2016-2017年安徽省阜阳十一中九年级上学期期中数学试卷及答案
- 格式:doc
- 大小:666.50 KB
- 文档页数:26
【人教版】九年级上册期中数学试卷及答案解析 [2]一﹨选择题(每一道小题都给出代号为A﹨B﹨C﹨D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填﹨填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣22.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=193.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=05.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0C.k>1且k≠2D.k<16.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.167.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=28.如图,⊙C过原点O,且与两坐标轴分别交于点A﹨B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.29.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC= 6,则CD的长为()A.7 B.7C.8 D.810.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<二﹨填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为.13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC=.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2 a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是.(只填写正确结论的序号)三﹨解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB﹨AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,已知抛物线y=ax2+bx+3与x轴交于A﹨B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.九年级(上)期中数学试卷参考答案与试题解析一﹨选择题(每一道小题都给出代号为A﹨B﹨C﹨D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填﹨填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣2【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程程x2+x+m2﹣4=0得到m2﹣4=0,解得:m=±2,故选D.【点评】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.2.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=﹣3,x2﹣8x+16=13,(x﹣4)2=13.故选C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC【考点】垂径定理.【分析】先根据垂径定理得CM=DM,,,得出BC=BD,再根据圆周角定理得到∠ACD=∠ADC,而OM与BM的关系不能判断.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,,,∴BC=BD,∠ACD=∠ADC.故选:B.【点评】本题考查了垂径定理,圆心角﹨弧﹨弦之间的关系定理,圆周角定理;熟练掌握垂径定理,由垂径定理得出相等的弧是解决问题的关键.4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=0【考点】根的判别式.【分析】根据一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根判断即可.【解答】解:A﹨∵△=(﹣2)2﹣4×1×(﹣2)>0,∴原方程有两个不相等实数根;B﹨∵△=22﹣4×1×2<0,∴原方程无实数根;C﹨∵△=(﹣2)2﹣4×1×2<0,∴原方程无实数根;D﹨∵△=﹣4×1×2<0,∴原方程无实数根;故选A.【点评】此题考查了根的判别式与方程解的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解.5.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0C.k>1且k≠2D.k<1【考点】根的判别式;一元二次方程的定义.【分析】根据关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,∴△=4+4(k﹣2)>0,解得k>﹣1,∵k﹣2≠0,∴k≠2,∴k的取值范围k>﹣1且k≠2,故选C.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.16【考点】规律型:图形的变化类.【分析】由题意可知:排列组成的图形都是三角形,第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…由此得出第n个图形共有1+2 +3+4+…+n=n(n+1),由此联立方程求得n的数值即可.【解答】解:∵第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…∴第n个图形共有1+2+3+4+…+n=n(n+1),∴n(n+1)=210,解得:n=20.故选:A.【点评】此题考查图形的变化规律,找出图形之间的联系,得出点的排列规律,利用规律解决问题.7.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=2【考点】二次函数图象上点的坐标特征.【分析】因为两点的纵坐标都为4,所以可判此两点是一对对称点,利用公式x=求解即可.【解答】解:∵两点的纵坐标都为4,∴此两点是一对对称点,∴对称轴x===1.故选B.【点评】本题考查了如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式或用公式x=求解.8.如图,⊙C过原点O,且与两坐标轴分别交于点A﹨B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.2【考点】圆内接四边形的性质;含30度角的直角三角形;圆周角定理.【分析】连接OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO 的度数,证明△AOC是等边三角形,即可得出结果.【解答】解:连接OC,如图所示:∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BCO=120°,∠BAO=60°,∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴⊙C的半径=OA=4.故选:A.【点评】本题考查了圆周角定理﹨圆内接四边形的性质﹨等边三角形的判定与性质;熟练掌握圆内接四边形的性质,证明三角形是等边三角形是解决问题的关键.9.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC= 6,则CD的长为()A.7 B.7C.8 D.8【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG ,得出CF=7,又△CDF是等腰直角三角形,从而求出CD.【解答】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD,∴DF=DG,弧AD=弧BD,∴DA=DB.在Rt△AFD和Rt△BGD中,,∴△AFD≌△BGD(HL),∴AF=BG.在△CDF和△CDG中,,∴△CDF≌△CDG(AAS),∴CF=CG.∵AC=6,AB=10,∴BC==8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7.故选B.【点评】本题主要考查了圆周角的性质,圆心角﹨弧﹨弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.关键是正确作出辅助线.10.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<【考点】二次函数图象与系数的关系.【分析】根据开口判断a的符号,根据y轴的交点判断c的符号,根据对称轴b用a表示出的代数式,进而根据当x=2时,得出4a+2b+c=0,用a表示c>﹣1得出答案即可.【解答】解:抛物线开口向上,a>0图象过点(2,4),4a+2b+c=4则c=4﹣4a﹣2b,对称轴x=﹣=﹣1,b=2a,图象与y轴的交点﹣1<c<0,因此﹣1<4﹣4a﹣4a<0,实数a的取值范围是<a<.故选:D.【点评】此题考查二次函数图象与系数的关系,对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.二﹨填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是(﹣3,1).【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:∵抛物线y=﹣(x+3)2+1,∴顶点坐标是(﹣3,1).故答案为:(﹣3,1).【点评】此题考查二次函数的性质,掌握顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h,是解决问题的关键.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为﹣1或4 .【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】把a2﹣3ab﹣4b2=0看作关于a的一元二次方程,利用因式分解法解得a=4b或a=﹣b ,然后利用分式的性质计算的值.【解答】解:(a﹣4b)(a+b)=0,a﹣4b=0或a+b=0,所以a=4b或a=﹣b,当a=4b时,=4;当a=﹣b时,=﹣1,所以的值为﹣1或4.