第五章 电高分子1
- 格式:ppt
- 大小:1.05 MB
- 文档页数:79
高分子物理课程电子教案第一章:高分子物理概述1.1 教学目标了解高分子的基本概念掌握高分子材料的分类和特点理解高分子物理的研究内容和方法1.2 教学内容高分子的定义和基本概念高分子材料的分类和特点高分子物理的研究内容和方法高分子材料的结构和性质关系1.3 教学方法采用多媒体课件进行讲解结合实例和案例分析高分子材料的分类和特点通过实验演示高分子物理的研究方法和原理1.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第二章:高分子链的结构与运动2.1 教学目标了解高分子链的结构特点掌握高分子链的运动方式和动力学行为理解高分子链的构象和统计分布2.2 教学内容高分子链的结构特点和构象高分子链的运动方式和动力学行为高分子链的统计分布和相变现象2.3 教学方法采用多媒体课件进行讲解结合数学模型和物理图像分析高分子链的运动行为通过实验观察高分子链的构象变化和相变现象2.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第三章:高分子材料的力学性能3.1 教学目标了解高分子材料的力学性能特点掌握高分子材料的应力-应变关系和断裂行为理解高分子材料的粘弹性行为和疲劳性能3.2 教学内容高分子材料的力学性能特点和测试方法高分子材料的应力-应变关系和断裂行为高分子材料的粘弹性行为和疲劳性能3.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的力学性能特点通过实验操作和观察理解高分子材料的粘弹性行为和疲劳性能3.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第四章:高分子材料的热性能4.1 教学目标了解高分子材料的热性能特点掌握高分子材料的熔融行为和热稳定性理解高分子材料的热膨胀和导热性能4.2 教学内容高分子材料的热性能特点和测试方法高分子材料的熔融行为和热稳定性高分子材料的热膨胀和导热性能4.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的热性能特点通过实验操作和观察理解高分子材料的热膨胀和导热性能课堂提问和讨论课后作业和练习题实验报告和分析第五章:高分子材料的电性能5.1 教学目标了解高分子材料的电性能特点掌握高分子材料的导电性和绝缘性理解高分子材料的电荷注入和电荷传输5.2 教学内容高分子材料的电性能特点和测试方法高分子材料的导电性和绝缘性高分子材料的电荷注入和电荷传输5.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的电性能特点通过实验操作和观察理解高分子材料的电荷注入和电荷传输5.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第六章:高分子材料的溶液性质了解高分子材料在溶液中的溶解行为掌握高分子材料的溶液性质和溶液模型理解高分子材料溶液的相行为和溶液理论6.2 教学内容高分子材料在溶液中的溶解行为和相行为高分子材料的溶液性质和溶液模型高分子材料溶液的粘度和流变性质6.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的溶液性质通过实验操作和观察理解高分子材料溶液的粘度和流变性质6.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第七章:高分子材料的界面性质7.1 教学目标了解高分子材料在不同界面上的行为掌握高分子材料界面性质的表征方法理解高分子材料在界面上的相互作用和功能化7.2 教学内容高分子材料在不同界面上的行为和相互作用高分子材料界面性质的表征方法和技术高分子材料界面功能化和应用7.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料界面的性质通过实验操作和观察理解高分子材料界面的功能化和应用7.