人教版高中数学必修一数学建模活动(3)-课件
- 格式:pptx
- 大小:1.11 MB
- 文档页数:45
3.4 数学建模活动:决定苹果的最佳出售时间点一次函数模型为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(单位:分)与通话费用y(单位:元)的关系如图所示:(1)分别求出通话费用y 1,y 2与通话时间x 之间的函数解析式; (2)请帮助用户计算在一个月内使用哪种卡便宜.【解】 (1)由图像可设y 1=k 1x +29,y 2=k 2x ,把点B (30,35),C (30,15)分别代入y 1=k 1x +29,y 2=k 2x ,得k 1=15,k 2=12.所以y 1=15x +29(x ≥0),y 2=12x (x ≥0).(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x <9623时,y 1>y 2,使用“便民卡”便宜;当x >9623时,y 1<y 2,使用“如意卡”便宜.利用一次函数模型解决实际问题时,需注意以下两点: (1)待定系数法是求一次函数解析式的常用方法.(2)当一次项系数为正时,一次函数为增函数;当一次项系数为负时,一次函数为减函数.某列火车从北京西站开往石家庄,全程277 km.火车出发10 min 开出13 km ,之后以120 km/h 的速度匀速行驶.试写出火车行驶的总路程s 与匀速行驶的时间t 之间的函数关系式,并求火车离开北京2 h 时火车行驶的路程.解:因为火车匀速行驶的总时间为(277-13)÷120=115(h),所以0≤t ≤115. 因为火车匀速行驶t h 所行驶的路程为120t km ,所以火车行驶的总路程s 与匀速行驶的时间t 之间的函数关系式为s =13+120t ⎝⎛⎭⎪⎫0≤t ≤115.火车离开北京2 h 时火车匀速行驶的时间为2-16=116(h),此时火车行驶的路程s =13+120×116=233(km).二次函数模型有l 米长的钢材,要做成如图所示的窗框:上半部分为半圆,下半部分为四个全等的小矩形组成的矩形,则小矩形的长与宽之比为多少时,窗户所通过的光线最多?并求出窗户面积的最大值.【解】 设小矩形的长为x ,宽为y ,窗户的面积为S , 则由图可得9x +πx +6y =l , 所以6y =l -(9+π)·x , 所以S =π2x 2+4xy =π2x 2+23x ·[l -(9+π)·x ]=-36+π6x 2+23lx =-36+π6·⎝ ⎛⎭⎪⎫x -2l 36+π2+2l23(36+π). 要使窗户所通过的光线最多,只需窗户的面积S 最大. 由6y >0,得0<x <l9+π.因为0<2l 36+π<l9+π,所以当x =2l 36+π,y =l -(9+π)x 6=l (18-π)6(36+π),即x y =1218-π时,窗户的面积S 有最大值,且S max =2l23(36+π).二次函数模型主要用来解决实际问题中的利润最大、用料最省等问题,是高考考查的重点.解题时,建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等来求函数的最值,从而解决实际问题.渔场中鱼群的最大养殖量为m (m >0),为了保证鱼群的生长空间,实际养殖量x 小于m ,以便留出适当的空闲量.已知鱼群的年增长量y 和实际养殖量与空闲率(空闲率是空闲量与最大养殖量的比值)的乘积成正比,比例系数为k (k >0).(1)写出y 关于x 的函数关系式,并指出该函数的定义域; (2)求鱼群年增长量的最大值. 解:(1)根据题意知,空闲率是m -x m ,故y 关于x 的函数关系式是y =kx ·m -xm,0≤x <m .(2)由(1)知,y =kx ·m -x m =-k m x 2+kx =-k m ⎝ ⎛⎭⎪⎫x -m 22+mk 4,0≤x <m ,则当x =m2时,y 取得最大值,y max =mk4.所以鱼群年增长量的最大值为mk4.分段函数模型提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)【解】(1)由题意,当0≤x≤20时,v(x)=60;当20≤x≤200时,设v(x)=ax+b,由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003. 故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13(200-x ),20<x ≤200.(2)依题意并结合(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,f (x )在区间[0,20]上取得最大值60×20=1 200;当20<x ≤200时,f (x )=13x (200-x )=-13(x -100)2+10 0003≤10 0003,当且仅当x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值10 0003. 综上可得,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333.即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.(1)现实生活中有很多问题都是用分段函数表示的,如出租车计费、个人所得税等,分段函数是刻画现实问题的重要模型.(2)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其看成几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.