着多条并行的MAPKs信号通路,不同的细胞外刺激可使用不同的MAPKs信号通路,通过其相互调控而介导不同的细胞生物学反应。
1并行MAPKs信号通路的组成及其活化特点在哺乳类细胞目前已发现存在着下述三条并行的MAPKs信号通路[1]。
1.1ERK(extracellular signal-regulated kinase)信号通路1986年由Sturgill等人首先报告的MAPK。
最初其名称十分混乱,曾根据底物蛋白称之为MAP2K、ERK、MBPK、RSKK、ERTK等。
此后,由于发现其具有共同的结构和生化特征,而被命名为MAPK。
近年来,随着不同MAPK家族成员的发现,又重新改称为ERK。
在哺乳类动物细胞中,与ERK相关的细胞内信号转导途径被认为是经典MAPK信号转导途径,目前对其激活过程及生物学意义已有了较深入的认识。
研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。
如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域则同时与鸟苷酸交换因子SOS(Son of Sevenless)结合,后者使小分子鸟苷酸结合蛋白Ras的GDP解离而结合GTP,从而激活Ras;激活的Ras进一步与丝/苏氨酸蛋白激酶Raf-1的氨基端结合,通过未知机制激活Raf-1;Raf-1可磷酸化MEK1/MEK2(MAP kinase/ERK kinase)上的二个调节性丝氨酸,从而激活MEKs;MEKs为双特异性激酶,可以使丝/苏氨酸和酪氨酸发生磷酸化,最终高度选择性地激活ERK1和ERK2(即p44MAPK和p42MAPK)。
信号通路9—MAPK Signaling订阅号APExBIO图▲ MAPK信号通路图丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK, MAP kinase)是一种对丝氨酸,苏氨酸和酪氨酸特异的蛋白激酶(即丝氨酸/苏氨酸特异性蛋白激酶)。
由于MAPK是培养细胞在受到生长因子等丝裂原刺激时被激活而被鉴定的,因而得名。
MAPKs参与引导细胞反应至各类刺激物,如有丝分裂原,渗透压,热休克和促炎细胞因子。
MAPKs调节多种细胞功能,包括增殖,基因表达,分化,有丝分裂,细胞存活和凋亡。
MAPKs仅在真核生物中发现。
MAPKs属于CMGC(CDK / MAPK / GSK3 / CLK)激酶组。
CDK相关程度最大。
MAPK链由3类蛋白激酶组成:上游激活蛋白→MAPK激酶激酶(MAPKKK)→MAPK激酶(MAPKK)→MAPK,通过依次磷酸化将上游信号传递至下游应答分子。
经典的MAPK通路激活开始于细胞膜,在这里,小GTP酶和各种蛋白激酶磷酸化并激活MAPKKK(MAP kinase kinase kinase,MAP3K或MKKK,MAPK激酶激酶)。
随后,MAPKKK直接磷酸化MAPKK(MAP kinase kinase,MAP2K 或MKK,MAPK激酶),MAPKK一旦被激活就会磷酸化并激活MAPK。
MAPK 的激活导致特异性MAPK激活蛋白激酶(MAPKAPK,MAPK-activated protein kinase)的磷酸化和活化,例如RSK,MSK或MNK家族成员和MK2/3/5。
MKKK的4个亚族已得到鉴定:A. Raf亚族。
研究的最为透彻,包括B-Raf、A-Raf、Raf1。
B. MEKK亚族。
由4种MEKK构成:MEKK1~MEKK4。
C. 第三个亚族:ASK1和Tpl2。