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第八章:高分子材料的光学性能8.1 教学目标了解高分子材料的光学性能特点掌握高分子材料的光吸收和发射行为理解高分子材料的光化学反应和光物理过程8.2 教学内容高分子材料的光学性能特点和测试方法高分子材料的光吸收和发射行为高分子材料的光化学反应和光物理过程8.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的光学性能特点通过实验操作和观察理解高分子材料的光化学反应和光物理过程8.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第九章:高分子材料的环境稳定性和可持续性9.1 教学目标了解高分子材料的环境稳定性和可持续性重要性掌握高分子材料的环境稳定性和降解行为理解高分子材料的可持续性和环境影响评估9.2 教学内容高分子材料的环境稳定性和降解行为高分子材料的可持续性和环境影响评估高分子材料的生物降解和回收利用9.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的环境稳定性通过实验操作和观察理解高分子材料的可持续性和环境影响评估9.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第十章:高分子材料的应用和未来发展10.1 教学目标了解高分子材料在各个领域的应用掌握高分子材料的功能化和智能化理解高分子材料的未来发展趋势和挑战10.2 教学内容高分子材料在各个领域的应用和实例高分子材料的功能化和智能化技术高分子材料的未来发展趋势和挑战10.3 教学方法采用多媒体课件进行讲解结合实例和案例分析高分子材料的应用和功能化通过讨论和思考题引导学生理解高分子材料的未来发展趋势10.4 教学评估课堂提问和讨论课后作业和练习题思考题和研究报告重点和难点解析1. 高分子链的结构与运动:理解高分子链的结构特点,掌握高分子链的运动方式和动力学行为,以及高分子链的统计分布和构象。
一、选择题1.下列塑料的合成中,发生的化学反应类型与其它三种不同的是A.聚乙炔塑料B.聚氯乙烯塑料C.酚醛塑料D.聚苯乙烯塑料答案:C【分析】根据加聚和缩聚反应的特点进行判断反应类型,或者用生成物的种类判断,或者用单体的官能团判断能发生的反应类型。
解析:A.聚乙炔是由乙炔发生加聚反应合成;B.聚氯乙烯塑料是由氯乙烯发生加聚反应合成;C.酚醛塑料是由苯酚和甲醛发生缩聚反应合成;D.聚苯乙烯塑料是由苯乙烯发生加聚反应合成;故不同的反应类型是缩聚反应,故选答案C。
【点睛】根据反应单体的官能团判断反应类型。
2.乳酸的结构简式为,在一定条件下,得到聚乳酸(PLA),下列说法不正确的是A.1mol乳酸分子与Na充分反应,可产生1molH2B.PLA的链节为C.PLA可以被微生物降解为CO2和H2O,是公认的环保材料D.PLA通常是在乳酸杆菌作用下由淀粉发酵转化为乳酸,再将乳酸加聚制得答案:D解析:A.由乳酸的结构简式可知,1mol乳酸含有1mol羧基和1mol羟基,故1mol乳酸分子与Na充分反应,可产生1molH2,A正确;B.乳酸生成聚乳酸是发生酯化反应缩聚而成,酯化反应的机理为酸脱羟基醇脱氢,故PLA的链节为,B正确;C.PLA为聚乳酸,分子中含有C、H、O三种元素,含酯基,故可先降解为乳酸,再可以被微生物降解为CO2和H2O,是公认的环保材料,C正确;D.PLA通常是在乳酸杆菌作用下由淀粉发酵转化为乳酸,乳酸形成聚乳酸是缩聚反应,而不是加聚反应,D错误;故答案为:D。
3.下列说法正确的是A.聚碳酸酯可通过缩聚反应制得B.合成高聚物的单体一共有三种C.的单体不能发生银镜反应D.1 mol最多与7 mol H2加成答案:A解析:A.聚碳酸酯可通过缩聚反应制得,A正确;B.合成高聚物的单体一共有2种,单体为:CH2=CH-CH=CH2和,故B错误;C.合成酚醛树脂的单体为苯酚和甲醛,甲醛能发生银镜反应,C错误;D.1 mol,一个链节与7 个H2发生加成,1mol中含有n mol链节,需要7n mol H2,D错误;故选A。