某旅游景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.旅游景区规定:每辆自行车的日租金不低于3元并且不超过20元.用x (单位:元,且x ∈N )表示每辆自行车的日租金,用y (单位:元)表示出租的自行车的日净收入.(注:日净收入等于每日出租的自行车的总收入减去管理费用)(1)求函数y =f (x )的解析式;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元? 解:(1)当3≤x ≤6,且x ∈N 时,y =50x -115. 当6<x ≤20,且x ∈N 时,y =[50-3(x -6)]x -115=-3x 2+68x -115,综上,y =f (x )=⎩⎪⎨⎪⎧50x -115,3≤x ≤6,x ∈N ,-3x 2+68x -115,6<x ≤20,x ∈N .(2)当3≤x ≤6,且x ∈N 时,因为y =50x -115是增函数,所以当x =6时,y max =185. 当6<x ≤20,且x ∈N 时,y =-3x 2+68x -115=-3⎝⎛⎭⎪⎫x -3432+8113,所以当x =11时,y max =270.综上,当每辆自行车日租金定为11元时才能使日净收入最多,为270元.f (x )=x +ax(a >0)模型小王大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得:当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝⎛⎭⎪⎫6x +100x-38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元,当x ≥8时,L (x )=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,当且仅当x =100x时等号成立,即x =10时,L (x )取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.应用均值不等式解实际问题的步骤(1)理解题意,设变量;(2)建立相应的函数关系式,把实际问题抽象成求函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)写出正确答案.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 元.解析:设该长方体容器的长为x m ,则宽为4xm.又设该容器的造价为y 元,则y =20×4+2⎝ ⎛⎭⎪⎫x +4x ×10=80+20⎝ ⎛⎭⎪⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎪⎫当且仅当x =4x,即x =2时取“=”,所以y min =80+20×4=160(元).答案:1601.一定范围内,某种产品的购买量y 与单价x 之间满足一次函数关系.如果购买1 000吨,则每吨800元,购买2 000吨,则每吨700元,那么一客户购买400吨,其价格为每吨( )A.820元B.840元C.860元D.880元解析:选C.设y =kx +b ,则1 000=800k +b ,且2 000=700k +b ,解得k =-10,b =9 000,则y =-10x +9 000.解400=-10x +9 000,得x =860(元).2.某品牌电动车有两个连锁店,其月利润(单位:元)分别为y 1=-5x 2+900x -16 000,y 2=300x -2 000,其中x 为销售量.若某月两店共销售了110辆电动车,则最大利润为( )A.11 000元B.22 000元C.33 000元D.40 000元解析:选C.设两个店分别销售出x 与110-x 辆电动车,则两店月利润L =-5x 2+900x -16 000+300(110-x )-2 000=-5x 2+600x +15 000=-5(x -60)2+33 000,所以当x =60时,两店的月利润取得最大值,为33 000元.3.某数学练习册,定价为40元.若一次性购买超过9本,则每本优惠5元,并且赠送10元代金券;若一次性购买超过19本,则每本优惠10元,并且赠送20元代金券.某班购买x (x ∈N *,x ≤40)本,则总费用f (x )与x 的函数关系式为 (代金券相当于等价金额).解析:当0<x <10时,f (x )=40x ;当10≤x <20时,f (x )=35x -10;当20≤x ≤40时,f (x )=30x -20.所以f (x )=⎩⎪⎨⎪⎧40x ,0<x <10,35x -10,10≤x <20,(x ∈N *).30x -20,20≤x ≤40答案:f (x )=⎩⎪⎨⎪⎧40x ,0<x <10,35x -10,10≤x <20,(x ∈N *)30x -20,20≤x ≤404.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,某炮位于坐标原点,已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关,炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限内有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解:(1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件,知x >0,k >0, 故x =20k 1+k 2=20k +1k =20⎝ ⎛⎭⎪⎫k -1k 2+2≤202=10, 当且仅当k =1时取等号.