液力耦合器常见故障及维护
- 格式:doc
- 大小:15.50 KB
- 文档页数:3
・试验研究・液力偶合器常见问题分析Analyzing S ome G eneral Problems About Variable -S peed C ouplings(250002)山东电力研究院 李福尚摘 要 针对电厂在线运行的液力偶合器常见问题进行分析,并提出相应的解决或改进措施。
关键词 液力偶合器 涡轮 泵轮 勺管 冷油器 密封Abstract S ome general problems about variable -speed couplings on -line in power plants are analyzed ,s ome im provements and s olving ways are pre 2sented.K ey Words Variable -speed coupling Turbo wheel Pum p wheel Scoop tube Oil cooler Sealing1 引言调速型液力偶合器是以流体为介质来传递功率的可变转速传动装置,通过改变偶合器工作腔内的充满度,使原动机转速不变的条件下,实现被驱动机械的无级调速,其结构原理示意图见图1。
它的功能是:空载启动、缓慢加速、无级调速、过载保图1 C O46型液力偶合器结构示意图1-主动轴 2-增速齿轮 3-泵轮 4-涡轮5-从动轴 6-供油腔 7-勺管 8-排油腔9-工作油充油泵 10-润滑油齿轮泵 11-滤网12-润滑油冷油器 13-润滑油辅助齿轮泵14-进油控制阀 15-冷油循环门 16-热敏元件17-工作油冷油器 18-油箱回油 19-输入轴护、减缓冲击、隔离振动、安全运行、高效传动。
凡需变负荷运转的各种风机、水泵均可以采用调速液力偶合器实现变速运转,因此在电厂中的应用较多。
然而,液力偶合器一旦发生故障,泵或风机也不能工作,威胁到机组的安全运行,必须引起足够的重视。
2 液力偶合器常见问题分析及措施2.1 运行油温高液力偶合器在各种变速装置中属于有差调节,为低效变速装置,其调节效率等于转速比,存在功率损失较大,特别工作在低效区,必然产生大量热量,通过油循环散热。
液力耦合常见故障1 启动故障起因措施驱动机达到额定速度后,从动机没有启动•勺管设置到0%•采取下列措施:•将勺管朝100%移动。
•注油泵没有输油•采取下列措施:- 油箱油温< 0 °C(32 °F)或油粘度> 400 mm2/s- 将油加热到>0 °C(32 °F)。
关闭油冷器的冷却水源。
- 油位过低- 检查油位,并注油到最低标记和最高标记之间。
检查易熔塞。
- 泡沫油(油温过低,油含水、空气分离特性不良、油等级不正确)- 管道阻塞- 主电动机旋转方向错误- 检查油是否含杂质。
对油进行离心或分离,必要时,更换油。
- 检查压力测量点的注油泵压力。
- 检查管道,清除障碍。
- 检查主电动机,并适当连接。
•启动转矩过高(电动机冲击电流高),从动机阻塞(参见工作油温度)•检查从动机是否自由旋转。
检查易熔塞。
调速型液力偶合器启动期间温度变得过高•从动机卡住,其他障碍•检查从动机是否自由旋转,取下引起阻力的任何物件。
检查易熔塞。
•油流速过低•检查油是否适当循环。
2 输出速度故障起因措施即便勺管保持在相同位置,输出速度也摆动•泡沫油(换热器下游油温过低,因此,油分离特性不良)•将油箱中的油加热到> 45°C。
•注油泵抽入空气•检查油位,并在可能时检查注油泵。
•系统压力或流量波动•检查系统,必要时,排放并稳定。
在自动控制下(控制杆定期移动),输出速度摆动在控制回路正确的响应时间,控制器不运行调节控制回路的控制器(调节控制器阻尼)。
输出速度不能控制•勺管或勺管执行器卡住•检查勺管是否自由移动,取下致使勺管卡住的任何物件。