D. 第四个亚族与上述三个有较大不同,它包括MST(mammalian sterile 20-like)、SPRK、MUK(MAPK upstream kinase)、TAK1,以及相关程度最小的MOS (molony sarcoma oncoprotein)。
MAPK信号转导途径及其功能蛋白质调节其功能/活性的方式有很多种,包括磷酸化-去磷酸化,乙酰化,蛋白质切割如酶原激活和caspases激活等。
蛋白质的磷酸化和去磷酸化是蛋白质调节其功能/活性的一种重要方式,有些蛋白质在磷酸化状态时具有活性,而在非磷酸化状态时没有活性,如激酶MAPK和转录因子CREB,Jun等,而有些蛋白质相反,在磷酸化状态时没有活性,而在非磷酸化状态时具有活性,如转录因子IκBα的抑制活性。
蛋白质通过磷酸化-去磷酸化调节功能/活性并进而影响细胞的很多生命过程。
我们在这里仅仅重点介绍MAPK超家族蛋白质的磷酸化-去磷酸化状态对一些重要生命过程的调节。
MAPK超家族信号转导途径MAPK超家族包括三个亚家族:ERK1/2,JNK/SAPK和p38 MAPK。
近10年来,利用培养的可分裂/分化的细胞系对MAPK超家族的信号转导途径和功能进行了详细深入的研究,其中相当一部分论文发表在诸如NATURE,SCIENCE,CELL,JBC,PNAS等著名杂志上,是近年来生命科学的研究热点之一。
研究表明ERK1/2信号转导途径主要对细胞的生长,分裂和分化信号进行传导,而JNK/SAPK信号转导途径和p38 MAPK信号转导途径主要对炎性细胞因子和多种类型的细胞应激信号进行传导。
当然这种划分是不很严格的,尤其是对于动物的神经系统。
一般地说,一种细胞外信号可以通过一种或一种以上的信号转导途径传导,而一种信号转导途径可以传导一种或一种以上细胞外信号。
信号转导途径间还存在crosstalk。
1.SAPK/JNK途径SAPK/JNK途径传导细胞应激,炎性细胞因子,紫外线,蛋白质合成抑制剂,渗透压应激等信号。
MEKK1,SEK1/MKK4/JNKK(Ser219/Thr223),SAPK/JNK(Thr183/Tyr185)激酶依次被激活。
活化的SAPK/JNK 激活转录因子c-Jun(Ser63/Ser73),c-Jun结合到TRE/AP-1元件启动转录;活化的SAPK/JNK也可激活转录因子ATF-2/CRE-BP1(Thr69/Thr71),ATF-2结合到AP-1和CRE DNA反应元件启动转录;活化的SAPK/JNK还可激活转录因子Elk1。
细胞生物综述MAPK/ERK信号转导通路与学习记忆丝裂素活化蛋白激酶(MAPK)是细胞内的一类丝氨酸/苏氨酸蛋白激酶,是多种细胞外信号从细胞表面传导到细胞内的重要传递者。
细胞外信号调节激酶(ERK)包括ERKl和 ERK2,又称p44 MAPK和p42 MAPK,相对分子质量分别为4400和4200,是MAPK家族中的重要成员。
ERK最初被认为和细胞的生长、发育、分化有关,然而在已经不需要增殖和分化的成熟神经元中发现仍然有大量ERK上游调控子和下游靶蛋白存在,因此人们开始探索ERK的其他作用。
1997年English和Sweatt首次发现了ERK和长时程增强(LTP) 效应的关系,他们采用ERK上游激酶的抑制剂PD 098059阻止了ERK 的激活,同时也显著阻止了海马CA1区LTP 的诱导。
该发现随后又被其他研究小组证实并扩展,从而确定ERK与LTP的关系。
大量研究表明,LTP和学习、记忆过程密切相关,被许多学者命名为“学习、记忆的突触模型”,因此确定了ERK与学习、记忆的关系。
1 MAPK/ERK三级级联反应及与学习记忆的关系MAPK/ERK信号转导通路采用高度保守的三级激酶级联传递信号即Raf/MEK/ERK,活化的Raf使MEKⅧ亚区的两个丝氨酸磷酸化而激活,MEK 激活后使 ERK的苏氨酸和酪氨酸双位点磷酸化而激活。