所以炮的最大射程为10 km.(2)因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根,所以Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6,所以当它的横坐标a不超过6 km时,可击中目标.[A 基础达标]1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元/件)之间的关系满足一次函数:m=162-3x.若要使每天获得最大的销售利润,则该商品的售价应定为( )A.40元/件B.42元/件C.54元/件D.60元/件解析:选B.设每天获得的销售利润为y元,则y=(x-30)(162-3x)=-3(x-42)2+432,所以当x=42时,获得的销售利润最大,故该商品的售价应定为42元/件.2.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A.32cm2 B.4 cm2C.3 2 cm2D.2 3 cm2解析:选D.设一段长为x cm,则另一段长为(12-x)cm,两个正三角形的面积之和为S cm2.分析知0<x<12.则S=34⎝⎛⎭⎪⎫x32+34⎝⎛⎭⎪⎫4-x32=318(x-6)2+23,当x=6时,S min=2 3.3.某小区物业管理中心制订了一项节约用水措施,作出如下规定:如果某户月用水量不超过10立方米,按每立方米m元收费;月用水量超过10立方米,则超出部分按每立方米2m 元收费.已知某户某月缴水费16m元,则该户这个月的实际用水量为( )A.13 立方米B.14 立方米C.18 立方米D.26 立方米解析:选A.由已知得,该户每月缴费y元与实际用水量x立方米满足的关系式为y=⎩⎪⎨⎪⎧mx ,0≤x ≤10,2mx -10m ,x >10. 由y =16m ,得x >10,所以2mx -10m =16m . 解得x =13.故选A.4.一家报刊推销员从报社买进报纸的价格是每份2元,卖出的价格是每份3元,卖不完的还可以以每份0.8元的价格退回报社.在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖出250份,且每天从报社买进报纸的份数都相同,要使推销员每月所获得的利润最大,则应该每天从报社买进报纸( )A.215份B.350份C.400份D.520份解析:选C.设每天从报社买进x (250≤x ≤400,x ∈N )份报纸时,每月所获利润为y 元,具体情况如下表.y =[(60x + =8x +5 500(250≤x ≤400,x ∈N ). 因为y =8x +5 500在[250,400]上是增函数, 所以当x =400时,y 取得最大值8 700.即每天从报社买进400份报纸时,每月获得的利润最大,最大利润为8 700元.故选C. 5.一艘轮船在匀速行驶过程中每小时的燃料费与它的速度的平方成正比,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为 海里/小时时,费用总和最小.解析:设每小时的燃料费y =kv 2,因为速度为10海里/小时时,每小时的燃料费是6元,所以k =610×10=350,费用总和为10v ⎝ ⎛⎭⎪⎫350v 2+96=10⎝ ⎛⎭⎪⎫350v +96v ≥10×2350×96=48,当且仅当350v =96v,即v =40时取等号. 答案:406.统计某种水果在一年中四个季度的市场价格及销售情况如下表.某公司计划按这一年各季度“最佳近似值m ”收购这种水果,其中的最佳近似值m 这样确定,即m 与上表中各售价差的平方和最小时的近似值,那么m 的值为 W.解析:设y =(m -19.55)2+(m -20.05)2+(m -20.45)2+(m -19.95)2=4m 2-2×(19.55+20.05+20.45+19.95)m +19.552+20.052+20.452+19.952,则当m =19.55+20.05+20.45+19.954=20时,y 取最小值.答案:207.如图,一动点P 从边长为1的正方形ABCD 的顶点A 出发,沿正方形的边界逆时针运动一周,再回到点A .若点P 经过的路程为x ,点P 到顶点A 的距离为y ,则y 关于x 的函数关系式是 W.解析:①当0≤x ≤1时,AP =x ,也就是y =x .②当1<x ≤2时,AB =1,AB +BP =x ,BP =x -1,根据勾股定理,得AP 2=AB 2+BP 2, 所以y =AP =1+(x -1)2=x 2-2x +2. ③当2<x ≤3时,AD =1,DP =3-x , 根据勾股定理,得AP 2=AD 2+DP 2, 所以y =AP =1+(3-x )2=x 2-6x +10. ④当3<x ≤4时,有y =AP =4-x .所以所求的函数关系式为y =⎩⎪⎨⎪⎧x ,0≤x ≤1x 2-2x +2,1<x ≤2x 2-6x +10,2<x ≤34-x ,3<x ≤4.答案:y =⎩⎪⎨⎪⎧x ,0≤x ≤1x 2-2x +2,1<x ≤2x 2-6x +10,2<x ≤34-x ,3<x ≤48.某地上年度电价为0.8元/度,年用电量为1亿度.本年度计划将电价调至0.55~0.75元/度之间(包含0.55元/度和0.75元/度),经测算,若电价调至x 元/度,则本年度新增用电量y (亿度)与(x -0.4)(元/度)成反比,且当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每度电的成本为0.3元,则电价调至多少时,电力部门本年度的收益将比上一年增加20%?