2011年陕西高考数学文科试卷(带答案)
- 格式:pdf
- 大小:509.40 KB
- 文档页数:19
绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(MN )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U MN MN =∴=(2)函数(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数(0)y x x =≥的反函数为2(0)4x y x =≥.(3)设向量,a b 满足||||1a b ==,12a b ⋅=-,则2a b += (A 2 (B 3 (C 5(D 7【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=,所以23a b +=(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系. 【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12CC = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离23OM =,在Rt OMN∆中,30OMN ︒∠=, ∴132ON OM ==,故圆N 的半径2213r R ON =-=,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年普通高等学校招生全国统一考试·陕西卷数学(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分).1.设,是向量,命题“若,则"的逆命题是()若,则若,则若,则若,则【测量目标】向量的性质与运算及逆命题.【考查方式】已知命题,求其逆命题.【参考答案】【试题解析】首先确定原命题的条件和结论,然后交换条件和结论的位置即可得到逆命题。
选原命题的条件是,作为逆命题的结论;原命题的结论是,作为逆命题的条件,即得逆命题“若,则”,故选2.设抛物线的顶点在原点,准线方程为,则抛物线的方程是()(D)【测量目标】抛物线的标准方程。
【考查方式】给出准线方程,求抛物线的方程。
【参考答案】【试题解析】由准线确定抛物线的位置和开口方向是判断的关键选由准线方程得,且抛物线的开口向右(或焦点在轴的正半轴),所以.3.设,则下列不等式中正确的是 ( )【测量目标】不等式的性质、实数大小的比较。
【考查方式】已知两个实数的范围,求与两个实数有关的大小比较.【参考答案】【试题解析】根据不等式的性质,结合作差法,放缩法,基本不等式或特殊值法等进行比较.选(方法一)已知和,比较与,因为,所以,同理由得;作差法:,所以,综上可得;故选(方法二)取,,则,,所以.4. 函数的图像是()。
【测量目标】幂函数图像的性质与特点.【考查方式】已知幂函数,判断其图像。
【参考答案】【试题解析】已知函数解析式和图像,可以用取点验证的方法判断.选取,,则,,选项B,D符合;取,则,选项符合题意.5.某几何体的三视图如图所示,则它的体积是( )【测量目标】由三视图求几何体的体积.【考查方式】已知几何体的三视图,求其体积.Yxj 14【参考答案】【试题解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算.选由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.6。
绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年陕西文一、选择题(共10小题;共50分)1. 设,是向量,命题"若,则 "的逆命题是A. 若,则B. 若,则C. 若,则D. 若,则2. 设抛物线的顶点在原点,准线方程为,则抛物线的方程是A. B. C. D.3. 设,则下列不等式中正确的是A. B.C. D.4. 函数的图象是A. B.C. D.5. 某几何体的三视图如图所示,则它的体积是A. B. C. D.6. 方程在内A. 没有根B. 有且仅有一个根C. 有且仅有两个根D. 有无穷多个根7. 下面的框图中,当,,时,等于A. B. C. D.8. 设集合,为虚数单位,则为A. B. C. D.9. 设,,,是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是.A. 直线过点B. 和的相关系数为直线的斜率C. 和的相关系数在到之间D. 当为偶数时,分布在两侧的样本点的个数一定相同10. 植树节某班名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从到依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为A. 和B. 和C. 和D. 和二、填空题(共6小题;共30分)11. 设则.12. 如图,点在四边形内部和边界上运动,那么的最小值为.13. 观察下列等式照此规律,第五个等式应为.14. 设,一元二次方程有整数根的充要条件是.15. 若不等式对任意恒成立,则的取值范围是.16. 如图,,,,且,,,则.三、解答题(共6小题;共78分)17. 如图,在中,,,是上的高,沿把折起,使.(1)证明:平面平面;(2)设,求三棱锥的表面积.18. 设椭圆过点,离心率为.(1)求的方程;(2)求过点且斜率为的直线被所截线段的中点坐标.19. 叙述并证明余弦定理.20. 如图,从点作轴的垂线交曲线于点,曲线在点处的切线与轴交于点,再从作轴的垂线交曲线于点,依次重复上述过程得到一系列点:,;,;;,,记点的坐标为.(1)试求与的关系;(2)求.21. 如图,地到火车站共有两条路径和,现随机抽取位从地到达火车站的人进行调查,调查结果如下:所用时间分钟选择的人数选择的人数(1)试估计分钟内不能赶到火车站的概率;(2)分别求通过路径和所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有分钟和分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.22. 设,.(1)求的单调区间和最小值;(2)讨论与的大小关系;(3)求的取值范围,使得对任意成立.答案第一部分1. D 【解析】原命题的条件是,作为逆命题的结论;原命题的结论是,作为逆命题的条件,即得逆命题"若,则 ".2. C 【解析】由准线方程得,且抛物线的开口向右(或焦点在轴的正半轴),所以.3. B4. B 【解析】因为当时,,当时,,所以A、C、D错误.故选B.5. A【解析】由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥.6. C 【解析】构造两个函数和,在同一个坐标系内画出它们的图像,如图所示.观察知两函数的图象有两个公共点,所以已知方程有且仅有两个根.7. B 【解析】,,.又,有,即.此时有,解得符合题意.8. C 【解析】,所以;因为,即,所以,又因为,所以,即.所以.9. A 10. D【解析】提示:设放在第个坑时取走树苗的路程之和为,则,当或时,取最小值.第二部分11.12.13.14. 或【解析】,因为是整数,即为整数,所以为整数,且.取验证,可知符合题意;反之,时,可推出一元二次方程有整数根.15.【解析】当时,;当时,;当时,;综上可得,所以.16.【解析】因为,所以,又因为,所以,从而,于是.第三部分17. (1)折起前是边上的高,当折起后,,,又,平面.又平面.平面平面.(2)由(1)知,,,.因为,所以从而所以表面积18. (1)将点代入的方程,得,,又,得即,的方程为.(2)过点且斜率为的直线方程为.