•勺管执行器有缺陷•检查勺管执行器。
未达到最高输出速度•勺管未处于100%•检查某些勺管行程。
•易熔塞熔化•确定并纠正起因。
装设新易熔塞。
•工作油泵耗电过高•对照项目设计参数,检查电动机额定值。
检查从动机是否平滑转动。
3压力故障起因措施润滑油压过低,不能启动 • •• 向外部设备输送的润滑油过多• 调节孔口• 注油泵排放管线未装设孔口• 装设孔口(2 mm )• 油回路泄漏 •检查油位。
液力偶合器找正要求及维护重点一、结构与原理1、结构液力偶合器又称液力联轴器,是一种靠液体动能传递扭矩的传动元件。
YOX系列限矩型液力偶合器,主要由输入轴、输出轴、泵轮、涡轮、外壳、易熔塞等构件组成。
输入轴一端与电机相连,另一端与泵轮相连。
输出轴一端与涡轮相连,另一端与工作机相连。
泵轮与涡轮对称布置,都是具有径向直叶片的叶轮,叶轮工作腔的最大直径称为有效直径,是规格大小的标志。
外壳与泵轮固连成密封腔,供工作介质在其中做螺旋环流运动以传递扭矩。
2、原理当电机通过输入轴带动偶合器泵轮旋转时,泵轮工作腔内的工作液体受离心力的作用由半径较小的泵轮入口被加速加压抛向半径较大的泵轮出口处,同时液体的动量矩产生增量,即泵轮将输入的机械能转化成了液体动能。
当携带液体动能的工作液体从泵轮出口冲向对面的涡轮时,液流便沿涡轮叶片所形成的流道做向心流动,同时释放液体动能转化机械能,驱动涡轮并带负载旋转做功。
于是,输入与输出在没有直接机械连接的情况下,仅靠液体动能便柔性的连接起来了。
二、功能和用途1、功能1、具有柔性传动功能:能有效的减缓冲击,隔离扭振,提高转动品质;2、具有电机轻载起动功能:当电机起动时,力矩甚微,接近于空载起动,从而降低起动电流,缩短起动时间,起动过程平衡、顺利;3、具有过载保护功能:由于偶合器传动无机械直接连接,故当外载荷超过一定限度后,泵轮力矩便不再上升,此时电机照常运转,输出减速直至停转,损失的功率转化成热量使偶合器升温,当温升达到一定限度后(通常为125℃),偶合器上的易熔塞中的易熔合金便熔化。
工作液体从小孔喷出,从而输出与输入被切断,保护电机、工作机不受损坏,故可有效地降低机器故障率,降低维护费用和停工时间,延长电机和工作机的使用寿命。
4、具有协调多机同步起动功能:在多机起动系统,能够达到电机顺序起动,协调各电机同步、平稳驱动。
5、具有节电功能:由于偶合器能有效地解决电机起动困难,故不必象过去那样“大马拉小马”了。
给水泵液力偶合器损坏原因及预防措施探讨水泵液力偶合器是水泵与驱动机械之间的传动装置,通过液力传动的方式将动力从驱动机械传递给水泵。
水泵液力偶合器在使用过程中会出现损坏的情况,影响其正常的工作效率和寿命。
本文将探讨水泵液力偶合器损坏的原因以及预防措施。
水泵液力偶合器损坏的原因可以有很多,主要包括以下几点:1. 荷载过重:当水泵液力偶合器承受的荷载超过其承载能力时,会导致偶合器产生过大的应力,从而引起破裂或损坏。
2. 过热:如果水泵液力偶合器在使用过程中长时间运转或负载过重,会导致液力偶合器温度升高,超过其承受范围,从而引起热疲劳或变形,最终导致损坏。
3. 润滑不良:水泵液力偶合器在运转过程中需要充足的润滑,如果润滑不良或缺乏润滑,会导致偶合器部件的摩擦增大,进而引起损坏。
4. 震动与冲击:水泵液力偶合器在运转过程中受到外界的震动和冲击,如果无法有效地吸收和隔离这些震动和冲击,会造成偶合器受力不均匀,从而引起损坏。
接下来,我们可以采取一些预防措施来降低水泵液力偶合器的损坏风险:1. 选择合适的型号和规格的液力偶合器:根据水泵的容量和工作环境等要素,选择适合的液力偶合器,确保其能够承受相应的荷载和温度,并在正常工作范围内运转。
2. 定期检查和维护:定期对水泵液力偶合器进行检查,包括润滑情况、零部件的磨损情况以及固定螺栓的松动情况等。