[收益=用电量×(实际电价-成本价)] 解:(1)因为y 与(x -0.4)成反比,所以可设y =kx -0.4(k ≠0),把x =0.65,y =0.8代入上式,得0.8=k 0.65-0.4,解得k =0.2,所以y =0.2x -0.4=15x -2,所以y 与x 之间的函数关系式为y =15x -2(0.55≤x ≤0.75).(2)根据题意,得(1+15x -2)(x -0.3)=1×(0.8-0.3)×(1+20%) ,整理得x 2-1.1x +0.3=0,解得x 1=0.5(舍去)或x 2=0.6,所以当电价调至0.6元/度时,电力部门本年度的收益将比上一年增加20%.9.已知A ,B 两城市相距100 km ,在两地之间距离A 城市x km 的D 处修建一垃圾处理厂来解决A ,B 两城市的生活垃圾和工业垃圾,且垃圾处理厂与城市的距离不得少于10 km.已知城市的垃圾处理费用和该城市到垃圾处理厂距离的平方与垃圾量之积成正比,比例系数为0.25.若A 城市每天产生的垃圾量为20 t ,B 城市每天产生的垃圾量为10 t.(1)求x 的取值范围;(2)把每天的垃圾处理费用y 表示成x 的函数;(3)垃圾处理厂建在距离A 城市多远处,才能使每天的垃圾处理费用最少? 解:(1)x 的取值范围为[10,90].(2)由题意,得y =0.25[20x 2+10(100-x )2], 即y =152x 2-500x +25 000(10≤x ≤90).(3)y =152x 2-500x +25 000=152(x -1003)2+50 0003(10≤x ≤90),则当x =1003时,y 最小.即当垃圾处理厂建在距离A 城市1003km 处时,才能使每天的垃圾处理费用最少.[B 能力提升]10.某电脑公司2017年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%,该公司预计2019年经营总收入要达到1 690万元,且计划从2017年到2019年,每年经营总收入的年增长率相同,则2018年预计经营总收入为 万元.解析:设年增长率为x (x >0),则40040%×(1+x )2=1 690,所以1+x =1310,因此2018年预计经营总收入为40040%×1310=1 300(万元).答案:1 30011.某市居民生活用水收费标准如下:已知某用户1 6 t ,缴纳的水费为21元.设用户每月缴纳的水费为y 元.(1)写出y 关于x 的函数解析式;(2)若某用户3月份用水量为3.5 t ,则该用户需缴纳的水费为多少元?(3)若某用户希望4月份缴纳的水费不超过24元,求该用户最多可以用多少吨水.解:(1)由题设可得y =⎩⎪⎨⎪⎧mx ,0≤x ≤2,2m +3(x -2),2<x ≤4,2m +6+n (x -4),x >4.当x =8时,y =33;当x =6时,y =21,代入得⎩⎪⎨⎪⎧2m +6+4n =33,2m +6+2n =21,解得⎩⎪⎨⎪⎧m =1.5,n =6. 所以y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧1.5x ,0≤x ≤2,3x -3,2<x ≤4,6x -15,x >4.(2)当x =3.5时,y =3×3.5-3=7.5. 故该用户3月份需缴纳的水费为7.5元. (3)令6x -15≤24,解得x ≤6.5. 故该用户最多可以用6.5 t 水.12.某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价P (单位:元/102kg)与上市时间t (单位:天)的关系符合图1中的折线表示的函数关系,西红柿种植成本Q (单位:元/102kg)与上市时间t (单位:天)的关系符合图2中的抛物线表示的函数关系.(1)写出图1表示的市场售价与时间的函数关系式P =f (t ),图2表示的种植成本与时间的函数关系式Q =g (t );(2)若市场售价减去种植成本为纯收益,问何时上市的纯收益最大? 解:(1)由图1可得市场售价与时间的函数关系式为f (t )=⎩⎪⎨⎪⎧300-t ,0<t ≤2002t -300,200<t ≤300.由图2可得种植成本与时间的函数关系式为g (t )=1200(t -150)2+100,0<t ≤300. (2)设上市时间为t 时的纯收益为h (t ), 则由题意,得h (t )=f (t )-g (t ),即h (t )=⎩⎪⎨⎪⎧-1200t 2+12t +1752,0<t ≤200-1200t 2+72t -1 0252,200<t ≤300.当0<t ≤200时,整理,得h (t )=-1200(t -50)2+100, 当t =50时,h (t )取得最大值100; 当200<t ≤300时,整理,得h (t )=-1200(t -350)2+100, 当t =300时,h (t )取得最大值87.5.综上,当t =50,即从2月1日开始的第50天上市的西红柿的纯收益最大.[C 拓展探究]13.某地发生地质灾害,使当地的自来水受到了污染,某部门对水质检测后,决定在水中投放一种药剂来净化水质.已知每投放质量为m (mg)的药剂后,经过x 天该药剂在水中释放的浓度y (mg ·L-1)满足y =mf (x ),其中f (x )=⎩⎪⎨⎪⎧x 216+2,0<x ≤4x +142x -2,x >4.当药剂在水中释放的浓度不低于4 mg ·L -1时称为有效净化;当药剂在水中释放的浓度不低于4 mg ·L -1且不高于10 mg ·L-1时称为最佳净化.(1)如果投放的药剂质量为4 mg ,问自来水达到有效净化一共可持续几天?