设直线与的交点为,,将直线方程代入的方程,得即,得的中点坐标即所截线段的中点坐标为.19. 叙述:余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.或:在中,,,为,,的对边,有证法一:如图,即同理可证证法二:已知中,,,所对边分别为,,,以为原点,所在直线为轴建立直角坐标系,则,,所以即同理可证20. (1)设,由得曲线在点处的切线方程为由得(2),,得所以,故21. (1)由已知共调查了人,其中分钟内不能赶到火车站的有人,用频率估计相应的概率为.(2)选择的有人,选择的有人,故由调查结果得频率为:所用时间分钟的频率的频率(3)用分别表示甲选择和时,在分钟内赶到火车站;用分别表示乙选择和时,在分钟内赶到火车站.由(2)知甲应选择路径;乙应选择路径.22. (1)由题设知,,,令得,当时,是减函数,故是的单调减区间;当时,是增函数,故是的单调递增区间.因此,是的唯一极值点,且为极小值点,从而是最小值点,所以的最小值为.(2).设,则当时,,即当时,,因此,在内单调递减,当时,,即当时,,即(3)由(1)知的最小值为,所以,,对任意成立即,从而得.。
绝密★启用前数学试卷(理工农医类) 注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题纸上,并将准考证号条形码粘贴在答题卡上的指定位置。
2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 考试结束后,监考人员将本试题卷和答题卡一并收回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1. 函数2log2-=x y 的定义域是A .),3(+∞B .),3[+∞C .),4(+∞D .),4[+∞ 2. 若数列}{n a 满足: 311=a , 且对任意正整数n m ,都有n m n m a a a ⋅=+, 则=++++∞→)(lim 21n n a a a A .21 B .32 C .23 D .23. 过平行六面体1111D C B A ABCD -任意两条棱的中点作直线, 其中与平面11D DBB 平行的直线共有 A .4条 B .6条 C .8条 D .12条4. “1=a ”是“函数||)(a x x f -=在区间),1[+∞上为增函数”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 已知,0||2||≠=b a 且关于x 的方程0||2=⋅++b a x a x 有实根, 则a 与b 的夹角的取值范围是 A .]6,0[πB .],3[ππC .]32,3[ππD .],6[ππ6. 某外商计划在4个候选城市投资3个不同的项目, 且在同一个城市投资的项目不超过2个, 则该外商不同的投资方案有A . 16种B .36种C .42种D .60种7. 过双曲线1:222=-by x M 的左顶点A 作斜率为1的直线l , 若l 与双曲线M 的两条渐近线分别相交于点C B ,, 且||||BC AB =, 则双曲线M 的离心率是A . 10B .5C .310 D .258. 设函数1)(--=x a x x f , 集合}0)(|{},0)(|{>'=<=x f x P x f x M , 若P M ⊂,则实数a 的取值范围是A .)1,(--∞B .)1,0(C .),1(+∞D .),1[+∞9. 棱长为2的正四面体的四个顶点都在同一个球面上, 若过该球球心的一个截面如图1,则图中三角形(正四面体的截面)的面积是图1A .22 B .23 C .2 D .310. 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是 A . ]412[ππ, B .]12512[ππ, C .]36[ππ, D .]20[π, 注意事项:请用0.5毫米黑色的签字笔直接答在答题卡上。
学科:数学教学内容:直线和圆【考点梳理】 一、考试内容1.有向线段。
两点间的距离。
线段的定比分点。
2.直线的方程。
直线的斜率。
直线的点斜式、斜截式、两点式、截距式方程。
直线方程的一般式。
3.两条直线平行与垂直的条件。
两条直线所成的角。
两直线交点。
点到直线的距离。
4.圆的标准方程和一般方程。
二、考试要求1.理解有向线段的概念。
掌握有向线段定比分点坐标公式,熟练运用两点间的距离公式和线段的中点坐标公式。
2.理解直线斜率的概念,掌握过两点的直线的斜率公式。
熟练掌握直线方程的点斜式,掌握直线方程的斜截式、两点式、截距式以及直线方程的一般式。
能够根据条件求出直线的方程。
3.掌握两条直线平行与垂直的条件,能够根据直线的方程判定两条直线的位置关系。
会求两条相交直线的夹角和交点。
掌握点到直线的距离公式。
4.熟练掌握圆的标准方程和一般方程。
能够根据条件求出圆的标准方程和一般方程。
掌握直线和圆的位置关系的判定方法。
三、考点简析1.有向线段。
有向线段是解析几何的基本概念,可用有向线段的数量来刻划它,而在数轴上有向线段AB 的数量AB=x B -x A 。
2.两点间的距离公式。
不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|。
3.定比分点公式。
定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y)之间数量关系的一个公式,其中λ的值是起点到分点,分点到终点的有向线段的数量之比。
这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了。
若以A 为起点,B 为终点,P 为分点,则定比分点公式是⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 。
当P 点为AB 的中点时,λ=1,此时中点公式是⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 。
2011年全国统一高考数学试卷(文科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【考点】交集及其运算.【专题】计算题.【分析】利用集合的交集的定义求出集合P;利用集合的子集的个数公式求出P的子集个数.【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n个元素,则其子集的个数是2n.2.(5分)(2011•新课标)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【考点】复数代数形式的混合运算.【专题】计算题.【分析】将分子、分母同时乘以1+2i,再利用多项式的乘法展开,将i2用﹣1 代替即可.【解答】解:=﹣2+i故选C【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数.3.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】常规题型.【分析】首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=﹣x2+1、y=2﹣|x|=的单调性易于选出正确答案.【解答】解:因为y=x3是奇函数,y=|x|+1、y=﹣x2+1、y=2﹣|x|均为偶函数,所以选项A错误;又因为y=﹣x2+1、y=2﹣|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数,所以选项C、D错误,只有选项B正确.故选:B.【点评】本题考查基本函数的奇偶性及单调性.4.