故答案为﹣1或4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是x1=﹣2,x2=3 .【考点】解一元二次方程-【分析】把后面一个方程中的x﹣1看作整体,相当于前面一个方程中的x,从而可得x﹣1=﹣3或x﹣1=2,再求解即可.【解答】解:∵关于x的方程a(x+m)2+c=0的解是x1=﹣3,x2=2(a,m,c均为常数,a≠0),∴方程a(x+m﹣1)2+c=0变形为a[(x﹣1)+m]2+c=0,即此方程中x﹣1=﹣3或x﹣1=2,解得x=﹣2或x=3.故方程a(x+m﹣1)2+c=0的解为x1=﹣2,x2=3.故答案是:x1=﹣2,x2=3.【点评】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC= 100°.【考点】圆周角定理.【分析】由AD=AB,∠BDC=25°,可求得∠ABD的度数,然后由三角形外角的性质,求得∠BAC的度数,又由圆周角定理,求得答案.【解答】解:∵AD=AB,∠BDC=25°,∴∠ABD=∠BDC=25°,∴∠BAC=∠ABD+∠BDC=50°,∴∠BOC=2∠BAC=100°.故答案为:100°.【点评】此题考查了圆周角定理以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于8或4.【考点】垂径定理;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】此题分情况考虑:当三角形的外心在三角形的内部时,根据勾股定理求得BD的长,再根据勾股定理求得AB的长;当三角形的外心在三角形的外部时,根据勾股定理求得B D的长,再根据勾股定理求得AB的长.【解答】解:如图1,当△ABC是锐角三角形时,连接AO并延长到BC于点D,∵AB=AC,O为外心,∴AD⊥BC,在Rt△BOD中,∵OB=10,OD=6,∴BD===8.在Rt△ABD中,根据勾股定理,得AB===8(cm);如图2,当△ABC是钝角或直角三角形时,连接AO交BC于点D,在Rt△BOD中,∵OB=10,OD=6,∴BD===8,∴AD=10﹣6=4,在Rt△ABD中,根据勾股定理,得AB===4(cm).故答案为:8或4.【点评】本题考查的是垂径定理,在解答此题时要注意进行分类讨论,不要漏解.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2 a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是①﹨④.(只填写正确结论的序号)【考点】二次函数图象与系数的关系.【专题】推理填空题;数形结合.【分析】由抛物线的开口方向可确定a的符号,由抛物线的对称轴相对于y轴的位置可得a与b之间的符号关系,由抛物线与y轴的交点位置可确定c的符号;根据抛物线的对称轴与x=﹣1的大小关系可推出2a﹣b的符号;由于x=1时y=a+b+c,因而结合图象,可根据x=1时y的符号来确定a+b+c的符号,根据a﹨x0﹣x1﹨x0﹣x2的符号可确定a(x0﹣x1)(x0﹣x2)的符号.【解答】解:由抛物线的开口向下可得a<0,由抛物线的对称轴在y轴的左边可得x=﹣<0,则a与b同号,因而b<0,由抛物线与y轴的交点在y轴的正半轴上可得c>0,∴abc>0,故①正确;由抛物线的对称轴x=﹣>﹣1(a<0),可得﹣b<﹣2a,即b>2a,故②错误;由图可知当x=1时y<0,即a+b+c<0,故③错误;∵a<0,x0﹣x1>0,x0﹣x2>0,∴a(x0﹣x1)(x0﹣x2)<0,故④正确.综上所述:①﹨④正确.故答案为①﹨④.【点评】本题主要考查二次函数图象与系数的关系,其中a决定于抛物线的开口方向,b决定于抛物线的开口方向及抛物线的对称轴相对于y轴的位置,c决定于抛物线与y轴的交点位置,2a与b的大小决定于a的符号及﹣与﹣1的大小关系,运用数形结合的思想准确获取相关信息是解决本题的关键.三﹨解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先把方程变形得到3x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.【解答】解:(1)(x+5)(x﹣3)=0,x+5=0或x﹣3=0,x+5=0或x﹣3=0,所以x1=﹣5,x2=3;(2)3x(x﹣2)+(x﹣2)=0,(x﹣2)(3x+)=0,x﹣2=0或3x+=0,所以x1=2,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】根据抛物线的对称性得到抛物线与x轴的两交点坐标为(0,0),(8,0),则可设交点式y=ax(x﹣8),然后把顶点坐标代入求出a即可.【解答】解:根据题意得抛物线的对称轴为直线x=4,而抛物线在x轴上截得的线段长为8,所以抛物线与x轴的两交点坐标为(0,0),(8,0),设抛物线解析式为y=ax(x﹣8),把(4,2)代入得a•4•(﹣4)=2,解得a=﹣,所以抛物线解析式为y=﹣x(x﹣8),即y=﹣x2+x.【点评】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.本题的关键是利用对称性确定抛物线与x轴的交点坐标.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.【考点】根的判别式;一元二次方程的解.【专题】新定义.【分析】根据x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,列出方程组,求出m,n 的值,再代入计算即可.【解答】解:根据题意得:解得:,则m2+n2=(﹣2)2+12=5.【点评】本题考查了一元二次方程的解,根的判别式,关键是根据已知条件列出方程组,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?【考点】一元二次方程的应用.【分析】赛制为单循环形式(每两队之间都赛一场),每个小组x个球队比赛总场数=x(x﹣1),由此可得出方程.【解答】解:设初中组共有x个队参加比赛,依题意列方程x(x﹣1)=45,解得:x1=10,x2=﹣19(不合题意,舍去),答:初中组共有10个队参加比赛.【点评】此题考查一元二次方程的实际运用,解决本题的关键是读懂题意,得到总场数与球队之间的关系.21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.【考点】圆心角﹨弧﹨弦的关系;菱形的判定;圆周角定理.【专题】证明题.【分析】(1)根据圆心角﹨弧﹨弦的关系,由=得AB=AC,加上∠ACB=60°,则可判断△ABC是等边三角形,所以A B=BC=CA,于是根据圆心角﹨弧﹨弦的关系即可得到∠AOB=∠BOC=∠AOC;(2)连接OD,如图,由D是的中点得=,则根据圆周角定理得∠AOD=∠BOD=∠ACB=60°,易得△OAD和△OBD都是等边三角形,则OA=AD=OD,OB=BD=OD,所以O A=AD=DB=BO,于是可判断四边形OADB是菱形.【解答】证明:(1)∵=,∴AB=AC,∵∠ACB=60°,∴△ABC是等边三角形,∴AB=BC=CA,∴∠AOB=∠BOC=∠AOC;(2)连接OD,如图,∵D是的中点,∴=,∴∠AOD=∠BOD=∠ACB=60°,又∵OD=OA,OD=OB,∴△OAD和△OBD都是等边三角形,∴OA=AD=OD,OB=BD=OD,∴OA=AD=DB=BO,∴四边形OADB是菱形.【点评】本题考查了圆心角﹨弧﹨弦的关系:在同圆或等圆中,如果两个圆心角﹨两条弧﹨两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了菱形的判定﹨等边三角形的判定与性质和圆周角定理.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB﹨AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.【考点】根的判别式;根与系数的关系;等腰三角形的性质.【分析】(1)先根据题意求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案;(2)根据△ABC的两边AB﹨AC的长是这个方程的两个实数根,设AB=x1=8,得出82﹣8(2m+1)+m(m+1)=0,求出m的值即可.【解答】解:(1)∵△=[﹣(2m+1)]2﹣4m(m+1)=1>0,∴不论m为何值,方程总有两个不相等的实数根.(2)由于无论m为何值,方程恒有两个不等实根,故若要△ABC为等腰三角形,那么必有一个解为8;设AB=x1=8,则有:82﹣8(2m+1)+m(m+1)=0,即:m2﹣15m+56=0,解得:m1=7,m2=8.则当△ABC为等腰三角形时,m的值为7或8.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.【考点】切线的判定;正方形的性质.【分析】(1)首先连接OE,并过点O作OF⊥CD,由OA长为半径的⊙O与BC相切于点E,可得OE=OA,OE⊥BC,然后由AC为正方形ABCD的对角线,根据角平分线的性质,可证得OF=OE=OA,即可判定CD是⊙O的切线;(2)由正方形ABCD的边长为10,可求得其对角线的长,然后由设OA=r,可得OE=EC=r ,由勾股定理求得OC=r,则可得方程r+r=10,继而求得答案.【解答】(1)证明:连接OE,并过点O作OF⊥CD.∵BC切⊙O于点E,∴OE⊥BC,OE=OA,又∵AC为正方形ABCD的对角线,∴∠ACB=∠ACD,∴OF=OE=OA,即:CD是⊙O的切线.(2)解:∵正方形ABCD的边长为10,∴AB=BC=10,∠B=90°,∠ACB=45°,∴AC==10,∵OE⊥BC,∴OE=EC,设OA=r,则OE=EC=r,∴OC==r,∵OA+OC=AC,∴r+r=10,解得:r=20﹣10.∴⊙O的半径为:20﹣10.【点评】此题考查了切线的判定﹨正方形的性质﹨角平分线的性质以及勾股定理.注意准确作出辅助线是解此题的关键.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【考点】二次函数的应用.【专题】综合题.【分析】(1)根据题意可知y与x的函数关系式.(2)根据题意可知y=﹣10﹣(x﹣5‘5)2+2402‘5,当x=5‘5时y有最大值.(3)设y=2200,解得x的值.然后分情况讨论解.【解答】解:(1)由题意得:y=(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5‘5)2+2402‘5.∵a=﹣10<0,∴当x=5‘5时,y有最大值2402‘5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题,是一道综合题.25.如图,已知抛物线y=ax2+bx+3与x轴交于A﹨B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y 得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A﹨B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;。