第五章合成高分子第二节高分子材料第1课时通用高分子材料一、单选题1.下列说法正确的是A. 油脂和维生素均属于天然有机高分子化合物B. 塑料、合成橡胶、合成纤维并称三大有机合成材料C. 糖类的组成均可表示为,且均有甜味D. 葡萄糖溶液能产生丁达尔效应【答案】B【解析】A.油脂不属于高分子化合物,错误;B.塑料、合成橡胶、合成纤维并称三大有机合成材料,正确;C.部分糖的组成不能用表示,淀粉和纤维素没有甜味,错误;D.葡萄糖溶液不属于胶体,不能产生丁达尔效应,错误。
故选B。
2.以现代石油化工为基础的三大合成材料是合成氨塑料合成盐酸合成橡胶合成尿素合成纤维合成洗涤剂A. B. C. D.【答案】B【解析】略3.下列叙述正确的是A. 烃分子中所含碳氢键数目一定为偶数B. 塑料、橡胶和纤维都属于合成高分子材料C. 乙烯和苯都能使溴水褪色,其褪色原理相同D. 淀粉、葡萄糖、脂肪和蛋白质在一定条件下都能发生水解反应【答案】A【解析】A.烃分子中的氢原子个数一定为偶数,烃分子中所含碳氢键数目一定为偶数,A项正确;B.合成纤维、合成橡胶、塑料都是有机合成高分子材料,而天然橡胶、天然纤维不是合成高分子材料,B项错误;C.烯烃使溴水褪色的原理是加成反应,苯使溴水褪色的原理是萃取,二者原理不同,C项错误;D.葡萄糖为单糖,不能发生水解反应,D项错误。
故选A。
4.材料是人类赖以生存和发展的重要物质基础,下列说法正确的是A. 铜和铁都是热和电的良导体B. 棉纱和蚕丝都属于合成纤维C. 玻璃和光导纤维都是硅酸盐材料D. 聚乙烯和聚氯乙烯都可制成食品保鲜膜【答案】A【解析】A、金属的通性为有金属光泽、导电性、导热性、延展性,铜和铁均为金属单质,故A正确;B、棉纱的成分主要为纤维素,蚕丝的成分为蛋白质,故B错误;C、玻璃是三大传统硅酸盐产品之一,光导纤维的成分为二氧化硅,二氧化硅不属于硅酸盐,故C错误;D、聚乙烯可以做食品保鲜膜,聚氯乙烯在较高温度下,如50度左右就会慢慢地分解出有害气体,5.有机化学与日常生活紧密相关。
第二节 应用广泛的高分子材料1.了解高分子化合物的结构特点和基本性质,体会高聚物的结构与性质之间的关系。
2.了解塑料、合成纤维、合成橡胶的性能和用途。
(重点)3.进一步熟练掌握高分子单体与高分子之间的互推技能、加聚、缩聚反应方程式的书写。
(难点)高分子材料的分类塑料[基础·初探]1.高分子材料的分类 高 分 子 材 料⎩⎪⎪⎪⎨⎪⎪⎪⎧按性质和用途⎩⎪⎨⎪⎧合成高分子材料,如三大合成材料、黏合剂等功能高分子材料,如医用高分子 材料等复合材料,如玻璃钢按碳骨架结构⎩⎪⎨⎪⎧线型高分子支链型高分子体型高分子按受热时性状⎩⎪⎨⎪⎧热塑性高分子材料热固性高分子材料2.高分子材料的结构和性质线型高分子体型(网状)高分子结构分子中的原子以共价键相互联结,构成一条很长的卷曲状态的“链”分子链与分子链之间还有许多共价键交联起来,形成三维空间的网状结构溶解性 能缓慢溶解于适当溶剂很难溶解,但往往有一定程度的胀大性能具有热塑性,无固定熔点具有热固性,受热不熔化特性强度大、可拉丝、吹薄膜、绝缘性好强度大、绝缘性好,有可塑性常见物质聚乙烯、聚氯乙烯、天然橡胶酚醛树脂、硫化橡胶3.塑料(1)成分塑料的主要成分是合成高分子化合物即合成树脂。
(2)分类(3)几种常见的塑料名称结构简式单体性能用途聚乙烯CH2—CH2CH2===CH2机械强度好、电绝缘性好、耐化学腐蚀、质轻、无毒、耐油性差、易老化饮料纸盒涂层、导线绝缘层、薄膜、包装桶等聚氯乙烯CH2===CHCl机械强度好、电绝缘性好、耐化学腐蚀、耐水、有毒排水管、凉鞋、雨衣、化工厂容器贮槽酚醛塑料绝缘性好、耐热、抗酸可作电工器材、汽车部件、涂料、日常用品等有机玻璃透光性好、质轻、耐水、耐酸、耐碱、抗霉、易加工、耐磨性较差可制飞机、汽车用玻璃、光学仪器、医疗器械等高压聚乙烯低压聚乙烯合成条件150 MPa~300 MPa,170 ℃~200 ℃,引发剂低压,催化剂高分子链较短较长相对分子质量较低较高密度较低较高1.关于塑料的说法中,正确的是()A.聚乙烯塑料的单体是乙烯,所以聚乙烯塑料是纯净物B.塑料不都是经过人工合成制成的C.酚醛树脂塑料可以用作绝缘和隔热材料D.只有热塑性高分子材料才可能是塑料2.食品保鲜膜按材质分为聚乙烯(PE)、聚氯乙烯(PVC)、聚偏二氯乙烯(PVDC)等。