(5分)(2011•新课标)椭圆=1的离心率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)(2011•新课标)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【考点】程序框图.【专题】图表型.【分析】通过程序框图,按照框图中的要求将几次的循环结果写出,得到输出的结果.【解答】解:经过第一次循环得到经过第二次循环得到经过第三次循环得到;经过第四次循环得经过第五次循环得;输出结果此时执行输出720,故选B【点评】本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.6.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【考点】二倍角的余弦;直线的图象特征与倾斜角、斜率的关系.【专题】计算题.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【考点】简单空间图形的三视图.【专题】作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)(2011•新课标)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.48【考点】直线与圆锥曲线的关系.【专题】数形结合法.【分析】首先设抛物线的解析式y2=2px(p>0),写出次抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(+||)=p=6∴S△ABP=(DP•AB)=×6×12=36故选C.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)(2011•新课标)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(﹣,0)B.(0,)C.(,)D.(,)【考点】函数零点的判定定理.【专题】计算题.【分析】分别计算出f(0)、f(1)、f()、f()的值,判断它们的正负,再结合函数零点存在性定理,可以得出答案.【解答】解:∵f(0)=e0﹣3=﹣2<0 f(1)=e1+4﹣3>0∴根所在的区间x0∈(0,1)排除A选项又∵∴根所在的区间x0∈(0,),排除D选项最后计算出,,得出选项C符合;故选C.【点评】e=2.71828…是一个无理数,本题计算中要用到等的值,对计算有一定的要求.11.(5分)(2011•新课标)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称【考点】正弦函数的对称性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选D.【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)(2011•新课标)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个【考点】对数函数的图像与性质;函数的周期性.【专题】压轴题;数形结合.【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值估算即可.【解答】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=1.【考点】数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k值.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方.14.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【考点】简单线性规划.【专题】计算题.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)(2011•新课标)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【考点】正弦定理的应用;余弦定理.【专题】解三角形.【分析】先利用余弦定理和已知条件求得BC,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知cosB==﹣,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sinB=×5×3×=故答案为:【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)(2011•新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【考点】旋转体(圆柱、圆锥、圆台);球的体积和表面积.【专题】计算题;压轴题.【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型.三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【考点】等比数列的前n项和.【专题】综合题.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】计算题;证明题;综合题.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE•PB=PD•BD,得DE=,即棱锥D﹣PBC的高为.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【考点】随机抽样和样本估计总体的实际应用;众数、中位数、平均数;离散型随机变量的期望与方差.【专题】计算题;综合题.【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题20.(12分)(2011•新课标)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(I)据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a,b的值.(II)构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:(I).由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)=所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【考点】圆周角定理;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【考点】简单曲线的极坐标方程;轨迹方程.【专题】计算题;压轴题.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】绝对值不等式的解法.【专题】计算题;压轴题;分类讨论.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。
第六章资本成本一、单项选择题1、甲公司2年前发行了期限为5年的面值为100元的债券,票面利率为10%,每半年付息一次,到期一次还本,目前市价为95元,假设债券税前周期资本成本为k,则正确的表达式为()。
A.95=10×(P/A,k,3)+100×(P/F,k,3)B.100=10×(P/A,k,5)+100×(P/F,k,5)C.95=5×(P/A,k,6)+100×(P/F,k,6)D.100=5×(P/A,k,4)+100×(P/F,k,4)【正确答案】:C 【答案解析】:债券市价=利息的现值合计+本金的现值(面值的现值),该债券还有三年到期,一年付息两次,所以折现期是6,因此本题的答案为选项C。