阜阳市九年级上学期期中数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018九上·沙洋期中) 在探究“尺规三等分角”这个数学名题中,利用了如图,该图中,四边形ABCD是矩形,线段AC绕点A逆时针旋转得到线段AF,CF、BA的延长线交于点E,若∠E=∠FAE,∠ACB=21°,则∠ECD的度数是()A . 7°B . 21°C . 23°D . 34°2. (2分) (2016九上·南开期中) 如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A . 30°B . 40°C . 50°D . 60°3. (2分) (2016九上·南开期中) 如图,已知⊙O的半径为5cm,弦AB=8cm,则圆心O到弦AB的距离是()B . 2cmC . 3cmD . 4cm4. (2分) (2016九上·南开期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A . ac>0B . 当x>1时,y随x的增大而增大C . 2a+b=1D . 方程ax2+bx+c=0有一个根是x=35. (2分) (2016九上·南开期中) 已知二次函数y= (x﹣1)2+4,若y随x的增大而减小,则x的取值范围是()A . x<﹣1B . x>4C . x<1D . x>16. (2分) (2016九上·南开期中) 二次函数y=﹣2x2+4x+1的图象如何平移可得到y=﹣2x2的图象()A . 向左平移1个单位,向上平移3个单位B . 向右平移1个单位,向上平移3个单位C . 向左平移1个单位,向下平移3个单位D . 向右平移1个单位,向下平移3个单位7. (2分) (2017九上·顺义月考) 若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A . x=﹣B . x=1C . x=28. (2分) (2015八下·深圳期中) 如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A . 25°B . 30°C . 35°D . 40°9. (2分) (2016九上·平南期中) 如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A . (1,1)B . (1,2)C . (1,3)D . (1,4)10. (2分) (2016九上·南开期中) 如图,△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A . (﹣1,)B . (﹣1,)或(﹣2,0)C . (,﹣1)或(0,﹣2)D . (,﹣1)11. (2分) (2016九上·南开期中) 已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是()A .B . 且k≠0C .D . 且k≠012. (2分) (2016九上·扬州期末) 如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)如图,△ABC中∠C=90°,AB的垂直平分线DE交BC于点E,D为垂足,且EC=DE,则∠B的度数为________.14. (1分) (2016九上·南开期中) 将二次函数y=x2﹣4x+5化成y=(x﹣h)2+k的形式,则y=________.15. (1分) (2016九上·南开期中) 如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=20°,则∠C的度数是________.16. (1分) (2016九上·南开期中) 如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为________17. (1分) (2016九上·南开期中) 初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…﹣2﹣1012…y…﹣15.5﹣5﹣3.5﹣2﹣3.5…根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=________.18. (1分) (2016九上·南开期中) 如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y 轴,分别与y=x、抛物线交于点A,B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=________.三、解答题 (共8题;共95分)19. (13分) (2017七下·扬州月考) 实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=________;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=________(2)猜想证明:如图3,∠BD C与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度数;(4)②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9 ,若∠BDC=120°,∠BF3C=64°,则∠A的度数为________.20. (15分) (2011·资阳) 如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长;(3)设CE=x,BF=y,写出y关于x的函数关系式(直接写出结果可).21. (10分)(2016·泰安) 如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y= 的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.22. (10分)已知点A(2,a)在抛物线y=x2上在x轴上是否存在点P,使△OAP是等腰三角形?若存在写出P点坐标;若不存在,说明理由.(1)求A点的坐标;(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在写出P点坐标;若不存在,说明理由.23. (5分) (2016九上·南开期中) 如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD的一个外角,且AD平分∠CAE.求证:DB=DC.24. (15分) (2016九上·南开期中) 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.25. (12分) (2016九上·南开期中) 正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD,AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是________,∠AFB=∠________(2)如图2,正方形ABCD中,P,Q分别是BC,CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP,AQ于M,N,你还能用旋转的思想说明BM2+DN2=MN2 .26. (15分) (2016九上·南开期中) 如图,经过点A(0,﹣4)的抛物线y= x2+bx+c与x轴相交于点B (﹣1,0)和C,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y= x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k与图象C始终有3个交点,求满足条件的k的取值范围.参考答案一、选择题 (共12题;共24分)1-1、答案:略2-1、答案:略3-1、答案:略4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共95分)19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
安徽省阜阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共8分)1. (1分)(2018·资中模拟) 已知二次函数y=3(x﹣2)2+5,则有()A . 当x>﹣2时,y随x的增大而减小B . 当x>﹣2时,y随x的增大而增大C . 当x>2时,y随x的增大而减小D . 当x>2时,y随x的增大而增大2. (1分)已知点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,则a+b的值为()A . 1B . 5C . 6D . 43. (1分)(2012·湛江) 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .4. (1分)一元二次方程2x2+3x+1=0用配方法解方程,配方结果是()A . 2(x-)2-=0B . 2(x+)2-=0C . (x-)2-=0D . (x+)2-=05. (1分)下列语句中,不正确的个数()①三点确定一个圆②平分弦的直径垂直于弦③相等的圆心角所对的弧相等④相等弧所对的弦相等.A . 1B . 2C . 3D . 46. (1分)已知抛物线y=ax2+bx+c如图所示,则下列结论中,正确的是()A . a>0B . a-b+c>0C . b2-4ac<0D . 2a+b=07. (1分)将如图的正方形图案绕中心O旋转180°后,得到的图案是().A .B .C .D .8. (1分)已知0≤x<,那么函数y=﹣2x2+8x﹣6的最大值是()A . -6B . =2.5C . 2D . 不能确定二、填空题 (共8题;共8分)9. (1分)关于x的方程a(x+m)2+b=0的解是x1=﹣3,x2=1(a、b、m均为常数,a≠0),则方程a(x+m ﹣1)2+b=0的解是________.10. (1分) (2016九上·乌拉特前旗期中) 已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论,①abc<0;②2a+b=0;③b2﹣4ac<0;④a+b+c>0;⑤a﹣b+c<0.