及时维修或更换损坏的部件,确保液力偶合器的正常运转。
3. 加强润滑管理:定期添加润滑剂,并根据液力偶合器的需要调整润滑剂的用量和周期。
确保液力偶合器对润滑的要求得到满足,减少摩擦和磨损的发生。
4. 配备减震装置:为水泵液力偶合器安装减震装置,减少外界震动和冲击的传递,提高液力偶合器的工作稳定性和寿命。
水泵液力偶合器损坏的原因有很多,但通过选择合适的偶合器型号、定期检查和维护、加强润滑管理以及配备减震装置等预防措施,可以有效地降低水泵液力偶合器的损坏风险,提高其工作效率和寿命。
给水泵液力偶合器损坏原因及预防措施探讨水泵液力偶合器是一种常见的传动装置,它通过液力传动方式将发动机的转动转换为水泵的转动,从而实现水泵的正常工作。
在实际使用过程中,水泵液力偶合器有可能出现损坏的情况。
本文将探讨水泵液力偶合器损坏的原因以及预防措施。
水泵液力偶合器的损坏原因有很多,其中包括以下几点:1. 过载:过载是水泵液力偶合器损坏的常见原因之一。
当使用过程中液力偶合器承受的负载超过其承受能力时,会造成液力偶合器的损坏。
过载可能因为工作环境变化、工作时长过长等原因引起。
2. 液力偶合器泄漏:液力偶合器泄漏是导致损坏的另一个常见原因。
泄漏会导致液力偶合器内部的油液不足,进而影响其正常工作。
泄漏可能由于密封件老化、腐蚀或损坏、过热等原因引起。
3. 液力偶合器内部部件磨损或断裂:水泵液力偶合器的内部部件如轴承、离合器片等在长时间使用后可能会磨损或断裂,导致液力偶合器不能正常工作。
这可能是由于部件质量不合格、零配件老化或制造工艺问题等原因引起。
针对以上损坏原因,可以采取以下预防措施:1. 合理使用:避免长时间的超负荷工作,定期检查液力偶合器是否正常运转,确保不会超过其承受能力。
2. 定期检查和维修:定期检查液力偶合器的密封件、液压管路等部件是否完好,做到及时发现并处理泄漏问题,以防止油液不足导致液力偶合器损坏。
3. 注意液力偶合器油液的质量和温度:使用合格的液力偶合器油液,并注意做好冷却工作,避免油液过热引起泄漏和液力偶合器过载。
4. 定期更换液力偶合器内部部件:根据使用情况和制造商建议的更换周期,定期更换液力偶合器内部部件,防止部件磨损或断裂引起液力偶合器损坏。
水泵液力偶合器损坏的原因有很多,但通过合理使用、定期检查和维护以及注意液力偶合器油液质量和温度等预防措施,可以有效减少液力偶合器的损坏发生,延长液力偶合器的使用寿命。
液力耦合器的应用与故障处理论文导读:我单位主运输机巷一、二、三、四部胶带运输机现使用YO某500型、YO某560型、YO某650型三种液力耦合器。
通过摸索观察和实践应用,对液力耦合器的故障处理已积累了一套较为成熟的经验,并已实现计划检修,为提高胶带运输机的运转率和经济效益奠定良好的基础。
关键词:液力耦合器,应用,故障处理我单位主运输机巷一、二、三、四部胶带运输机现使用YO某500型、YO某560型、YO某650型三种液力耦合器,YO某系列液力耦合器为水介质限矩形液力耦合器,是一种较先进的液力传动设备.自使用以来,由于对此设备各方面性能认识不够,再加上井下现场环境恶劣,液力耦合器经常出现故障而被迫停车检修更换,且一台液力耦合器价值为28600元,即是影响胶带运输机正常运转和经济损失不容忽视的问题。
通过摸索观察和实践应用,对液力耦合器的故障处理已积累了一套较为成熟的经验,并已实现计划检修,为提高胶带运输机的运转率和经济效益奠定良好的基础。
现根据实际应用就该系列设备的工作原理及故障原因做一探讨,并结合实际工作经验,提出相应的对策和处理方法.。
论文发表。
一、YO某系列液力耦合器由泵轮、涡轮、外壳、辅室及轴承、密封件、连接元件等组成。
