一元一次不等式1
- 格式:doc
- 大小:47.50 KB
- 文档页数:2
一元一次不等式(1)【知识梳理】:1.不等式 :-----------连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的--------的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的------,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的----------.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的--------------.如果,0a b c >>,那么__ac bc (或___a bc c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的-----------.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
一元一次不等式与一次函数
一元一次不等式和一次函数是初中数学中的两个重要概念,它们的关系如下:
一元一次不等式:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的不等式,例如:2x+1>5 或者x-3<7。
一次函数:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的函数,例如:y=2x+1 或者y=x-3。
这两个概念之间的关系在于,我们可以将一元一次不等式转化为一次函数的形式进行分析和解决。
具体来说,我们可以将不等式中的未知数视为函数的自变量x,将不等式的两边分别视为函数的因变量y,例如:2x+1>5 可以转化为y=2x+1 和y=5 两个函数,我们可以画出这两个函数的图像,通过比较函数图像来解决不等式的解集。
例如,将不等式x-3<7 转化为一次函数的形式,得到y=x-3 和y=7 两个函数,我们可以在坐标系中画出这两个函数的图像,发现两个函数的交点在x=10 处,因此不等式的解集为x<10。
总之,一元一次不等式和一次函数之间有着紧密的联系,将不等式转化为函数的形式可以帮助我们更好地分析和解决问题。
一元一次的不等式1 一元一次不等式的概念只含有一个未知数,并且未知数的次数是1的不等式,叫作一元一次不等式,例如:5032>x 是一个一元一次不等式。
①一元一次不等式满足的条件:左右两边都是整式(单项式或多项式)。
例如:21>x不是一元一次不等式,因为未知数x 在分母中,使得该不等式的左边不是整式形式,只含有一个未知数c ,未知数的最高次数为1.②一元一次不等式与一元一次方程既有区别又有联系。
相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式。
不同点:一元一次不等式表示不等关系,由不等号“<”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向。
2 一元一次不等式的解法(1)解不等式:求不等式解的过程叫作解不等式。
(2)一元一次不等式的解法: 与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为a x <(或a x >)的形式,解一元一次不等式的一般步骤如下:(1)去分母,(2)去括号,(3)移项,(4)化为b ax >(或b ax <)的形式(其中0≠a ),(5)两边同除以未知数的系数,得到不等式的解集。
但我们要注意的是:解不等式根据不等式的基本性质,在不等式两边同乘(或除以)同一个负数时,必须改变不等号的方向;解方程依据的是等式的性质。
具体将它们的解法比较如下:一元一次方程和一元一次不等式的解法比较一般步骤解一元一次方程解一元一次不等式 理论依据注意事项 理论依据注意事项 去分母等式的性质2防止漏乘不含分母的项不等式的基本性质2(乘数正数)或基本性质3(乘除负数)防止漏乘不含分母的项,乘(除)负数时,不等号要改变方向去括号 乘法的分配律,数式的运算法则。
防止漏乘括号内的项和出现符号错误 乘法的分配律,数式的运算法则防止漏乘括号内的项和出现符号错误 移项 等式的性质1 移项要改变符号 不等式的基本性质1 移项要改变符号 合并合并同类项防止计算错误 合并同类项防止计算错误 化系数为1等式的性质2注意不要颠倒被除数和除数的位置不等式的基本性质2(乘除正数)或基本性质3(乘除负数)注意不要颠倒被除数和除数的位置;乘(除以)负数时,不等号要改变方向。
一元一次不等式一元一次不等式是初中数学中的一个重要概念。
它是一种用来描述数之间大小关系的数学式子,由一个未知数和一个或多个常数构成。