2、下列关于资本成本用途的说法中,不正确的是()。
A.在投资项目与现有资产平均风险不同的情况下,公司资本成本和项目资本成本没有联系B.在评价投资项目,项目资本成本是净现值法中的折现率,也是内含报酬率法中的“取舍率”C.在管理营运资本方面,资本成本可以用来评估营运资本投资政策D.加权平均资本成本是其他风险项目资本的调整基础【正确答案】:A 【答案解析】:如果投资项目与现有资产平均风险不同,公司资本成本不能作为项目现金流量的折现率。
不过,公司资本成本仍具有重要价值,它提供了一个调整基础,所以选项A 的说法不正确;评价投资项目最普遍的方法是净现值法和内含报酬率法。
采用净现值法时候,项目资本成本是计算净现值的折现率;采用内含报酬率法时,项目资本成本是其“取舍率”或最低报酬率,所以选项B的说法正确;在管理营运资本方面,资本成本可以用来评估营运资本投资政策和营运资本筹资政策,所以选项C的说法正确;加权平均资本成本是投资决策的依据,既是平均风险项目要求的最低报酬率,也是其他风险项目资本的调整基础,所以选项D的说法正确。
3、某企业预计的资本结构中,产权比率为3/5,债务税前资本成本为12%。
2011年陕西高考数学试题及答案(文科)本卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷与答题卡一并交回。
参考公式:柱体的体积公式v sh =,其中s 表示柱体的底面积,h 表示柱体的高球的体积公式V=31πR, 其中R 是球的半径球的表面积公式:S=4πR 2,其中R 是球的半径用最小二乘法求线性回归方程系数公式x b y a xn xy x n yx b n i ini i i -=-⋅-=∑∑==,1221如果事件,A B 互斥,那么()()()P A B P A P B +=+.).如果事件,A B 相互独立,那么第1卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选择题只有一项是符合题目要求的。
(A )(2)复数=为虚数单位,在复平面内对应的点所在象限为(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)若点(,9)α在函数'3y =的图像上,则tan6xα的值为(A )0 (B) (C )1 (D()()()P A B P A P B ∙=∙()()的函数图象??v 轴对称“是”y ()f x 是奇函数的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 (4)某产品的广告费用销售额y 的统计数据如下表;跟据上表可得回归 据此模型预报广告费用为6万元是销售额为(A )42.6万元 (B )65.7万元 (C ) 67.7万元 (D )72.0万元 ( )函数的图象大致是(8)若函数在区间(0,)3f π上单调递增,在区间(,)33ππ-上单调递减,则m(A )3 (B )2 (C )12 (D )23(9)(10)已知()f x 是R 上最小正周期为2的周期函数,且则函数的图象在区间上与x 轴的交点的个数为(A )G (B )7 (C )R (D )9(11)右图是场合宽分别相等的两个矩形,给定下列三个命题:(1)存在三棱柱,其正(主)视图、俯视图如右图;(2)存在四棱柱,其正(主)视图、俯视图如右图;(3)存在圆柱其正(主)视图、俯视图如右图;其中真命题的个数是(A )3 (B )2 (C )1 (D )0(12)设1234...A A A A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= ()R λ∈,14A A ,12A A μ (),R μ∈且11λμ+=2,则称14.A A 调和分割13.A A ,一直平面上的点.C D 调和分割点.A B ,则下面说法正确的是(A )C 可能是线段.A B 的中点 (B)(C) .C D 可能同时在线段.A B 上 (D) .C D 不可能同时在线段.A B 的延长线上 第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(Ⅰ)按右图所示的程序框图,输入l 2,m 3,n 5,则输出的y 的值是 .(Ⅱ)若式的常数项为60,则常数a 的值为 .根据以上事实,由归纳推理可得:当n N+∈且2n≥时,(16)已知函数b(a>0,且a≠1).当2<a<3<b<4时,函数()f x的零点则n=____________________.三、解答题:本小题共6小题,共74分。
第一单元第一讲走近细胞一、选择题1.(2010·青岛质检)有关病毒的起源及与细胞的关系,目前最能被接受的是:生物大分子→细胞→病毒。
下列观点能支持病毒的起源是在细胞产生之后的是()A.所有病毒都是寄生的,病毒离开细胞不能进行新陈代谢B.有些病毒的核酸与哺乳动物细胞DNA某些片段的碱基序列十分相似C.病毒的化学组成简单,只有核酸和蛋白质两类分子D.病毒是目前发现的最简单的生物2.(2010·淮安模拟)下列有关细胞的叙述,错误的是()A.细胞是最基本的生命系统B.只有含叶绿体的细胞才能进行光合作用C.洋葱表皮细胞、根尖分生区细胞都时刻进行着物质的更新D.蓝藻细胞中有两种类型的核酸3.下列有关5种生物之间共同特征的叙述,正确的是()①烟草花叶病毒②酵母菌③硝化细菌④蓝藻⑤烟草A.①和②都是原核生物,且都能发生突变B.①②③都不含叶绿素,且都是分解者C.②③④⑤都具细胞结构,且都有细胞壁D.②③都是需氧型生物,且都能出芽生殖4.(2010·温州八校联考)生命活动离不开细胞,对此理解不.正确的是() A.没有细胞结构的病毒必须寄生在活细胞内才能繁殖B.单细胞生物体具有生命的基本特征——新陈代谢、应激性、繁殖……C.多细胞生物体的生命活动由不同分化程度的细胞密切合作完成D.一切生物都是由细胞构成5.(2010·汕头质检)地球上的生命千姿百态,从生物圈到细胞,生命系统层层相依又各有特定的组成、结构和功能。
下列属于生命系统结构层次中细胞层面的是()A.一个病毒B.一个受精卵C.一个洋葱D.一个蜂巢6.生物体所以能表现出生长现象,是由于在进行新陈代谢时() A.新陈代谢旺盛B.同化作用等于异化作用C.同化作用小于异化作用D.合成代谢超过分解代谢7.具有细胞结构而没有核膜的一组生物是() A.噬菌体、乳酸菌B.细菌、蓝藻C.变形虫、草履虫D.蓝藻、酵母菌8.(2010·大连质检)下列哪项不属于生命系统() A.池塘中的一只青蛙B.青蛙的表皮细胞C.表皮细胞中的水和蛋白质分子D.池塘中的水、阳光等环境因素以及生活在池塘中的青蛙等各种生物9.细胞质不是静止的,一般呈环形流动。