其中正确的结论有________(填序号)11. (1分)(2017·苏州模拟) 关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是________.12. (1分) (2017七下·郯城期中) 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=________,∠2=________.13. (1分)三角形三边垂直平分线的交点到三角形________的距离相等.14. (1分) (2018九上·番禺期末) 受益于国家支持新能源汽车发展,番禺区某汽车零部件生产企业的利润逐年提高,据统计2015年利润为2亿元,2017年利润为2.88亿元.则该企业近2年利润的年平均增长率为________.15. (1分)(2017·孝感模拟) 三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y= ,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x的增大而增大的概率是________.16. (1分)如图,正方形ABCD中,点E,F分别在BC,CD上,三角形AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②AG=2GC,③BE+DF=EF,④S△CEF=2S△ABE正确的有________(只填序号).三、计算题 (共1题;共1分)17. (1分)选择适当方法解下列方程:(1) x2=6x;(2) 3x2﹣4x﹣1=0;(3)(5x﹣2)(x﹣7)=9(7﹣x);(4)(x﹣3)2=9(3+x)2.四、解答题 (共11题;共21分)18. (1分) (2017九上·南漳期末) 如图,△ABD,△AEC都是等边三角形,线段BE与DC有怎样的数量关系?请用旋转的性质说明上述关系成立的理由.19. (2分) (2019七上·禅城期末) 某校为了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A , B , C , D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)计算D级的学生人数,并把条形统计图补充完整;(2)计算扇形统计图中A级所在的扇形的圆心角度数:(3)若该校七年级有600名学生,请估计体育测试中B级学生人数约为多少人?20. (1分) (2017七上·仲恺期中) 已知x=3,求6x2+4x﹣2(x2﹣1)﹣2(2x+x2)的值,小民粗心把x=3抄成了x=﹣3,但计算的结果却正确的.你知道其中的原因吗?21. (1分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.22. (2分)已知a,b,c为正数,满足如下两个条件:a+b+c=32 ①②是否存在以,,为三边长的三角形?如果存在,求出三角形的最大内角.23. (2分) (2017九上·江津期末) 如图,在平面直角坐标系中,抛物线经过点A(﹣3,0)和点B(2,0).直线(为常数,且)与BC交于点D,与轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求为何值时,△AEF的面积最大;(3)已知一定点M(﹣2,0).问:是否存在这样的直线,使△BDM是等腰三角形?若存在,请求出的值和点D的坐标;若不存在,请说明理由.24. (2分)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.25. (3分) (2019九上·海淀期中) 探究函数的图象与性质.小娜根据学习函数的经验,对函数的图象与性质进行了探究.下面是小娜的探究过程,请补充完整:(1)下表是x与y的几组对应值.x…023…y…0m n3…请直接写出:m=________,n=________;(2)如图,小娜在平面直角坐标系xOy中,描出了上表中已经给出的各组对应值为坐标的点,请再描出剩下的两个点,并画出该函数的图象;(3)结合画出的函数图象,解决问题:若方程有三个不同的解,记为x1, x2, x3,且x1< x2<x3. 请直接写出x1+ x2+x3的取值范围.26. (2分) (2017九上·东丽期末) 如图,抛物线与轴交于、两点(点在点的左侧),点的坐标为,与轴交于点,作直线.动点在轴上运动,过点作轴,交抛物线于点,交直线于点,设点的横坐标为.(Ⅰ)求抛物线的解析式和直线的解析式;(Ⅱ)当点在线段上运动时,求线段的最大值;(Ⅲ)当以、、、为顶点的四边形是平行四边形时,直接写出的值.27. (2分) (2019九下·无锡期中) 如图,中,,过点在外作射线,且 .(1)操作并计算:利用无刻度的直尺和圆规,在图(1)中完成下列作图(不写作法,保留作图痕迹).①作点关于的对称点;②连接,其中分别交于点;③当时,求的度数。
安徽省阜阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·临高模拟) 下列交通标志中,是中心对称图形的是()A .B .C .D .2. (2分)(2014·防城港) x1 , x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使 + =0成立?则正确的结论是()A . m=0时成立B . m=2时成立C . m=0或2时成立D . 不存在3. (2分)函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c-2=0的根的情况是()A . 有两个不相等的实数根B . 有两个异号的实数根C . 有两个相等的实数根D . 没有实数根4. (2分) (2018九上·杭州期中) 如图,已知⊙O的半径为5,AB⊥CD,垂足为P,且AB=CD=8,则OP的长为()A . 3B . 4C . 3D . 45. (2分)关于x的一元二次方程有两个相等的实数根,则m的值().A .B .C .D . 或6. (2分) (2017七下·南平期末) 如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB’C’则∠BAC’ 等于()A . 60°B . 105°C . 120°D . 135°7. (2分) (2016九上·南昌期中) 将抛物线y=2x2的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是()A . y=2(x﹣2)2﹣3B . y=2(x﹣2)2+3C . y=2(x+2)2﹣3D . y=2(x+2)2+38. (2分) (2016七下·郾城期中) 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A . (4,0)B . (5,0)C . (0,5)D . (5,5)9. (2分)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣x+k2的图象大致为()A .B .C .D .10. (2分) (2020八上·绵阳期末) 如图,△ABC 是等边三角形,BD 是 AC 边上的高,延长 BC 到 E使 CE =CD,则图中等腰三角形的个数是()A . 1 个B . 2 个C . 3 个D . 4 个二、填空题 (共6题;共6分)11. (1分) (2017九上·泸西期中) 已知一元二次方程x2-5x+2=0的两个解分别为x1、x2 ,则的值为________.12. (1分)某种物品经过两次降价,其价格为降价前的81%,则平均每次降价的百分数为________13. (1分)(2018·成都模拟) 如图,二次函数y=ax2+bx+c(a>0)的图象的顶点为点D,其图象与x轴的交点A、B的横坐标分别为-1,3,与y轴负半轴交于点C.在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值有4个.其中正确的结论是________ (只填序号).14. (1分)如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.15. (1分)如图,一次函数的图象与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,得△ACB.若C(,) ,则该一次函数的解析式为________16. (1分) (2018九上·彝良期末) 抛物线上部分点的横坐标x,纵坐标y的对应值如下表:x-2-1012y04664从上表可知,下列说法中正确的是________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;②抛物线的对称轴是直线;④在对称轴左侧,y随x增大而增大.三、解答题 (共8题;共77分)17. (5分) (2017九上·顺德月考) 已知关于x的一元二次方程的一个根是1,求方程的另一根和k的值。
阜阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共42分) (共16题;共41分)1. (2分) (2019七下·长春月考) 已知是二元一次方程组的解,则m-n的值是()A . 1B . 2C . 3D . 42. (3分) (2019九上·滦南期中) 若a:b=3:2,且b是a、c的比例中项,则b:c等于()A . 4:3B . 3:4C . 3:2D . 2:33. (3分) (2019九上·滦南期中) 下面结论中正确的是()A .B .C .D .4. (3分) (2019九上·滦南期中) 某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是()A . 5,5B . 5,6C . 6,6D . 6,55. (3分) (2019九上·滦南期中) 反比例函数y= 图象经过A(1,2),B(n,-2)两点,则n=()A . 1B . 3C . -1D . -36. (3分) (2019九上·滦南期中) 若x=-1是关于x的一元二次方程ax2-bx-2018=0的一个解,则1+a+b的值是()A . 2016B . 2017C . 2018D . 20197. (3分) (2019九上·滦南期中) 如图,在Rt△ABC中,CD⊥AB于点D,表示sinB错误的是()A .B .C .D .8. (3分) (2019九上·滦南期中) 关于x的一元二次方程kx2-4x+1=0有实数根,则k的取值范围是()A .B . 且C .D . 