本文将从基本概念、求解方法和应用场景三个方面介绍一元一次不等式的相关知识。
1. 基本概念一元一次不等式是指由一个未知数和一个或多个常数构成的不等式。
一元一次不等式的一般形式为Ax + B > 0(或< 0),其中A和B为实数,且A ≠ 0。
在求解一元一次不等式时,需要注意以下几个基本规则:- 若A > 0,则不等式两端同时乘以正数(或正数的等价形式)不改变不等式的方向。
- 若A < 0,则不等式两端同时乘以负数(或负数的等价形式)会改变不等式的方向。
- 不等式两端同时加(或减)同一个数值,不等式的方向不变。
2. 求解方法对于一元一次不等式的求解,我们可以采用图像法、试值法或代数法等不同方法。
2.1 图像法图像法是一种直观的方法,通过绘制函数图像来确定不等式的解。
对于一元一次不等式Ax + B > 0(或< 0),我们可以绘制出函数y = Ax + B 的图像,并根据图像在数轴上的位置来确定不等式的解集。
2.2 试值法试值法是一种简单有效的方法,在不等式两边选择一些特定的数值进行代入,然后判断不等式的成立情况。
通过不断尝试,最终找到满足不等式的解集。
2.3 代数法代数法是一种更为精确的方法,它基于等价变形和性质运算对不等式进行求解。
通过将一元一次不等式进行等价变形,将未知数的系数化为1,从而得到不等式的解集。
3. 应用场景一元一次不等式在实际问题中有着广泛的应用。
以下是两个常见的应用场景:3.1 财务管理在财务管理中,一元一次不等式可以用来描述投资、贷款或收入等方面的问题。
例如,假设一个人每月的收入为x元,他将其中的40%用于生活费,那么可以通过不等式0.4x > 1000 来计算他每月的最低收入。
3.2 生产与销售在生产与销售中,一元一次不等式可以用来描述成本、销售量和利润等关系。
一元一次方程不等式解法一元一次方程不等式是数学中比较基础的知识,对于初学者来说,理解并掌握它是非常重要的。
本文将为大家介绍一元一次方程不等式的概念、解法以及常见的问题和注意事项。
一、什么是一元一次方程不等式?一元一次方程不等式是指一个只有一个未知数x的不等式,其形式一般为ax + b > 0或ax + b < 0,其中a和b为已知数且a ≠ 0。
二、一元一次方程不等式的解法1. 移项法将不等式中的常数项b移到一边,未知数项ax移到另一边,然后将方程两边同除以系数a。
例如,对于ax + b > 0,我们可将b移到另一边,得到ax > -b,再将两边同除以a,即可得到x > -b/a的解。
2. 加减法一元一次方程不等式的加减法是指将不等式两边同时加上或减去同一量,从而改变不等式符号后比较大小。
例如,对于ax + b < 0,我们可将b移到另一边,得到ax < -b,再将两边同时减去b/a,即可得到x < -b/a的解。
三、一元一次方程不等式的常见问题和注意事项1. 一元一次方程不等式的解可能是整数、有理数或无理数。
2. 当a为正数时,不等式ax + b > 0的解集为x > -b/a,不等式ax + b < 0的解集为x < -b/a。
3. 当a为负数时,不等式ax + b > 0的解集为x < -b/a,不等式ax + b < 0的解集为x > -b/a。
4. 在解一元一次方程不等式时,最好画出数轴,从而更直观地判断解的区间。
5. 如果在方程中遇到分母为0的情况,就必须将其排除在方程的解的范围之外。
综上所述,理解一元一次方程不等式的概念和解法,以及注意事项,有助于我们更好地学习数学,提高解题能力。
希望本文能为大家提供一些参考和帮助。
一元一次不等式一元一次不等式是数学中的基本概念之一,它在解决实际问题中具有广泛的应用。
本文将详细介绍一元一次不等式的定义、性质以及解法,并通过实例进行说明。
1. 一元一次不等式的定义一元一次不等式是指一个变量的一次方程与不等式的组合,形如ax + b > 0(或 < 0),其中a和b为已知实数,且a ≠ 0。
这种不等式通常用于表示某些量的范围或条件。
2. 一元一次不等式的基本性质(1)性质1:两个一元一次不等式可以进行加减运算,得到的结果仍然是一个一元一次不等式。
(2)性质2:一元一次不等式两边同时乘(或除)一个正数,不等式的方向不变;两边同时乘(或除)一个负数,不等式的方向发生改变。
(3)性质3:对于一元不等式ax + b > 0,如果a > 0,则该不等式的解集是x > -b / a;如果a < 0,则该不等式的解集是x < -b / a。
3. 解一元一次不等式的步骤(1)将不等式转化为等式:将不等式中的大于号(或小于号)改为等号。
(2)求解等式:解一元一次方程ax + b = 0,得到方程的解为x = -b / a。
(3)确定解的范围:根据一元一次不等式的性质,确定解的范围。
(4)表示解集:将解的范围写成不等式的形式,并表示为解集。
4. 实例演示假设有一元一次不等式2x - 3 > 5,我们按照上述步骤来解决这个不等式。