2011年普通高等学校招生全国统一考试 (陕西卷)数学(文科)考生注意:这份试卷共三道大题(28个小题).满分120分.考试时间120分钟.用钢笔直接答在试卷中,答卷前将密封线内的项目填写清楚.一.选择题:本大题共18小题;每小题3分,共54分.在每小题给的4个选项中,只有一项是符合题目要求的,把所选项前的字母填在题中括号内.(1)3log 9log 28的值是 ( )(A)32 (B) 1 (C)23 (D) 2(2)已知椭圆1162522=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一焦点的距离是( )(A) 2(B) 3(C) 5(D) 7(3)如果函数y =sin(ωx )cos(ωx )的最小正周期是4π,那么常数ω为( )(A) 4(B) 2(C)21 (D)41 (4)在(312xx -)8的展开式中常数项是 ( )(A) -28(B) -7(C) 7(D) 28(5)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是( )(A) 6∶5(B) 5∶4(C) 4∶3(D) 3∶2(6)图中曲线是幂函数y =x n 在第一象限的图像.已知n 取±2,±21四个值,则相应于曲线c 1、c 2、c 3、c 4的n 依次为 ( )(A) -2,,21-21,2 (B) 2,21,,21--2(C) ,21--2,2,21 (D) 2,,21-2,-21 (7)若log a 2< log b 2<0,则( )(A) 0<a <b <1(B) 0<b <a <1(C) a >b >1(D) b >a >1(8)原点关于直线8x +6y =25的对称点坐标为( )(A) (23,2) (B) (625,825) (C) (3,4) (D) (4,3)(9)在四棱锥的四个侧面中,直角三角形最多可有( )(A) 1个(B) 2个(C) 3个(D) 4个(10)圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( )(A) x 2+y 2-x -2y -41=0 (B) x 2+y 2+x -2y +1=0 (C) x 2+y 2-x -2y +1=0 (D) x 2+y 2-x -2y +41=0 (11)在[0,2π]上满足sin x ≥21的x 的取值范围是 ( )(A) ]60[π,(B) ]656[ππ, (C) ]326[ππ,(D) ]65[ππ, (12)已知直线l 1和l 2夹角的平分线为y =x ,如果l 1的方程是ax +by +c =0(ab >0),那么l 2的方程是( )(A) bx +ay +c =0 (B) ax -by +c =0 (C) bx +ay -c =0 (D) bx -ay +c =0(13)如果α,β∈(2π,π)且tg α<ctg β,那么必有 ( )(A) α<β (B)β<α(C) α+β<π23(D) α+β>π23(14)在棱长为1的正方体ABCD -A1B 1C 1D 1中,M 和N 分别 为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )(A)23 (B)1010 (C)53 (D)52 (15)已知复数z 的模为2,则|z -i |的最大值为( )(A) 1 (B) 2(C)5(D) 3(16)函数y =2xx e e --的反函数( )(A) 是奇函数,它在(0,+∞)上是减函数(B) 是偶函数,它在(0,+∞)上是减函数(C) 是奇函数,它在(0,+∞)上是增函数(D) 是偶函数,它在(0,+∞)上是增函数(17)如果函数f (x )=x 2+bx +c 对任意实数t 都有f (2+t )=f (2-t ),那么( )(A) f (2)<f (1)<f (4) (B) f (1)<f (2)<f (4) (C) f (2)<f (4)<f (1)(D) f (4)<f (2)<f (1)(18)已知长方体的全面积为11,十二条棱长度之和为24,则这个长方体的一条对角线长为( )(A) 32(B)14(C) 5 (D) 6二.填空题:本大题共5小题;每小题3分,共15分,把答案填在题中横线上.(19)]31)1(2719131[lim 1n n n -∞→-+++-的值为_______ (20)已知α在第三象限且tg α=2,则cos α的值是_________(21)方程xx3131++-=3的解是________ (22) 设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则ST的值为_______(23)焦点为F 1(-2,0)和F 2(6,0),离心率为2的双曲线的方程是___________三.解答题:本大题共5小题;共51分.解答应写出文字说明、演算步骤(24)(本小题满分9分)求sin 220º+ cos 280º+3sin20ºcos80º的值. (25)(本小题满分10分) 设z ∈C ,解方程z -2|z |=-7+4i.(26)(本小题满分10分)如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E、F分别为棱AA1与CC1的中点,求四棱锥的A1-EBFD1的体积.(27)(本小题满分10分)在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在直线的方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.(28)(本小题满分12分)设等差数列{a n}的前n项和为S n.已知a3=12,S12>0,S13<0.(Ⅰ)求公差d的取值范围;(Ⅱ)指出S1,S2,…S12中哪一个值最大,并说明理由.参考答案及评分标准说明:一.本解答指出了每题所要考查的主要知识和能力,并给出了一种或几种较为常见的解法,如果考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准制定相应评分细则.二.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度时,可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.三.为了阅卷方便,本试题解答中的推导步骤写得较为详细,允许考生在解题过程中合理省略非关键性的推导步骤.四.解答右端所注分数,表示考生正确做到这一步应得的累加分数.五.只给整数分数.一、选择题.本题考查基本知识和基本运算.每小题3分,满分54分.(1)A (2)D (3)D (4)C (5)D (6)B (7)B (8)D (9)D(10)D (11)B (12)A (13)C (14)D (15)D (16)C (17)A (18)C二、填空题.本题考查基本知识和基本运算.每小题3分,满分15分.(19)41 (20)55- (21)x =-1 (22)12815(23)1124)2(22=--y x三、解答题(24)本小题主要考查三角函数恒等变形知识和运算能力.满分9分. 解 sin 220º+cos 280º+3sin 220ºcos80º=232160cos 1240cos 1+++- (sin100º-sin60º) ——3分 =1+21(cos160º-cos40º)+23sin100º-43 ——5分=41-21·2sin100ºsin60º+23sin100º ——7分=41-23sin100º+23sin100º=41. ——9分 (25)本小题主要考查复数相等的条件及解方程的知识.满分10分. 解 设 z =x +yi (x ,y ∈R ). 依题意有x +yi -222y x +=-7+4i ——2分由复数相等的定义,得⎪⎩⎪⎨⎧=-=+-.47222y y x x ——5分 将②代入①式,得 x -2162+x =-7. 解此方程并经检验得 x 1=3, x 2=35. ——8分 ①②∴ z 1 =3+4i , z 2=35+4i . ——10分 (26)本小题主要考查直线与直线,直线与平面,平面与平面的位置关系,以及空间想象能力和逻辑推理能力.满分10分.解法一 ∵ EB =BF =FD 1=D 1E =22)2(a a +=25a , ∴ 四棱锥A 1-EBFD 1的底面是菱形. ——2分 连结A 1C 1、EF 、BD 1,则A 1C 1∥EF .根据直线和平面平行的判定定理,A 1C 1平行于A 1-EBFD 1的底面,从而A 1C 1到底面EBFD 1的距离就是A 1-EBFD 1的高 ——4分设G 、H 分别是A 1C 1、EF 的中点,连结D 1G 、GH ,则FH ⊥HG , FH ⊥HD 1根据直线和平面垂直的判定定理,有 FH ⊥平面HGD 1,又,四棱锥A 1-EBFD 1的底面过FH ,根据两平面垂直的判定定理,有A 1-EBFD 1的底面⊥平面HGD 1.