且9. (3分) (2019九上·滦南期中) 已知点A(x1 , y1),(x2 , y2)是反比例函数y= 图象上的点,若x1>0>x2 ,则一定成立的是()A .B .C .D .10. (3分) (2019九上·滦南期中) 如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A .B .C .D .11. (2分) (2019九上·滦南期中) 如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则为()A .B .C .D .12. (2分) (2019九上·滦南期中) 若一元二次方程x2+bx+5=0配方后为(x-2)2+k=0,则b、k的值分别是()A . 0、5B . 0、1C . 、1D . 、513. (2分) (2019九上·滦南期中) 若线段AB= cm,C是线段AB的一个黄金分割点,则线段AC的长()A .B .C . 或D . 或14. (2分) (2019九上·滦南期中) 下列与反比例函数图象有关图形中,阴影部分面积最小的是()A .B .C .D .15. (2分) (2019九上·滦南期中) 某公司一月份获利400万元,计划第一季度的利润达到1324万元.若该公司每月的增长率相同,则该增长率是()A .B .C .D .16. (2分) (2019九上·滦南期中) 将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是()A . 5B .C . 或4D . 5或二、填空题(共12分) (共4题;共12分)17. (3分)(2016·新疆) 如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为________m(结果保留根号).18. (3分)(2017·大庆) 计算:2sin60°=________.19. (3分) (2019九上·上海月考) 如图,从点发出一束光,经x轴反射,过点,则这束光从点A到点B所经过的路径的长为________.20. (3分) (2020七下·成都期中) 如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF 的度数是________.三、计算题(共10分) (共1题;共10分)21. (10分)某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米,建类摊位每平方米的费用为40元,建类摊位每平方米的费用为30元,用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的.(1)求每个,类摊位占地面积各为多少平方米?(2)该社拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求建造这90个摊位的最大费用.四、解答题(共56分) (共5题;共56分)22. (12分)(2020·合肥模拟) “端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只;(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少.(用列表法或树状图计算)23. (10分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动,他们制订了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整)(1)任务一:两次测量A,B之间的距离的平均值是________m.(2)任务二:根据以上测量结果,请你帮助“综合与实践”小组求出学校学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)(3)任务三:该“综合与实践”小组在定制方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可).24. (10分)(2019·毕节) 某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2 , 22 ,﹣22}=________;②min{sin30°,cos60°,tan45°}=________;(2)若M{﹣2x,x2 , 3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.25. (12分) (2019九上·滦南期中) 如图,某渔船向正东方向以12海里时的速度航行,在A处测得岛C在北偏东的60°方向,1小时后渔船航行到B处,测得岛C在北偏东的30°方向,已知该岛周围10海里内有暗礁.(1) B处离岛C有多远?(2)如果渔船继续向东航行,需要多长时间到达距离岛C最近的位置?(3)如果渔船继续向东航行,有无触礁危险?26. (12分) (2019九上·滦南期中) 预防“流感”,某学校对教室采用药熏法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克/立方米)与药物点燃后的时间x(分钟)成正比例,药物燃尽后,y与x成反比例(如图所示).已知药物点燃后4分钟燃尽,此时室内每立方米空气中含药量为8毫克.(1)求药物燃烧时,y与x之间函数的表达式;(2)求药物燃尽后,y与x之间函数的表达式(3)研究表明,当空气中每立方米的含药量不低于2毫克,且持续12分钟以上才能有效杀灭空气中的病菌,请计算说明此次消毒能否有效杀灭空气中的病菌?参考答案一、选择题(共42分) (共16题;共41分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题(共12分) (共4题;共12分)17-1、18-1、19-1、20-1、三、计算题(共10分) (共1题;共10分)21-1、21-2、四、解答题(共56分) (共5题;共56分)22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
安徽省阜阳市九年级上学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)(2019·莲湖模拟) 已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A . ﹣3<x<1B . x<﹣1或x>3C . ﹣1<x<3D . x<﹣3或x>12. (2分)(2019·宁波模拟) 如图,已知AB,CD是⊙O的两条直径,且∠AOC=50°,过A作AE∥CD交⊙O 于E,则∠AOE的度数为()A . 65°B . 70°C . 75°D . 80°3. (2分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为().A . y=3(x+2)2-1B . y=3(x-2)2+1C . y=3(x-2)2-1D . y=3(x+2)2+l4. (2分) (2019九上·沭阳月考) 如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0).点M是P 上的动点,点C是MB的中点,则AC的最小值为()A . 14B .C .D . 265. (2分) (2019九上·秀洲期中) 下列命题中,是真命题的是A . 三点确定一个圆B . 相等的圆周角所对的弧相等C . 平分弦的直径垂直于弦D . 的圆周角所对的弦是直径6. (2分)如图,图形的对称轴的条数是()A . 1条B . 2条C . 3条D . 无数条7. (2分)(2017·仪征模拟) 方程x2﹣ +1=﹣4x的正数根的取值范围是()A . 0<x<1B . 1<x<2C . 2<x<3D . 3<x<48. (2分) (2017九上·滦县期末) 如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2 .则S阴影=()A . πB . 2πC .D . π9. (2分) (2019九下·温州竞赛) 一种包装盒的设计方法如图所示,四边形ABCD是边长为30cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,形成一个底面为正方形的长方体包装盒.设BE=CF=xcm,要使包装盒的侧面积最大,则x应取()A . 12.5cmB . 10cmC . 7.5cmD . 5cm二、填空题 (共6题;共6分)10. (1分) (2019九上·闵行期末) 已知二次函数,如果x > 0,那么函数值y随着自变量x的增大而________.(填“增大”或“减小”).11. (1分) (2019九上·秀洲期中) 在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为________.12. (1分)(2011·嘉兴) 如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE•AB.其中正确结论的序号是________.13. (1分)如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.14. (1分)(2018·无锡模拟) 如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是________.15. (1分)如图,线段的长为2,为上一个动点,分别以、为斜边在的同侧作两个等腰直角三角形和,那么长的最小值是________.三、解答题 (共8题;共83分)16. (5分) (2017八下·胶州期末) 已知:线段a,c.求作:Rt△ABC,使∠ACB=90°,且BC=a,AB=c.17. (12分) (2017八下·丹阳期中) 在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数15020050090010001200摸到白球的频数51641562753033610.340.320.3120.3060.3030.301摸到白球的频率(1)请估计:当次数s很大时,摸到白球的频率将会接近________;假如你去摸一次,你摸到白球的概率是________(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.18. (5分) (2018九上·邗江期中) 如图:,D、E分别是半径OA和OB的中点,求证:CD=CE.19. (6分) (2020九上·秦淮期末) 已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:x…-2-1012…y…50-3-4-3…(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式为________.20. (15分) (2017八下·常熟期中) 一只不透明的袋子中,装有2个白球、3个黄球和4个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)能事先确定摸到的这个球的颜色吗?(2)你认为摸到哪种颜色的球的概率最大?(3)怎样改变袋子中白球、黄球、红球的个数,使摸到这这三种颜色的球的概率相等?21. (15分)(2019·广元) 如图,直线与x轴,y轴分别交于A , B两点,过A , B两点的抛物线与x轴交于点.(1)求抛物线的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作,交AB于点F,当的面积是时,求点E的坐标;(3)在(2)的结论下,将绕点F旋转得,试判断点是否在抛物线上,并说明理由.22. (10分)已知△ABC中,∠BCA=90°,BC=AC,D是BA边上一点(点D不与A,B重合),M是CA中点,当以CD为直径的⊙O与BA边交于点N,⊙O与射线NM交于点E,连接CE,DE.(1)求证:BN=AN;(2)猜想线段CD与DE的数量关系,并说明理由.23. (15分)(2017·济宁模拟) 如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共6题;共6分)10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共83分)16-1、17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。