(2)为了使在7天(从投放药剂算起)之内的自来水达到最佳净化,试确定应该投放的药剂质量m 的最小值.解:(1)由题意,得当药剂质量m =4时,y =⎩⎪⎨⎪⎧x 24+8,0<x ≤42x +28x -1,x >4.当0<x ≤4时,x 24+8≥4显然成立;当x >4时,由2x +28x -1≥4,得2x +28≥4(x -1),得4<x ≤16 .综上,0<x ≤16.所以自来水达到有效净化一共可持续16天.(2)由题意,知0<x ≤7,y =mf (x )=⎩⎪⎨⎪⎧mx 216+2m ,0<x ≤4mx +14m 2x -2,x >4,当0<x ≤4时,y =mx 216+2m 在区间(0,4]上单调递增,则2m <y ≤3m ; 当x >4时,y =mx +14m 2x -2=m 2+15m 2x -2,其在区间(4,7]上单调递减,则7m4≤y <3m . 综上,7m4≤y ≤3m .为使4≤y ≤10恒成立,只要满足7m4≥4且3m ≤10,即167≤m ≤103,- 21 - 所以应该投放的药剂量m 的最小值为167.。
§3.2.2函数模型的应用实例(Ⅲ)一、教学目标1、知识与技能能够收集图表数据信息,建立拟合函数解决实际问题。
2、过程与方法体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。
3、情感、态度、价值观深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。
二、教学重点、难点:重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。
难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。
三、学法与教学用具1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。
2、教学用具:多媒体四、教学设想(一)创设情景,揭示课题2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。
这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。
这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。
本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。
(二)尝试实践探求新知例1.某地区不同身高的未成年男性的体重平均值发下表(身高:cm;体重:kg)身高ykg与身高xcm的函数模型的解析式。
2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男生的体重是事正常?探索以下问题:1)借助计算器或计算机,根据统计数据,画出它们相应的散点图;2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?3)你认为选择何种函数来描述这个地区未成年男性体重ykg与身高xcm的函数关系比较合适?4)确定函数模型,并对所确定模型进行适当的检验和评价.5)怎样修正所确定的函数模型,使其拟合程度更好?本例给出了通过测量得到的统计数据表,要想由这些数据直接发现函数模型是困难的,要引导学生借助计算器或计算机画图,帮助判断.根据散点图,利用待定系数法确定几种可能的函数模型,然后进行优劣比较,选定拟合度较好的函数模型.在此基础上,引导学生对模型进行适当修正,并做出一定的预测. 此外,注意引导学生体会本例所用的数学思想方法.例2. 将沸腾的水倒入一个杯中,然后测得不同时刻温度的数据如下表:1)描点画出水温随时间变化的图象;2)建立一个能基本反映该变化过程的水温y (℃)关于时间()x s 的函数模型,并作出其图象,观察它与描点画出的图象的吻合程度如何.3)水杯所在的室内温度为18℃,根据所得的模型分析,至少经过几分钟水温才会降到室温?再经过几分钟会降到10℃?对此结果,你如何评价?本例意图是引导学生进一步体会,利用拟合函数解决实际问题的思想方法,可依照例1的过程,自主完成或合作交流讨论.课堂练习:某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1 .2万件、1.3万件、1.37万件. 由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好. 为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你能解决这一问题吗?探索过程如下:1)首先建立直角坐标系,画出散点图;2)根据散点图设想比较接近的可能的函数模型:一次函数模型:()(0);f x kx b k =+≠ 二次函数模型:2()(0);g x ax bx c a =++≠ 幂函数模型:12()(0);h x ax b a =+≠指数函数模型:()x l x ab c =+(0,a b ≠>0,1b ≠)利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.(三)归纳小结,巩固提高.通过以上三题的练习,师生共同总结出了利用拟合函数解决实际问题的一般方法,指出函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法. 利用函数思想解决实际问题的基本过程如下:符合实际(四)布置作业:作业:教材P107习题32(B组)第1、2题:小课堂:如何培养学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。