作GK ⊥HD 1于K ,根据两平面垂直的性质定理,有GK 垂直于A 1-EBFD 1的底面. ——6分 ∵ 正方体的对角面AA 1CC 1垂直于底面A 1B 1C 1D 1,∴ ∠HGD 1=90º. 在Rt △HGD 1内,GD 1=22a ,HG =21a ,HD 1=21BD =23a . ∴23a ·GK =21a ·22a ,从而GK =66a . ——8分 ∴ 11EBFD A V -=311EBFD S 菱形·GK =31·21·EF ·BD 1·GK =61·2a ·3a ·66a =61a 3 ——10分解法二 ∵ EB =BF =FD 1=D 1E =22)2(aa +=25a ,∴ 四菱锥A 1-EBFD 1的底面是菱形. ——2分 连结EF ,则△EFB ≌△EFD 1.∵ 三棱锥A 1-EFB 与三棱锥A 1-EFD 1等底同高, ∴ 111EFD A EFB A V V --=.∴ EFB A EBFD A V V --=1112. ——4分 又 11EBA F EFB A V V --=,∴ 1112EBA F EBFD A V V --=, ——6分 ∵ CC 1∥平面ABB 1A 1,∴ 三棱锥F -EBA 1的高就是CC 1到平面ABB 1A 1的距离,即棱长a . ——8分 又 △EBA 1边EA 1上的高为a .∴ 11EBFD A V -=2·31·1EBA S ∆·a =61a 3. ——10分 (27)本小题主要考查有关直线方程的知识及综合运用知识的能力.满分10分.解 由 ⎩⎨⎧==+-.0,012y y x得 顶点A (-1,0). ——2分 又,AB 的斜率 k AB =)1(102---=1.∵ x 轴是∠A 的平分线,故AC 的斜率为-1,AC 所在直线的方程为y =-(x +1) ① ——5分 已知BC 上的高所在直线的方程为x -2y +1=0,故BC 的斜率为-2,BC 所在的直线方程为y -2=-2(x -1) ② ——8分 解①,②得顶点C 的坐标为(5,-6). ——10分 (28)本小题考查数列、不等式及综合运用有关知识解决问题的能力.满分12分. 解(Ⅰ)依题意,有2)112(1212112-⨯+=a S ·d >0,2)113(1313113-⨯+=a S ·d <0. 即⎩⎨⎧<+>+.06,011211d a d a ——4分 由a 3=12,得a 1+2d =12. ③ 将③式分别代入①、②式,得⎩⎨⎧<+>+.03,0724d d 解此不等式组得 -.3724-<<d ——6分 (Ⅱ)解法一 由d <0可知 a 1> a 2> a 3>…> a 12> a 13.因此,若1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0,则S n 就是S 1,S 2,…,S 12中的最大值. ——9分 由于 S 12=6(a 6+a 7)>0, S 13=13a 7<0, 即 a 6+a 7>0, a 7<0,由此得 a 6>-a 7>0. 因 a 6>0,a 7<0.故在S 1,S 2,…,S 12中S 6的值最大.(Ⅱ)解法二 S n =na 1+d n n 2)1(- =n (12-2d )+21n (n -1)d=2d[n -21(5-d 24)]2-2)]245(21[2d d -,∵ d <0, ∴ [n -21(5-d24)]2最小时,S n 最大. ——9分 ①②当 -3724-<<d 时 6<21(5-d24)<6.5, ∴ 正整数n =6时[n -21(5-d24)]2最小,∴ S 6最大. ——12分 (Ⅱ)解法三 由d <0可知a 1> a 2> a 3>…> a 12> a 13.因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0,则S n 就是S 1,S 2,…,S 12中的最大值. ——9分⎪⎪⎩⎪⎪⎨⎧<⨯+>⨯+⇒⎩⎨⎧<>021213130211121200111312d a d a S S ⎪⎩⎪⎨⎧<+>->+⇒0602511d a d d a ⎩⎨⎧<>⇒.0076a a故在S 1,S 2,…,S 12中S 6的值最大. ——12分 注:如果只答出S 6的值最大,而未说明理由者,在(Ⅱ)中只给3分.。
2011年普通高等学校招生全国统一考试(陕西卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
一、选择题(每小题5分,共40分)1.已知全集U ={1,2,3,4,5},集合M ={1,2,3},N ={3,4,5},则M ∩(ðU N )=( )A. {1,2}B.{4,5}C.{3}D.{1,2,3,4,5} 2. 复数z=i 2(1+i)的虚部为( )A. 1B. iC. -1D. - i3.正项数列{a n }成等比,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是( )A. -24B. 21C. 24D. 48 4.一组合体三视图如右,正视图中正方形 边长为2,俯视图为正三角形及内切圆,则该组合体体积为( )A. B.43πC. 43πD. 5.双曲线以一正方形两顶点为焦点,另两顶点在双曲线上,则其离心率为( )A. B.C. D. 16.在四边形ABCD 中,“AB =2DC”是“四边形ABCD 为梯形”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 7.设P 在[0,5]上随机地取值,求方程x 2+px +1=0有实根的概率为( )A. 0.2B. 0.4C. 0.5D. 0.6 8.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,|φ|<2π) 的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=5sin(6πx +6π) B.f (x )=5sin(6πx -6π) C.f (x )=5sin(3πx +6π) D.f (x )=5sin(3πx -6π)二、填空题:(每小题5分,共30分)9.直线y =kx +1与A (1,0),B (1,1)对应线段有公 共点,则k 的取值范围是_______. 10.记nxx )12(+的展开式中第m 项的系数为m b ,若432b b =,则n =__________. 11.设函数31()12x f x x -=--的四个零点分别为1234x x x x 、、、,则1234()f x x x x =+++ ;12、设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 11.211lim______34x x x x →-=+-. 14. 对任意实数x 、y ,定义运算x *y =ax +by +cxy ,其中 a 、b 、c 为常实数,等号右边的运算是通常意义的加、 乘运算.现已知2*1=3,2*3=4,且有一个非零实数m , 使得对任意实数x ,都有x *m =2x ,则m = .三、解答题:15.(本题10分)已知向量a =(sin(2π+xx ),b =(sin x ,cos x ), f (x )= a ·b .⑴求f (x )的最小正周期和单调增区间; ⑵如果三角形ABC 中,满足f (AA 的值.16.(本题10分)如图:直三棱柱(侧棱⊥底面)ABC —A 1B 1C 1中, ∠ACB =90°,AA 1=AC=1,CD ⊥AB,垂足为D . ⑴求证:BC ∥平面AB 1C 1; ⑵求点B 1到面A 1CD 的距离.17.