介电高分子材料1. 介电材料的概念和分类介电材料是指在外电场作用下,能够发生电极化现象的材料。
它们具有良好的绝缘性能,在电子器件、电力系统和通信领域中有着广泛的应用。
根据其电性能和结构特点,介电材料可以分为无机介电材料和有机介电材料两大类。
无机介电材料主要包括氧化物、陶瓷、玻璃等,具有高介电常数和较低的损耗,适用于高频电路、电容器等领域。
有机介电材料主要由高分子化合物构成,具有较低的介电常数和较高的介电损耗,适用于电缆绝缘、电子元件封装等领域。
2. 介电高分子材料的特性和应用介电高分子材料是指高分子化合物中具有良好绝缘性能的材料。
它们具有以下特性:2.1 高介电常数介电高分子材料的介电常数通常在2-100之间,远高于大多数无机材料。
这使得它们在电容器等电子元件中能够储存更多的电荷。
2.2 低介电损耗介电高分子材料具有较低的介电损耗,能够有效地减少电能的损耗。
这使得它们在电力系统中能够提高能量传输的效率。
2.3 良好的绝缘性能介电高分子材料具有优异的绝缘性能,能够有效地隔离电场,防止电流的泄漏。
这使得它们在电缆绝缘等领域中有着广泛的应用。
2.4 耐高温性能介电高分子材料通常具有较高的熔点和热稳定性,能够在高温环境下保持良好的电性能。
这使得它们在航天、电子器件等领域中能够承受极端的工作条件。
介电高分子材料的应用十分广泛。
以下是一些常见的应用领域:•电容器:介电高分子材料作为电容器的介质,能够存储和释放电荷,广泛应用于电子产品中。
•电缆绝缘:介电高分子材料具有良好的绝缘性能,能够有效地隔离电场,用于电缆的绝缘层。
•电子元件封装:介电高分子材料能够提供良好的绝缘和保护性能,用于电子元件的封装和保护。
•光纤通信:介电高分子材料能够作为光纤的包覆材料,保护光纤免受外界干扰。
•电力系统:介电高分子材料在电力系统中用作电力电容器、绝缘子等,能够提高能量传输的效率和稳定性。
3. 介电高分子材料的改性和发展趋势为了提高介电高分子材料的性能和应用范围,人们进行了大量的改性研究。
导电⾼分⼦及其复合材料⾼分⼦材料及应⽤导电⾼分⼦及导电⾼分⼦材料传统的⾼分⼦是以共价键相连的⼀些⼤分⼦,组成⼤分⼦的各个化学键是很稳定的,形成化学键的电⼦不能移动,分⼦中⽆很活泼的孤对电⼦或很活泼的成键电⼦,为电中性,所以⾼分⼦⼀直视为绝缘材料。
⾼分⼦材料有可能导电吗?聚噻吩电⼦导电聚合物特征有机聚合物成为导体的必要条件:有能使其内部某些电⼦或空⽳具有跨键离域移动能⼒的⼤共轨结构。
电⼦导电型聚合物的共同结构特征:分⼦内具有⼤的共扼π电⼦体系,具有跨键移动能⼒的π价电⼦成为这⼀类导电聚合物的唯⼀载流⼦。
已知的电⼦导电聚合物,除早期发现的聚⼄炔,多为芳⾹单环、多环、以及杂环的共聚或均聚物。
纯净的,或未予“掺杂”的电⼦导电聚合物分⼦中各π键分⼦轨道之间还存在着⼀定的能级差。
⽽在电场⼒作⽤下,电⼦在聚合物内部迁移必须跨越这⼀能级差,这⼀能级差的存在造成π价电⼦还不能在共轭聚合中完全⾃由跨键移动。
因⽽其导电能⼒受到影响,导电率不⾼。
属于半导体范围。
图中碳原⼦右上⾓的符号●表⽰未参与形成σ键的p电⼦。
上述聚⼄炔结构可以看成内多享有⼀个⽊成对电⼦的CH⾃由基组成的长链,当所有碳原⼦处在⼀个平⾯内时,其末成村电⼦云在空间取向为相互平⾏.并相互重叠构成共短π键。
根据固态物理理论,这种结构应是⼀个理想的⼀维⾦属结构.π电⼦应能在⼀维⽅向上⾃由移动,这是聚合物导电的理论基础。
由分⼦电⼦结构分析,聚⼄炔结构可以写成以下形式。
如上图所⽰,两个能带在能量上存在着—个差值,⽽导电状态下P电⼦离域运动必须越过这个能级差。