……○…………内……○…………装…………○………学校:___________姓名:___________班级:______……○…………外……○…………装…………○………绝密★启用前安徽省阜阳中学2017届九年级上期中数学试卷含答案解析题号 一 二 三 得分注意事项:1.本试卷共XX 页,三个大题,满分128分,考试时间为1分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共40分)评卷人 得分1.下列图形中,是中心对称图形的是( )(4分)A.B.C.D.2.如图,在三角形ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB 上,AC 、A′B′交于点O ,则∠COA′的度数是( )试卷第2页,总17页…………○…………订要※※在※※装※※订※※线※※内…………○…………订(4分)A. 50°B. 60°C. 70°D. 80°3.关于抛物线y=x 2﹣2x+1,下列说法错误的是( )(4分) A. 开口向上B. 与x 轴有两个重合的交点C. 对称轴是直线x=1D. 当x >1时,y 随x 的增大而减小 4.如图,在⊙O 中,若点C 是的中点,∠A=50°,则∠BOC=( )(4分)A. 40°B. 45°C. 50°D. 60°5.若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有两个不相等的实数根,则k 的取值范围是( )(4分) A. k <5B. k <5,且k≠1C. k≤5,且k≠1D. k >5…装…………○…………线…………____姓名:___________班级:…装…………○…………线…………6.如图,已知AB 是⊙O 的直径,弦CD⊥AB 于E ,连接BC 、BD 、AC ,下列结论中不一定正确的是( )(4分)A. ∠ACB=90°B. OE=BEC. BD=BCD. △BDE∽△CAE7.二次函数y=ax 2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b ;④b 2﹣4ac >0,其中正确的个数是( )(4分)A. 1B. 2C. 3D. 48.二次函数y=ax 2+bx+c(a≠0)图象上部分点的坐标(x ,y)对应值列表如下:则该函数图象的对称轴是( )试卷第4页,总17页………订…………○………※※线※※内※※答※※题※※………订…………○………(4分)A. 直线x=﹣3B. 直线x=﹣2C. 直线x=﹣1D. 直线x=09.如图,∠ABC=80°,O 为射线BC 上一点,以点O 为圆心, OB 长为半径作⊙O,要使射线BA 与⊙O 相切,应将射线BA 绕点B 按顺时针方向旋转( )(4分)A. 40°或80°B. 50°或100°C. 50°或110°D. 60°或120°10.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x ,那么x 满足的方程为( )(4分)A. 10(1+x)2=36.4 B. 10+10(1+x)2=36.4C. 10+10(1+x)+10(1+2x)=36.4D. 10+10(1+x)+10(1+x)2=36.4二、填空题(共16分)评卷人…○……装…………○…………订…………○………_姓名:___________班级:___________考号:___________…○……装…………○…………订…………○………得分11.若点P(m ,﹣2)与点Q(3,n)关于原点对称,则(m+n)2015= .(4分) 12.抛物线y=2x 2﹣6x+10的顶点坐标是 .(4分)13.如图,半圆O 的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为 .(4分)14.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为 .(4分)三、解答题(共72分)评卷人 得分15.解方程:x 2﹣6x ﹣3=0.(8分)16.二次函数y=x 2+bx+c 的图象经过点(4,3),(3,0),求函数y 的表达式,并求出当0≤x≤3时,y 的最大值.(8分) 17.如图,在⊙O 中,点C 是的中点,弦AB 与半径OC 相交于点D ,AB=12,CD=2.求⊙O 半径的长.。
2016-2017学年安徽省阜阳九中九年级(上)期中数学试卷一、选择题:(本大题共10小题,每小题4分,共40分)1.(4分)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(4分)下列方程中,是关于x的一元二次方程的是()A.x2+=1 B.x2+3x﹣1=0 C.ax2+bx+c D.3x+y=103.(4分)如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A.(2,1) B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣l)4.(4分)抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)5.(4分)如图,⊙O的直径AB=8,点C在⊙O上,∠ABC=30°,则AC的长是()A.2 B.2 C.2 D.46.(4分)如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠AC′C的度数为()A.50°B.60°C.70°D.80°7.(4分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3 D.y=(x﹣2)2﹣3 8.(4分)在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交9.(4分)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.10.(4分)如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示y与x的函数关系的图象大致为()A.B.C.D.二、填空:(本大题共4小题,每小题5分,共20分)11.(5分)若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn=.12.(5分)如图,AB、CD是⊙O的两条弦,连结AD、BC.若∠ECD=70°,则∠BOD的度数为.13.(5分)在平行四边形、等边三角形、圆、线段中,是中心对称图形的有.14.(5分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc<0,②a﹣b+c<0,③2a=b,④b2>4ac,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是(填入正确结论的序号).三.解答题:(共90分)15.(8分)解方程:(1)x2+x﹣3=0(公式法).(2)x2+6x+3=0(配方法)16.(8分)已知二次函数y=﹣x2+8x﹣7.(1)把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.17.(8分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B (3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度).(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并直接写出C1点的坐标;(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出B2的坐标.18.(8分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.19.(10分)已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.20.(10分)为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.21.(12分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2.(1)求⊙O的直径AE的长;(2)求EC的长.22.(12分)2016年9月28第七届安徽省花博会在阜阳开幕.开幕前夕,我市某工艺厂设计了一款成本为10元/件的柳编工艺品投放市场进行试销.阜阳市物价部门规定该工艺品销售单价不得低于成本价,最高不能超过38元/件,经过调查,得到如表数据:(1)若y与x是一次函数关系y=kx+b,求这个一次函数关系式;(2)当销售单价定为多少时,该厂试销该工艺品每天所获利润最大?最大利润是多少?(3)若该工艺厂要获得的利润不低于8000元,试确定销售单价x的取值范围.23.(14分)抛物线与x轴交于A,B两点,(点B在点A的左侧)且A,B两点的坐标分别为(﹣2,0)、(8,0),与y轴交于点C(0,﹣4),连接BC,以BC 为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线L交抛物线于点Q,交BD于点M.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?