(本题10分)旅游公司为4个旅游团提供5条旅游线路,每个旅游团任选其中一条. (1)求4个旅游团选择互不相同的线路共有多少种方法; (2)求恰有2条线路被选中的概率;(3)求选择甲线路旅游团数的数学期望.18. (本题10分) 数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =4n . ⑴求通项a n ;⑵求数列{a n }的前n 项和 S n .19.(本题12分)已知函数f (x )=a ln x +bx ,且f (1)= -1,f ′(1)=0, ⑴求f (x );⑵求f (x )的最大值; ⑶若x >0,y >0,证明:ln x +ln y ≤32xy x y ++-.20.(本题14分)设21,F F 分别为椭圆)0(1:2222>>=+b a by a x C 的左、右两个焦点,若椭圆C上的点)到F 1,F 2两点的距离之和等于4. ⑴写出椭圆C 的方程和焦点坐标; ⑵过点P (1,14)的直线与椭圆交于两点D 、E ,若DP=PE ,求直线DE 的方程; ⑶过点Q (1,0)的直线与椭圆交于两点M 、N ,若△OMN 面积取得最大,求直线MN 的方程.21. (本题14分) 对任意正实数a 1、a 2、…、an ;求证 1/a 1+2/(a 1+a 2)+…+n/(a 1+a 2+…+a n )<2 (1/a 1+1/a 2+…+1/a n )数学答案一、选择题:.ACCD BAD A二、填空题:本题主要考查基础知识和基本运算.每小题4分,共16分. 9.[-1,0] 10.5 11.19 12. 2 13.1514. 3 三、解答题:15.本题考查向量、二倍角和合成的三角函数的公式及三角函数性质,要求学生能运用所学知识解决问题. 解:⑴f (x )= sin x cos x+2+2cos2x = sin(2x+3π)+2………T=π,2 k π-2π≤2x+3π≤2 k π+2π,k ∈Z , 最小正周期为π,单调增区间[k π-512π,k π+12π],k ∈Z .…………………… ⑵由sin(2A+3π)=0,3π<2A+3π<73π,……………∴2A+3π=π或2π,∴A =3π或56π……………………16.、本题主要考查空间线线、线面的位置关系,考查空间距离角的计算,考查空间想象能力和推理、论证能力,同时也可考查学生灵活利用图形,建立空间直角坐标系,借助向量工具解决问题的能力.⑴证明:直三棱柱ABC —A 1B 1C 1中,BC ∥B 1C 1,又BC ⊄平面A B 1C 1,B 1C 1⊂平面A B 1C 1,∴B 1C 1∥平面A B 1C 1;……………… ⑵(解法一)∵CD ⊥AB 且平面ABB 1A 1⊥平面AB C,∴CD ⊥平面ABB 1A 1 ,∴CD ⊥AD 且CD ⊥A 1D , ∴∠A 1DA 是二面角A 1—CD —A 的平面角,在R t △∴又CD ⊥AB ,∴AC 2=AD×AB∴AA 1=1,∴∠DA 1B 1=∠A 1DA=60°,∠A 1B 1A=30°,∴A B 1⊥A 1D 又CD ⊥A 1D ,∴AB 1⊥平面A 1CD ,设A 1D ∩AB 1=P,∴B 1P 为所求点B 1到面A 1CD 的距离. B 1P=A 1B 1cos ∠A 1B 1cos30°=32. 即点1B 到面CDA 1的距离为23.…………………………………………………(2)(解法二)由V B 1-A 1CD =V C -A 1B 1D =13×12×36,而cos ∠A 1CD=2×33, S △A 1CD =12333,设B 1到平面A 1CD 距离为h ,则13×3h=6,得h =32为所求.⑶(解法三)分别以CA 、CB 、CC 1所在直线为x 、y 、z 轴建立空间直角坐标系(如图)则A (1,0,0),A 1(1,0,1),C (0,0,0),C 1(0,0,1), B (00),B 1(01),∴D (230)1CB =(01),设平面A 1CD 的法向量n =(x ,y ,z ),则13200n CD x n CA x z ⎧⋅==⎨⋅=+=⎩,取n =(1,-1) 点1B 到面CD A 1的距离为d =1n CB n⋅ 23= ……………………………………17.本题主要考查排列,典型的离散型随机变量的概率计算和离散型随机变量分布列及期望等基础知识和基本运算能力.解:(1)4个旅游团选择互不相同的线路共有:A 54=120种方法; …(2)恰有两条线路被选中的概率为:P 2=2454(22)285125C ⋅-= … (3)设选择甲线路旅游团数为ξ,则ξ~B(4,15)∴期望E ξ=np =4×15=45……………… 答: (1)线路共有120种,(2)恰有两条线路被选中的概率为0.224, (3)所求期望为0.8个团数.………………………18.本题主要考查数列的基础知识,考查分类讨论的数学思想,考查考生综合应用所学知识创造性解决问题的能力.解:(1)a 1+2a 2+22a 3+…+2n -1a n =4n ,∴a 1+2a 2+22a 3+…+2n a n +1=4n +1,相减得2n a n +1=3×4n , ∴a n +1=3×2n , 又n =1时a 1=4,∴综上a n =14(1)32(2)n n n -=⎧⎨⨯≥⎩为所求;……………………… ⑵n ≥2时,S n =4+3(2n -2), 又n =1时S 1=4也成立,∴S n =3×2 n -2………………12分19.本题主要考查函数、导数的基本知识、函数性质的处理以及不等式的综合问题,同时考查考生用函数放缩的方法证明不等式的能力.解:⑴由b = f (1)= -1, f ′(1)=a +b =0, ∴a =1,∴f (x )=ln x -x 为所求; ……………⑵∵x >0,f′(x )=1-1=1x -,∴f (x )在x =1处取得极大值-1,即所求最大值为-1; …………… ⑶由⑵得ln x ≤x -1恒成立, ∴ln x +ln y =ln 2xy +ln ln 2x y +≤12xy -+112x y -+-=32xy x y ++-成立………20.本题考查解析几何的基本思想和方法,求曲线方程及曲线性质处理的方法要求考生能正确分析问题,寻找较好的解题方向,同时兼顾考查算理和逻辑推理的能力,要求对代数式合理演变,正确分析最值问题.解:⑴椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a=4,即a=2.;又点) 在椭圆上,因此22314 1.2b+=得b 2=1,于是c 2=3; 所以椭圆C 的方程为22121,(4x y F F +=焦点,……… ⑵∵P 在椭圆内,∴直线DE 与椭圆相交, ∴设D(x 1,y 1),E(x 2,y 2),代入椭圆C 的方程得x 12+4y 12-4=0, x 22+4y 22-4=0,相减得2(x 1-x 2)+4×2×14(y 1-y 2)=0,∴斜率为k =-1 ∴DE 方程为y -1= -1(x -14),即4x +4y =5;……… (Ⅲ)直线MN 不与y轴垂直,∴设MN 方程为my =x -1,代入椭圆C 的方程得 (m 2+4)y 2+2my-3=0, 设M(x 1,y 1),N(x 2,y 2),则y1+y 2=-224m m +, y 1y 2=-234m +,且△>0成立. 又S △OMN =12|y 1-y 2|=1224m +,设t 则 S △OMN =21t t+,(t +1t )′=1-t -2>0对t t t +1t取得最小,S △OMN 最大,此时m =0,∴MN 方程为x =1……………。