这就是我们在线性共扼体系中碰到的阻碍电⼦运动,因⽽影响其电导率的基本因素如果考虑到每个CH⾃由基结构单元p电⼦轨道中只有⼀个电⼦,⽽根据分⼦轨道理论,⼀个分⼦轨道中只有填充两个⾃旋⽅向相反的电⼦才能处于稳定态。
每个P电⼦占据—个π轨道构成上图所述线性共轭电⼦体系.应是⼀个半充满能带,是⾮稳定态。
它趋向于组成双原⼦对使电⼦成对占据其中⼀个分⼦轨道,⽽另⼀个成为空轨道。
高分子科学与材料概论第五章 导电高分子材料(高分子导体及半导体)内容提要一、2000年诺贝尔化学奖 二、材料导电性表征 三、高分子材料导电特点 四、导电高分子材料的发现与导电高分子学科的产生 五、复合型导电高分子材料及其应用 六、结构型导电高分子材料及其应用一、2000年诺贝尔化学奖塑料、橡胶一类高分子材料是很好的绝 缘体 在一定的条件下,高分子材料确实可以 做成像金属那样具有导电性能的材料 2000年诺贝尔化学奖 Alan J. Heeger、Alan G. MacDiarmid Hideki Shirakawa(白川英树)Alan J. Heeger,1936 年出生。
1961年获得美国加州大学伯 克利分校博士学位。
1962年成为费城宾夕法尼亚大学的助理 教授,1967至1982年任宾大的教授。
1982年任加州圣巴巴拉 加州大学的物理教授,该校高分子与有机固体研究所所长。
1990年创立UNIAX公司,出任公司董事会主席。
Alan G.MacDiarmid, 1927年出生在新西 兰。
1953年获得美国 威斯康星大学博士学 位,1955年获得英国 剑桥大学博士学位。
1956年受聘美国宾夕 法尼亚大学助理教 授,1956年成为终身 教授。
Hideki Shirakawa(白川英树),1936年出生。
1966 年获得日本东京技术研究所博士学位,同年成为日本 Tsukuba大学材料科学研究所的助理教授。
1982年成 为教授。
在从绝缘性到导电性高分子认识的转变过程 中,起关键作用的是聚乙炔。
¾ 20世纪70年代初,Shirakawa,一种新方法来合成聚乙 炔,能控制反应器壁上黑色聚乙炔膜中顺、反异构体的 比例 ¾ 失误,多加一千倍的催化剂,得一层美丽的银色的膜, 反式的聚乙炔 ¾ 另一个温度下进行相应的反应给出的是铜一样颜色的 膜,顺式聚乙炔 ¾ 改变温度和催化剂的浓度成了决定反应如何发展的关键 ¾ MacDiarmid、Heeger 非常像金属的无机聚合物氮化硫 (SN)x ¾ 东京讨论会, Shirakawa和MacDiarmid 偶然在会议休息 喝咖啡时巧遇 ¾ MacDiarmid邀请Shirakawa到费城的宾夕法尼亚大学 ¾ 用碘蒸汽氧化并修饰聚乙炔,氧化处理过程中光学性质 发生了改变 ¾ 搀了碘的反式聚乙炔的电导率已经增加了一千万倍!搀杂的概念或方法由此产生,它能使高分子材料的电导(率)大为提高 这一研究结果的论文发表在1977年的J. Chem. Soc., Chem. Commun.上 Hideki Shirakawa, Edwin J. Louis, Alan G. MacDiarmid, Chwan K. Chiang and Alan J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x”, J. Chem. Soc., Chem. Commun., 1977, 578-580.二、材料导电性表征材料导电性能表征电阻率 电导率 ρ ( Ω⋅m ) R=ρ⋅d/s σ ( Ω-1⋅m-1, S⋅m-1 ) G = σ ⋅ s / d二者关系ρ = 1/ σ ρ 越大,导电性越差 σ 越大,导电性越强日常所见的高分子材料大多在绝缘体 范围 材料导电性是由于物质内部存在能传 递电流的自由电荷,这些自由电荷通 常称为载流子(电子、空穴、正离 子、负离子) 材料导电性的宏观物理量σ与微观物理 量(载流子浓度、迁移率)的关系为 σ = N⋅q⋅μ三、高分子材料导电特点1. 高分子一般都是绝缘体有机高分子的固体(晶体)状态属分子晶体类型,晶 体中分子与分子间的堆砌是靠范氏力控制的,分子间 距离比较大,电子云交叠很差。