(3)位于第四象限内的抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出N点的坐标,及△BCN面积的最大值;若不存在,请说明理由.2016-2017学年安徽省阜阳九中九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分)1.(4分)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.2.(4分)下列方程中,是关于x的一元二次方程的是()A.x2+=1 B.x2+3x﹣1=0 C.ax2+bx+c D.3x+y=10【解答】解:A、不是一元二次方程,故此选项错误;B、是一元二次方程,故此选项正确;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:B.3.(4分)如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A.(2,1) B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣l)【解答】解:∵点B的坐标是(2,1),∴点B关于点O的对称点B1点的坐标是(﹣2,﹣1).故选:C.4.(4分)抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.5.(4分)如图,⊙O的直径AB=8,点C在⊙O上,∠ABC=30°,则AC的长是()A.2 B.2 C.2 D.4【解答】解:∵直径AB=8,∠ACB=90°,∵点C在⊙O上,∠ABC=30°,∴AC=AB=4,故选:D.6.(4分)如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠AC′C的度数为()A.50°B.60°C.70°D.80°【解答】解:∵将△ABC绕点A顺时针旋转40°后,得到△AB′C′,∴∠CAC′=40°,AC=AC′,∴∠AC′C=∠C=(180°﹣∠CAC′)=70°,故选:C.7.(4分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3 D.y=(x﹣2)2﹣3【解答】解:将抛物线y=x2向右平移2个单位可得y=(x﹣2)2,再向上平移3个单位可得y=(x﹣2)2+3,故选:B.8.(4分)在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交【解答】解:∵点(3,2)到x轴的距离是2,小于半径,到y轴的距离是3,等于半径,∴圆与x轴相交,与y轴相切.故选C.9.(4分)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.【解答】解:A、由二次函数的图象可知a<0,此时直线y=ax+b应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b应经过一、二、四象限,故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b应经过一、三象限,故C可排除;正确的只有D.故选:D.10.(4分)如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示y与x的函数关系的图象大致为()A.B.C.D.【解答】解:(1)当0≤x≤时,如图1,过M作ME⊥BC与E,∵M为AB的中点,AB=2,∴BM=1,∵∠B=60°,∴BE=,ME=,PE=﹣x,在R t△BME中,由勾股定理得:MP2=ME2+PE2,∴y==x2﹣x+1;(2)当<x≤2时如图2,过M作ME⊥BC与E,由(1)知BM=1,∠B=60°,∴BE=,ME=,PE=x﹣,∴MP2=ME2+PE2,∴y==x2﹣x+1;(3)当2<x≤4时,如图3,连结MC,∵BM=1,BC=AB=2,∠B=60°,∴∠BMC=90°,MC==,∵AB∥DC,∴∠MCD=∠BMC=90°,∴MP2=MC2+PC2,∴y==x2﹣4x+7;综合(1)(2)(3),只有B选项符合题意.故选:B.二、填空:(本大题共4小题,每小题5分,共20分)11.(5分)若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn= 7.【解答】解:根据题意得m+n=5,mn=﹣2,所以m+n﹣mn=5﹣(﹣2)=7.故答案为7.12.(5分)如图,AB、CD是⊙O的两条弦,连结AD、BC.若∠ECD=70°,则∠BOD的度数为140°.【解答】解:∵四边形ABCD⊙O的圆内接四边形,∴∠DCE=∠A,∵∠ECD=70°,∴∠A=70°,∴∠BOD=2∠A=140°,故答案为140°.13.(5分)在平行四边形、等边三角形、圆、线段中,是中心对称图形的有平行四边形、圆、线段.【解答】解:在平行四边形、等边三角形、圆、线段中,是中心对称图形的有:平行四边形、圆、线段.故答案为:平行四边形、圆、线段.14.(5分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc<0,②a﹣b+c<0,③2a=b,④b2>4ac,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是①②④(填入正确结论的序号).【解答】解:∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴在y轴的右侧,∴b>0,∴abc<0,①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,②正确;∵对称轴为x=1,∴﹣=1,∴2a=﹣b,③错误;∵抛物线与x轴有两个交点,∴b2>4ac,即b2﹣4ac>0,④正确;∵x<1时,y随x的增大而增大,∴y1<y2,⑤错误,故答案为:①②④.三.解答题:(共90分)15.(8分)解方程:(1)x2+x﹣3=0(公式法).(2)x2+6x+3=0(配方法)【解答】解:(1)x2+x﹣3=0,∵a=1,b=1,c=﹣3,∴△=1+12=13>0,∴x=;即x1=,x2=;(2)x2+6x+3=0(配方法)x2+6x=﹣3,x2+6x+9=﹣3+9,即(x+3)2=6,∴x+3=,∴x=﹣3,即x1=﹣3+,x2=﹣3﹣.16.(8分)已知二次函数y=﹣x2+8x﹣7.(1)把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.【解答】解:(1)y=﹣(x2﹣8x+16)+9=﹣(x﹣4)2+9对称轴:x=4,顶点坐标:(4,9);(2)﹣x2+8x﹣7=0,x2﹣8x+7=0,x1=1,x2=7,函数图象与x轴的交点坐标为(1,0),(7,0).17.(8分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B (3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度).(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并直接写出C1点的坐标;(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出B2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求,C1(1,1);(2)如图所示:△A2B2C2,即为所求,B2(﹣3,﹣4).18.(8分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.19.(10分)已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)20.(10分)为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.【解答】解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x.1000(1+x)2=1440解得:x=0.2答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.21.(12分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2.(1)求⊙O的直径AE的长;(2)求EC的长.【解答】解:(1)∵OD⊥弦AB,AB=8,∴AC==4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,∴AE=2r=10;(2)连结BE,如图,∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.22.(12分)2016年9月28第七届安徽省花博会在阜阳开幕.开幕前夕,我市某工艺厂设计了一款成本为10元/件的柳编工艺品投放市场进行试销.阜阳市物价部门规定该工艺品销售单价不得低于成本价,最高不能超过38元/件,经过调查,得到如表数据:(1)若y与x是一次函数关系y=kx+b,求这个一次函数关系式;(2)当销售单价定为多少时,该厂试销该工艺品每天所获利润最大?最大利润是多少?(3)若该工艺厂要获得的利润不低于8000元,试确定销售单价x的取值范围.【解答】解:(1)∵y与x是一次函数关系y=kx+b,∴,解得,,即这个一次函数的关系式为:y=﹣10x+700;(2)设利润为w,w=(x﹣10)(﹣10x+700)=﹣10(x﹣40)2+9000,∵10≤x≤38,∴当x=38时,w取得最大值,此时w=﹣10(38﹣40)2+9000=8960,即当销售单价定为38元时,该厂试销该工艺品每天所获利润最大,最大利润是8960元;(3)由题意可得,﹣10(x﹣40)2+9000≥8000,解得,30≤x≤50,又∵10≤x≤38,∴30x≤38,即若该工艺厂要获得的利润不低于8000元,则销售单价x的取值范围是30x≤38.23.(14分)抛物线与x轴交于A,B两点,(点B在点A的左侧)且A,B两点的坐标分别为(﹣2,0)、(8,0),与y轴交于点C(0,﹣4),连接BC,以BC 为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线L交抛物线于点Q,交BD于点M.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?