2011 年陕西省高考试题文科数学高考真题陕西省高考试题文科)试题(2011 年陕西省高考试题(文科)数学2011 年 6 月10 日编辑:孙老师选择题:在每小题给出的四个选项中,只有一项是符合题目要求的本大题共10 小题,(小题,一、选择题:在每小题给出的四个选项中,每小题5 分,共50 分). 1. 设a,b 向量,命题“若a = ?b ,则a = b ”的逆命题是()(A)若a = ?b ,则a = b (B)若 a = ?b ,则a = b (C)若a = b ,则a ≠ ?b (D)若a = b ,则a = ?b 2. 设抛物线的顶点在原点,准线方程为x = ?2 ,则抛物线的方程是()(A)y = ?8 x (B)y = ?4 x (C)y = 8 x (D)y = 4 x 2 2 2 2 3. 设0 < a < b ,则下列不等式中正确的是()(A)a < b < ab < a+b a+b <b (B)a < ab < 2 2 a+b a+b <b (D)ab < a < 2 2 (C)a < 1 ab < b < 4. 函数y = x 3 的图像是()y 1 O 1 1 y 1 O 1 y 1 O 1 y x x x O 1 x (A)(B)(C)(D)5. 某几何体的三视图如图所示,则它的体积为()2π (A)8 ? 3 (B)8 ? 2 2 π 3 主视图左视图(C)8 ? 2π (D)2 2π 3 俯视图共5 页,第1 页2011 年陕西省高考试题6. 方程x = cos x 在( ?∞, +∞ ) 内()(A)没有根(B)有且仅有一根文科数学高考真题(C)有且有两根(D)有无穷多个根7. 如右框图,当x1 = 6 ,x2 = 9 ,p = 8.5 时x3 等于()开始(A)7(B)8 (C)10(D)11 8. 设集合M = y y = cos 2 x ? sin 2 x , x ∈R ,输入x1 , x2 , x3 { } 否x1 ? x2 < x2 ? x3 ? x ? N = ?x < 1, i为虚数单位,x ∈R ? ,? i ? 则M I N 为()(A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1] 是p= x1 + x2 2 p= x2 + x3 2 输出p 结束9. 设( x1 , y1 ) ,( x2 , y2 ) ,…,( xn , yn ) 是变量x 和y 的n 个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是()(A)直线l 过点( x, y ) l (B)x 和y 的相关系数为直线l的斜率(C)x 和y 的相关系数在0 到1 之间(D)当n 为偶数是,分布在l两侧的样本点的个数一定相同10. 植树节某班20 名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10 米,开始时需要将树苗集中放置在某一树坑旁边,现将树坑从 1 到20 一次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编....号为()(A)○和○(B)○和○(C)○和○(D)○和○ 1 20 9 10 9 11 10 11 选择题答案o y x 1 2 3 4 5 6 7 8 9 10 共5 页,第2 页2011 年陕西省高考试题二、填空题文科数学y 高考真题11.设f ( x ) = lg x ,x > 0 ,10 x ,x ≤ 0 ,则f ( f ( ?2) ) = _______. A(1,1) B ( 5, 2) 12.如图,点( x, y ) 在四边形ABCD 内部和边界上运动,那么2x ? y 的最小值为_______. 13.观察下列等式C ( 5,1) O x D(1,0) 1=1 2+3+ 4 = 9 3 + 4 + 5 + 6 + 7 = 25 4 + 5 + 6 + 7 + 8 + 9 + 10 = 49 照此规律,第五个等式应为_________________________________. 14.设n ∈N + ,一元二次方程x 2 ? 4 x + n = 0 有整数根的充要条件是n = _________. ..15.考生注意:请在下列三题中任选一题作答,如多多做,则按所作的第一题评分)(考生注意:请在下列三题中任选一题作答,如多多做,则按所作的第一题评分)A.(不等式选做题)若不等式x + 1 + x ? 2 ≥ a 对任意x ∈R 恒成立,则 a 的取值范围是___________. B.(几何证明选做题)如图,∠B = ∠D ,AE ⊥BC ,B A E D C ∠ACD = 90°,且AB = 6 ,AC = 4 ,AD = 2 ,则AE = _________. C.(坐标系与参数方程选做题)直角坐标系xoy 中,以原点为极点,x 轴的正半轴建立极坐标系,设点A,B 分别在曲线C1 :则AB 的最小值为________. 小题,三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6 小题,共75 分). 解答题:解答应写出文字说明、证明过程或演算步骤(16.(本小题满分12 分)如图,在?ABC 中,∠ABC=45°,A A x = 3 + cos θ (θ 为参数) 和曲线C2 :ρ =1 上,y = sin θ ∠BAC=90°,AD 是BC 边上的高,沿AD 把?ABD 折起,使∠BDC=90° . (I)证明:平面ADB ⊥平面BDC ;B D C B D C (II)若BD=1,求三棱锥D—ABC 的表面积. 共5 页,第 3 页2011 年陕西省高考试题17.(本小题满分12 分)设椭圆C :文科数学高考真题x2 y2 3 + 2 = 1 ( a > b > 0) ,过点(0, 4) ,离心率为. 2 a b 5 (I)求 C 的方程;(II)求过点(3, 0) ,且斜率为 4 的直线被C 所截的线段的中点坐标. 5 18.(本小题满分12 分)叙述并证明余弦定理. 19.(本小题满分12 分)如图,从点P (0, 0) 作x 轴的垂线交曲线y = e 于点 1 x y Q1 Q2 Q4 Q3 y = ex Q1 (0,1) ,曲线在Q1 点处的切线于x 轴交于P2 点,再从P2 点作x 轴的垂线交曲线于Q2 点,依次重复上述过P4 P3 P 2 P 1 O x 程得到一系列的点:P , Q1 ;P2 , Q2 ;… ;Pn , Qn ,记Pk 点的坐标为( xk , 0) 1 ( k = 1, 2, …,n ) . (I)试求xk 于xk ?1 的关系(2 ≤ k ≤ n ) ;(II)求PQ1 + P2Q2 + PQ3 + … + PnQn . 1 3 共5 页,第4 页2011 年陕西省高考试题20.(本小题满分13 分)如图,A 地到火车站共有两条路径L1 文科数学L1 A 高考真题火车站和L2 现随机抽取100 位从 A 地到达火车站的人进行调查,调查结果如下:所用时间(分钟)选择L1 的人数选择L2 的人数10~20 6 0 20~30 12 4 30~40 18 16 L2 40~50 12 16 50~60 12 4 (I)估计40 分钟内不能赶到火车站的概率;..(II)分别求通过路径L1 和L2 所用时间落在表中各时间段内的频率;(III)现甲、乙两人分别有40 分钟和50 分钟时间用于赶往火车站,为了尽量最大可能在允许的时间内赶到火车站,是通过计算说明,他们应如何选择各自的路径. 21.(本小题满分14 分)设 f ( x ) = ln x ,g ( x ) = f ( x ) + f '( x ) . (I)求g ( x ) 的单调区间和最小值;(II)讨论g ( x ) 与g ( ) 的大小关系;1 x (III)求 a 的取值范围,使得g (a ) ? g ( x) < 1 对任意x > 0 成立. a 共 5 页,第5 页。