是利用循环流动于泵轮与涡轮间液流动能的变化实现动力(扭矩与转速)传递的的,液力耦合器之所以能传递动力,是因为和电机连接的泵轮及与工作机连接的涡轮有许多直的径向叶片,正常运转下,电动机带动泵轮旋转,在离心力的作用下液体从泵轮小半径处被吸入并在叶片间加速,再从泵轮最大半径处喷出冲击涡轮驱动其旋转。
随着负荷的增大,涡轮转速降低,涡轮中的液体在动压下较快的经泄液孔流入辅室,泵轮与涡轮构成的工作腔中的液体减少。
其特性改变耦合器传递的扭矩限制在一定范围内,实现对整个传动系统的限矩保护。
其性能特点,1)动态性能好,对负载反应灵敏,过载系数小,保护性能好,值随充液量不同传递功率范围宽。
2)、改善电机启动性能。
限矩型液力偶合器的维修保养液力偶合器是以油压来传递动力的变速传动装置,因油压大小不受品级的限制,所在它是一个无级变速的联轴器。
液力偶合器的工作进程:液力偶合器要紧由泵轮、涡轮和转动外壳组成。
泵轮和涡轮尺寸相同,相向布置,其腔内均有许多径向叶片,涡轮的片数一样比泵轮少 1 一 4 片,以幸免共振。
泵轮的主轴和电动机主轴(或第一级增速齿轮轴)相连,涡轮轴和水泵主轴(或第二级增速齿轮轴)连接。
一、液力偶合器的平安爱惜装置1、过酷爱惜装置:易熔塞是偶合器的过酷爱惜装置。
1)易熔塞结构塞体留有阶梯通孔,在此孔中灌注易熔合金。
易熔塞布置在液力偶合器内腔最大直径处。
易熔塞不许诺安装在注液孔上,更不许诺成心或无心以一般螺塞或将易熔塞焊死代替易熔塞进行工作。
2)过酷爱惜原理当夜力偶合器处于制动或过载工况时,所损失的功率转化为热量,使工作腔内液体急剧加热。
当工作液体温度升高到所许诺的极限值时,低熔点易熔合金溶化,工作液体便在离心压力作用下从工作腔经由易熔塞小孔喷出,工作腔中的液体喷空时,液力偶合器输入和输出因失去工作介质被切断而再也不传递功率,有效地爱惜了电机、偶合器、工作及。
3)易熔塞作用温度的选择原理(1)从平安方面考虑,易熔塞作用温度低一些更靠得住,由此而引发液力偶合器频繁的喷空。
因此在保证平安和正常运转条件下,易熔塞的作用温度尽可能选择高一些,但太高将加速密封件老化和偶合器壳体承压能力下降。
(2)作用温度必需低于工作液体闪点。
一样情形下,易熔塞熔点为125℃,特殊时也可选择140 ℃。
(3)液力偶合器用于具有爆炸性气体的环境中,应慎重选择易熔合金熔点(适被选择低一些);(4)防喷液温控开关,为解决偶合器喷液所造成的污染及不便,本厂采纳自行设计的温控开关;喷液温控开关的工作原理:YOXWK型温控开关,在原易熔塞中增加一滑杆,过热时滑杆弹出,推动拨杆,拨杆再推动行程开关将电源切断或报警。
2、过压爱惜装置:易爆塞是液力偶合器的过压爱惜装置。
限矩型液力耦合器的维修与保养(D O C)限矩型液力耦合器的维修与保养简述液力耦合器的定义、功能及其广泛应用1. 液力偶合器的定义:液力偶合器是以油压来传递动力的变速传动装置,因油压大小不受等级的限制,所在它是一个无级变速的联轴器。
液力偶合器的工作过程:液力偶合器主要由泵轮、涡轮和转动外壳组成。
泵轮和涡轮尺寸相同,相向布置,其腔内均有许多径向叶片,涡轮的片数一般比泵轮少 1 一 4 片,以避免共振。
泵轮的主轴和电动机主轴(或第一级增速齿轮轴)相连,涡轮轴和水泵主轴(或第二级增速齿轮轴)连接。
2. 液力偶合器功能:1) 具有减缓启动冲击和隔离扭振的功能机器静止时,由于传动系统中各元件之间存在着间隙,挠性构件是松弛的,因而在启动瞬间施加于电动机的力矩是很小的。
当电动机迅速加速,由于传动元件间隙被消除,挠性构件张紧,力矩突然施加于电动机,从而产生冲击与振动。
由于液力偶合器的泵轮力矩与其转速的平方成正比,因而在启动过程中,施加于电动机的力矩是随转速升高而逐渐增大的,即当电动机起动瞬间泵轮因转速低而力矩甚微,电机近似于带动泵轮空载起动,因而应用它减少启动时的冲击和振动。