研究表明,经水迷宫训练后的大鼠,背侧海马CA1/CA2区ERK被激活,使用PD098059抑制背侧海马 MAPK/ERK级联反应则磷酸化ERK蛋白(即活性形式)含量降低,并且长期空间记忆的形成受损。
海马内注入PD098059的大鼠精细定位信息受损。
利用转基因方法使小鼠前脑MEK1突变而突变的MEK1仍然能够和ERK相互作用,但却不能使它激活,这些小鼠表现为空间参考记忆及长期关联性记忆受损。
另一研究小组发现,利用转基因方法使小鼠脑中的MEK1突变,则这些小鼠海马区ERK活性降低,同时表现出特殊的恐惧性条件反射损害,此为海马依赖性的学习形式之一。
肿瘤细胞的信号转导通路信号传导通路是将胞外刺激由细胞表面传入细胞内,启动了胞浆中的信号转导通路,通过多种途径将信号传递到胞核内,促进或抑制特定靶基因的表达。
一、MAPK信号通路MAPK信号通路介导细胞外信号到细胞内反应。
丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)主要位于细胞浆,很多生长因子所激活,活化后既可以磷酸化胞浆内的靶蛋白,也能进入细胞核作用于对应的转录因子,调节靶基因的表达。
调节着细胞的生长、分化、分裂、死亡各个阶段的生理活动以及细胞间功能同步化过程,并在细胞恶变和肿瘤侵袭转移过程中起重要作用,阻断MAPK途径是肿瘤侵袭转移的治疗新方向。
MAPK信号转导通路是需要经过多级激酶的级联反应,其中包括3个关键的激酶,即MAPK激酶激酶(MKKK)→MAPK激酶(MKK)→MAPK。
(一)MKKK:包括Raf、Mos、Tpl、SPAK、MUK、MLK和MEKK等,其中Raf又分为A-Raf、B-Raf、Raf-1等亚型;MKKK是一个Ser/Thr蛋白激酶,被MAPKKKK、小G蛋白家族成员Ras、Rho激活后可Ser/Thr磷酸化激活下游激酶MKK。
MKK识别下游MAPK分子中的TXY序列(“Thr-X-Tyr”模序,为MAPK第Ⅷ区存在的三肽序列Thr-Glu-Tyr、Thr-Pro-Tyr或Thr-Gly-Tyr),将该序列中的Thr和Tyr分别磷酸化后激活MAPK。
注:TXY序列是MKK活化JNK的双磷酸化位点,MKK4和MKK7通过磷酸化TXY 序列的第183位苏氨酸残基(Thr183)和第185位酪氨酸残基(Tyr185)激活JNK1。
(二)MKK:包括MEK1-MEK7,主要是MEK1/2;(三)MAPK:MAPK是一类丝氨酸/苏氨酸激酶,是MAPK途径的核心,它至少由4种同功酶组成,包括:细胞外信号调节激酶(Extracellular signal Regulated Kinases,ERK1/2)、C-Jun 氨基末端激酶(JNK)/应激激活蛋白激酶(Stress-activated protein kinase,SAPK)、p38(p38MAPK)、ERK5/BMK1(big MAP kinase1)等MAPK亚族,并根据此将MAPK 信号传导通路分为4条途径。
肿瘤细胞的信号转导通路信号传导通路是将胞外刺激由细胞表面传入细胞内,启动了胞浆中的信号转导通路,通过多种途径将信号传递到胞核内,促进或抑制特定靶基因的表达。
一、MAPK信号通路MAPK信号通路介导细胞外信号到细胞内反应。
丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)主要位于细胞浆,很多生长因子所激活,活化后既可以磷酸化胞浆内的靶蛋白,也能进入细胞核作用于对应的转录因子,调节靶基因的表达。
调节着细胞的生长、分化、分裂、死亡各个阶段的生理活动以及细胞间功能同步化过程,并在细胞恶变和肿瘤侵袭转移过程中起重要作用,阻断MAPK途径是肿瘤侵袭转移的治疗新方向。