(1)转化为等式:2x - 3 = 5。
(2)求解等式:2x = 8,x = 4。
(3)确定解的范围:由于系数2 > 0,所以解的范围为x > 4。
(4)表示解集:解集可以表示为(4, +∞)。
通过以上步骤,我们成功解决了一元一次不等式2x - 3 > 5,得出解集为(4, +∞)。
总结:一元一次不等式在数学中具有广泛的应用,特别是在实际问题的建模和解决过程中。
对于一元一次不等式的解法,我们需要明确其定义和基本性质,然后按照一定的步骤进行求解,最终得到表示解集的形式。
什么是一元一次不等式一元一次不等式(组)是初中数学重要内容之一,与方程、函数、分式及二次根式有着密切的联系,同时也是学生学习的一大难点。
下面是店铺整理的什么是一元一次不等式,欢迎阅读。
什么是一元一次不等式数学名词,用不等号连接,含有个一个未知数,并且含有未知数项的次数都是1的,系数不为0的,左右两边为整式的式子叫做一元一次不等式。
一般地,用符号“=”连接的式子叫做等式。
注意:等式的左右两边是代数式。
一般地,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。
用不等号连接的,含有一个未知数,并且未知数项的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式(linear ineqality with one unknown)。
一元一次不等式的性质(1)不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
数字语言简洁表达不等式的性质——【1.性质1:如果a>b,那么a±c>b±c)】【2.性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c)】【3.性质3:如果a>b,c<0,那么ac一元一次不等式简介概念定义用符号“=”连接的式子叫做等式。
用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。
(不等式中可以含有未知数,也可以不含。
)用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式(linear ineqality with one unknown)。
不等式性质(1)不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
一元一次不等式一元一次不等式是数学中常见的基本类型之一,也是初中代数学的重点内容。
它是由一个未知数的一次项和一个常数项组成的不等式,属于一元一次方程的变体。
通过解一元一次不等式,我们可以找到满足不等式条件的未知数的取值范围。
本文将介绍一元一次不等式的定义、性质以及解题方法。
一、定义和性质一元一次不等式的一般形式为ax + b > 0(或<、≤、≥)、ax + b < 0(或>、≤、≥)、ax + b = 0(或≠),其中a和b为实数,x为未知数。
不等号的方向表示了不等式条件的性质(大于、小于、大于等于、小于等于),等号表示等于或者不等于。
一元一次不等式的性质如下:1. 两个一元一次不等式如果它们的不等号方向相同,则可以进行相加、相减操作。
这意味着我们可以将两个不等式合并成一个更复杂的不等式。
2. 若不等式的两个方程相等,则不等式仍成立。
例如,若ax + b =cx + d,则对于任意实数x,ax + b > cx + d成立的话,ax + b ≥ cx + d也成立。
3. 对不等式的两边同时乘(或除以)正数时,不等号方向保持不变;对不等式的两边同时乘(或除以)负数时,不等号方向需要反转。
4. 可以将一元一次不等式转化为一元一次方程进行求解。
当不等式的解集为实数集时,解集用区间表示。
5. 解不等式时需要根据不等号的方向来确定解的范围。
大于(或小于)的不等式,解的范围为开区间;大于等于(或小于等于)的不等式,解的范围为闭区间。
二、解题方法解一元一次不等式的关键在于确定不等式的解集范围。
下面介绍几种常用的解题方法。
1. 逻辑法逻辑法是解一元一次不等式的基本方法,通过借助数轴的正负性和数的大小关系来判断不等式解的范围。
具体步骤如下:1)根据不等式关系(大于、小于、大于等于、小于等于)将不等式化简为ax + b > 0(或<、≤、≥)的形式;2)根据a的正负性和常数项b的符号,选择合适的数轴区间进行讨论;3)根据a的正负性,确定数轴上方程ax + b = 0的根点,并标记在数轴上;4)根据符号确定不等式的解集范围,并用数轴表示出来。
一元一次不等式的解法不等式是数学中常见的一种数值关系表达方式,用于描述数之间大小关系。
一元一次不等式是指只有一个变量、次数最高是一次的不等式。
本文将介绍一元一次不等式的解法。