发动机、往复泵式机械等,在运转时产生强烈的扭振,使零件承受反复应力,易使支撑和基座产生共振,造成严重后果。
应用液力偶合器,可以利用高速旋转的工作液体的惯性阻尼作用,使其扭振得以衰竭,有效地隔离原动机与工作机(负载)之间的扭振。
2) 具有过载保护功能机器运转时,运动部分贮存很大动能,其中很大一部分贮蓄在高速旋转的电动机转子中。
负载突然被制动(急刹车或传动机构被障碍物卡塞)时,将产生很大的动力载荷。
这时,原动机和工作机(负载)所有运动质量的动能,都在瞬间释放出来,为破坏机器零件而做功。
应用液力偶合器,若负载突然被制动,制动的只是负载的本身,而电动机的转速不低于尖峰力矩时的转速,即使是降速也不超过10%。
因此,突然制动所产生的功比采用液力偶合器时大为减少,能够防止电动机和负载动力过载,从而保护电动机不被烧毁(或内燃机不熄火)。
液力耦合器原理、常见故障及处理
一、常见故障及处理
油泵不上油或油压太低或油压不稳定原因1.油泵损坏2.油泵调压阀失灵或调整不好3.油泵吸油管路不严,有空气进入4.吸油器堵塞5.油位太低,吸6.油压表损坏7.油管路堵塞处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤5.加油至规定油位6.更换压力表7.清洗油管路2.油温过高原因1.冷却器堵塞或冷却水量不足2.风机负荷发生变动使偶合器过负荷处理1.清洗冷却器,加大冷却水量2.检查负荷情况,防止过负荷3.勺管虽能移动但不能正常调速原因无工作油进入处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤器5.加油至规定油位6.更换压力表7.清洗油管路4.箱体振动原因1.安装精度过低2.基础刚性不足3.联轴节胶件损坏4.地脚螺栓松动处理1.重新安装校正2.加固或重新做基础3.更换橡胶件4.拧紧地脚螺丝
二、原理及故障排除:
1、原理:
液力偶合器工作原理液力偶合器相当于离心泵和涡轮机的组合,当电机通过液力偶合器输入轴驱动泵轮时,泵轮如一台离心泵,使工作腔中的工作油沿泵轮叶片流道向外缘流动,液流流出后,穿过泵轮和涡轮间的间隙,冲击涡轮叶片以驱动涡轮,使其象涡轮机一样把液
体动能转变为输出的机械能;然后,液体又经涡轮内缘流道回泵轮,开始下一次的循环,从而把电机的能量柔性地传递给工作机。
二、液力偶合器的调速原理液力偶合器在转动时,工作油由供油泵从液力偶合器油箱吸油排出,经冷却器冷却后送至勺管壳体中的进油室,并经泵轮入油口进入工作腔。
同时,工作腔中的油液从泵轮泄油孔泻入外壳,形成一个旋转油环,这样,就可通过液力偶合器的调速装置操纵勺管径向伸缩,任意改变外壳里油环的厚度,即改变工作腔中的油量,实现对输出转速的无级调节,勺管排出的油则通过排油器回到油箱。
2、故障现象及处理:
(1)过热
1)、冷却器冷却水量不足,加大水量;
2)、箱体存油过多或少调节油量规定值;
3)、油泵滤芯堵塞清洗滤芯;
4)、转子泵损坏打不出油,换内外转子;
5)、安全阀溢流过多;
6)、弹簧太松上紧弹簧;
7)、密封损坏泄油换密封件;
8)、油路堵塞,清除。
(2)输出轴不转
1)、安全阀压力值太低,上紧弹簧;
2)、油路堵塞,清除;
3)、泵损坏,换内外转子;
4)、泵转向错误,泵盖及偏心套转1800 ;
5)、泵吸油管路密封不准进空气,加强密封;
(3)机组振动大
1)、电动机振动大,测电机振动、排除;
2)、偶合器振动大,偶合器转子不平衡,检查按标记重装,电机与偶合器安装不同心,重新找正;轴承已损坏,换轴承;连接件松动,调紧;
3)、工作机振动,工作机不平衡,重新平衡;安装偏心,重新找正;4)、基础刚度不够,加强基础;
(4)轴端漏油
1)、弹性联轴器旋转引起真空效应将油吸出,吊罩将联轴器与端面隔开;
2)、皮碗密封圈唇面不平,换密封圈;
3)密封处轴面有划痕,磨光。