MAPK信号转导通路是需要经过多级激酶的级联反应,其中包括3个关键的激酶,即MAPK激酶激酶(MKKK)→MAPK激酶(MKK)→MAPK。
(一)MKKK:包括Raf、Mos、Tpl、SPAK、MUK、MLK和MEKK等,其中Raf又分为A-Raf、B-Raf、Raf-1等亚型;MKKK是一个Ser/Thr蛋白激酶,被MAPKKKK、小G蛋白家族成员Ras、Rho激活后可Ser/Thr磷酸化激活下游激酶MKK。
MKK识别下游MAPK分子中的TXY序列(“Thr-X-Tyr”模序,为MAPK第Ⅷ区存在的三肽序列Thr-Glu-Tyr、Thr-Pro-Tyr或Thr-Gly-Tyr),将该序列中的Thr和Tyr分别磷酸化后激活MAPK。
注:TXY序列是MKK活化JNK的双磷酸化位点,MKK4和MKK7通过磷酸化TXY 序列的第183位苏氨酸残基(Thr183)和第185位酪氨酸残基(Tyr185)激活JNK1。
(二)MKK:包括MEK1-MEK7,主要是MEK1/2;(三)MAPK:MAPK是一类丝氨酸/苏氨酸激酶,是MAPK途径的核心,它至少由4种同功酶组成,包括:细胞外信号调节激酶(Extracellular signal Regulated Kinases,ERK1/2)、C-Jun 氨基末端激酶(JNK)/应激激活蛋白激酶(Stress-activated protein kinase,SAPK)、p38(p38MAPK)、ERK5/BMK1(big MAP kinase1)等MAPK亚族,并根据此将MAPK 信号传导通路分为4条途径。
细胞生物综述MAPK/ERK信号转导通路与学习记忆丝裂素活化蛋白激酶(MAPK)是细胞内的一类丝氨酸/苏氨酸蛋白激酶,是多种细胞外信号从细胞表面传导到细胞内的重要传递者。
细胞外信号调节激酶(ERK)包括ERKl和 ERK2,又称p44 MAPK和p42 MAPK,相对分子质量分别为4400和4200,是MAPK家族中的重要成员。
ERK最初被认为和细胞的生长、发育、分化有关,然而在已经不需要增殖和分化的成熟神经元中发现仍然有大量ERK上游调控子和下游靶蛋白存在,因此人们开始探索ERK的其他作用。
1997年English和Sweatt首次发现了ERK和长时程增强(LTP) 效应的关系,他们采用ERK上游激酶的抑制剂PD 098059阻止了ERK 的激活,同时也显著阻止了海马CA1区LTP 的诱导。
该发现随后又被其他研究小组证实并扩展,从而确定ERK与LTP的关系。
大量研究表明,LTP和学习、记忆过程密切相关,被许多学者命名为“学习、记忆的突触模型”,因此确定了ERK与学习、记忆的关系。
1 MAPK/ERK三级级联反应及与学习记忆的关系MAPK/ERK信号转导通路采用高度保守的三级激酶级联传递信号即Raf/MEK/ERK,活化的Raf使MEKⅧ亚区的两个丝氨酸磷酸化而激活,MEK 激活后使 ERK的苏氨酸和酪氨酸双位点磷酸化而激活。
研究表明,经水迷宫训练后的大鼠,背侧海马CA1/CA2区ERK被激活,使用PD098059抑制背侧海马 MAPK/ERK级联反应则磷酸化ERK蛋白(即活性形式)含量降低,并且长期空间记忆的形成受损。
海马内注入PD098059的大鼠精细定位信息受损。
利用转基因方法使小鼠前脑MEK1突变而突变的MEK1仍然能够和ERK相互作用,但却不能使它激活,这些小鼠表现为空间参考记忆及长期关联性记忆受损。
另一研究小组发现,利用转基因方法使小鼠脑中的MEK1突变,则这些小鼠海马区ERK活性降低,同时表现出特殊的恐惧性条件反射损害,此为海马依赖性的学习形式之一。