一、用图像法解一元一次不等式要解一元一次不等式,可以通过作图的方式来帮助我们理解和找到解的区间。
下面以例题来说明:例1:解不等式2x + 3 > 5.首先,我们可以将不等式转化为方程,即2x + 3 = 5,解得x = 1.接下来,我们可以绘制x轴和y轴组成的坐标系,然后在x = 1的位置画一条虚线,并标注1点。
接着,选择一个测试点,此处取x = 0,将该值代入不等式2x + 3 >5中,得到2(0) + 3 = 3 < 5,是一个错误的结果。
因此,我们得出结论:x < 1是不等式的解。
最后,我们用箭头表示解的范围,即x < 1的区间。
二、用代数法解一元一次不等式除了通过图像法解不等式,我们还可以使用代数法来求解。
下面以例题来说明:例2:解不等式3x - 2 ≤ 7.首先,我们可以将不等式转化为方程,即3x - 2 = 7,解得x = 3.接下来,我们可以根据不等式的性质进行分析。
不等式中带有小于等于的符号,表示解的范围包括等于的情况。
因此,我们得出结论:x ≤ 3是不等式的解。
最后,我们可以将解表示为一个不等式,即x ≤ 3.三、用加减法解一元一次不等式在某些情况下,也可以通过加减法来解一元一次不等式。
下面以例题来说明:例3:解不等式4x - 6 > 10.首先,我们可以将不等式转化为方程,即4x - 6 = 10,解得x = 4.接下来,我们可以通过加减法来进行分析。
在不等式两边同时加上一个相同的数时,不等号的方向不变;在不等式两边同时减去一个相同的数时,不等号的方向也不变。
因此,我们得出结论:x > 4是不等式的解。
最后,我们可以将解表示为一个不等式,即x > 4.结语一元一次不等式是数学中常见的一种数值关系表达方式,解一元一次不等式可以使用图像法、代数法或加减法等不同的方法。
数学一元一次不等式一元一次不等式是初中数学学习中不可避免的一部分,它与一元一次方程一样重要,是学习不等式的基础。
了解一元一次不等式的解法和应用,可以帮助我们在实际问题中更好地分析和解决各种实际问题。
一、一元一次不等式的定义和表示方法一元一次不等式是指只有一个未知数,且未知数的最高次数是1的不等式。
例如:2x+3>5-3x+7≤1x-4<6常用的不等式符号有“<”(小于)、“>”(大于)、“≤”(小于等于)、“≥”(大于等于)、“≠”(不等于)等。
二、一元一次不等式的解法1、加减法原则对于一元一次不等式,加减法原则与一元一次方程相同,即方程两边同时加上或减去同一个数,等式仍然成立,且不等式符号不变。
2、乘除法原则对于一元一次不等式,在乘除法运算中,不等式两端同乘或除以同一个正数,不等式符号不变;若乘或除以负数,则不等式符号需变化。
3、移项法移项法是一种较为常用的不等式求解方法。
移项法的思想是将不等式中含有未知数的项移到一边,将常数项移到另一边。
例如:2x+3>5移项可得:2x>2再除以2,x>1因此,不等式的解集为{x|x>1}。
三、一元一次不等式的应用1、绝对值不等式绝对值不等式是一种特殊的一元一次不等式,它的解法比一般的一元一次不等式更加复杂。
例如:|2x-5|<7有以下两种情况:⑴ 2x-5>0,即x>5/2,此时有2x-5<7,即2x<12,解得x<6,综合起来得:5/2<x<6;⑵ 2x-5<0,即x<5/2,此时有-(2x-5)<7,即2x-5>-7,解得x>-1,综合起来得:x<-1 或 5/2<x。
2、代数式求值通过建立一元一次不等式模型,可以用不等式求解方法求出代数式的取值范围。
例如:(2x-3)/(x+1)>3先将分母移项,得:2x-3>3(x+1)移项并化简,得:x>1因此,当x>1时,原式大于3。
课题:一元一次不等式(一)
主备人: 审核人: 复核人: 课型:新授 总第 课时
【教学目标】会解简单的一元一次不等式,并能在数轴上表示其解集。
【重点、难点】掌握简单的一元一次不等式的解法
【教学过程】 教学笔记 先学后教预习指导
1.不等式的三条基本性质是什么?
2.运用不等式基本性质把下列不等式化成x>a 或x<a 的形式。
①x-4<6 ②2x>x-5 ③ ④
3.什么叫一元一次方程?
解一元一次方程的步骤是什么?
4、什么是一元一次不等式
当堂训练巩固提高c
1.解下列不等式,并把它们的解集分别表示在数轴上:
(1)5x<200; (2)
(3)x-4≥2(x+2) (4)
2)
1(+-x 6431<-x x
x 5
13154+≥-3
5421-<-x x
2.求不等式4(4x+1)≤24的正整数解。
教学笔记
3课本48页1题
(1) (2)
(2) (4)
(5) (6)
达标检测反馈提高
1、请写出解集为3x <的不等式: .(写出一个即可)
2、不等式930x ->的非负整数解是
3、解下列不等式,并把它们的解集在数轴上表示出来:
(1) 1
12x x -+≥ (2)2(3)3(2)x x -+>+
【课堂板书(师)知识归类(生)】。