(3)位于第四象限内的抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出N点的坐标,及△BCN面积的最大值;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,根据题意得,,∴,∴抛物线解析式为y=x2﹣x﹣4,(2)(2)∵C(0,﹣4)∴由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b',则,解得k=﹣,b'=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形;(3)存在,理由:当过点N平行于直线BC的直线与抛物线只有一个交点时,△BCN的面积最大∵B(8,0),C(0,﹣4),∴BC=4直线BC解析式为y=x﹣4,设过点N平行于直线BC的直线L解析是为y=x+n①,∵抛物线解析式为y=x2﹣x﹣4②,联立①②得,x2﹣8x﹣4(n+4)=0,③∴△=64+16(n+4)=0,∴n=﹣8,∴直线L解析式为y=x﹣8,将n=﹣8代入③中得,x2﹣8x+16=0∴x=4,∴y=﹣6,∴N(4,﹣6),如图,过点N作NG⊥AB,=S四边形OCNG+S△MNG﹣S△OBC∴S△BCN=(4+6)×4+(8﹣4)×6﹣×8×6=16.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2016-2017学年安徽省阜阳XX中学九年级(上)期中数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下列图形中,是中心对称图形的是()A.B. C.D.2.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小4.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40°B.45°C.50°D.60°5.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.△BDE∽△CAE7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac >0,其中正确的个数是()A.1 B.2 C.3 D.48.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=09.如图,∠ABC=80°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,要使射线BA与⊙O相切,应将射线BA绕点B按顺时针方向旋转()A.40°或80°B.50°或100°C.50°或110°D.60°或120°10.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x 满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4二、填空题(共4小题,每小题5分,满分20分)11.若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2015=.12.抛物线y=2x2﹣6x+10的顶点坐标是.13.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.14.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.三、解答题(本大题2小题,每小题8分,满分16分)15.解方程:x2﹣6x﹣3=0.16.二次函数y=x2+bx+c的图象经过点(4,3),(3,0),求函数y的表达式,并求出当0≤x≤3时,y的最大值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.18.如图,已知△ABC中,以AB为直径的半⊙O交AC于D,交BC于E,BE=CE,∠C=70°,求∠DOE 的度数.五、(本大题2小题,每小题10分,满分20分)19.某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米.设这个苗圃园垂直于墙的一边的长为x米(1)用含x的代数式表示平行于墙的一边的长为米,x的取值范围为;(2)这个苗圃园的面积为88平方米时,求x的值.20.如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,求线段B′E的值.六、(本题满分12分)21.已知:二次函数y=﹣x2+2x+3(1)用配方法将函数关系式化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)画出所给函数的图象;(3)观察图象,指出使函数值y>3的自变量x的取值范围.七、(本题满分12分)22.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC相交于点F.(1)求证:FD=DC;(2)若AE=8,DE=5,求⊙O的半径.八、(本题满分14分)23.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.2016-2017学年安徽省阜阳XX中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.2.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【考点】旋转的性质.【分析】由三角形的内角和为180°可得出∠A=40°,由旋转的性质可得出BC=B′C,从而得出∠B=∠BB′C=50°,再依据三角形外角的性质结合角的计算即可得出结论.【解答】解:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.3.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小【考点】二次函数的性质;二次函数的图象.【分析】根据抛物线的解析式画出抛物线的图象,根据二次函数的性质结合二次函数的图象,逐项分析四个选项,即可得出结论.【解答】解:画出抛物线y=x2﹣2x+1的图象,如图所示.A、∵a=1,∴抛物线开口向上,A正确;B、∵令x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,∴该抛物线与x轴有两个重合的交点,B正确;C、∵﹣=﹣=1,∴该抛物线对称轴是直线x=1,C正确;D、∵抛物线开口向上,且抛物线的对称轴为x=1,∴当x>1时,y随x的增大而增大,D不正确.故选D.4.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40°B.45°C.50°D.60°【考点】圆心角、弧、弦的关系.【分析】根据等腰三角形性质和三角形内角和定理求出∠AOB,根据垂径定理求出AD=BD,根据等腰三角形性质得出∠BOC=∠AOB,代入求出即可.【解答】解:∵∠A=50°,OA=OB,∴∠OBA=∠OAB=50°,∴∠AOB=180°﹣50°﹣50°=80°,∵点C是的中点,∴∠BOC=∠AOB=40°,故选A.5.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.6.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.△BDE∽△CAE【考点】垂径定理;圆周角定理.【分析】根据垂径定理及圆周角定理进行解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,故A正确;∵点E不一定是OB的中点,∴OE与BE的关系不能确定,故B错误;∵AB⊥CD,AB是⊙O的直径,∴=,∴BD=BC,故C正确;∵∠D=∠A,∠DEB=∠AEC,∴△BDE∽△CAE,故D正确.故选B.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac >0,其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.8.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0【考点】二次函数的图象.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故选:B.9.如图,∠ABC=80°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,要使射线BA与⊙O相切,应将射线BA绕点B按顺时针方向旋转()A.40°或80°B.50°或100°C.50°或110°D.60°或120°【考点】直线与圆的位置关系.【分析】当BA′与⊙O相切时,可连接圆心与切点,通过构建的直角三角形,求出∠A′BO的度数,然后再根据BA′的不同位置分类讨论.【解答】解:如图;①当BA′与⊙O相切,且BA′位于BC上方时,设切点为P,连接OP,则∠OPB=90°;Rt△OPB中,OB=2OP,∴∠A′BO=30°;∴∠ABA′=50°;②当BA′与⊙O相切,且BA′位于BC下方时;同①,可求得∠A′BO=30°;此时∠ABA′=80°+30°=110°;故旋转角α的度数为50°或110°,故选C.10.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x 满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【考点】由实际问题抽象出一元二次方程.【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.二、填空题(共4小题,每小题5分,满分20分)11.若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2015=﹣1.【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的两点的横、纵坐标都是互为相反数,可得m、n的值,根据负数奇数次幂是负数,可得答案.【解答】解:由点P(m,﹣2)与点Q(3,n)关于原点对称,得m=﹣3,n=2.(m+n)2015=(﹣3+2)2015=﹣1,故答案为:﹣1.12.抛物线y=2x2﹣6x+10的顶点坐标是(,).【考点】二次函数的性质.【分析】用配方法将抛物线的一般式转化为顶点式,直接写出顶点坐标.【解答】解:∵y=2x2﹣6x+10=2(x﹣)2+,∴顶点坐标为(,).故本题答案为:(,).13.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD∥AB可知,点A、O到直线CD的距离相等,结合同底等高的三角形面积相等即可得出S△ACD=S△OCD,进而得出S阴影=S扇形COD,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD∥AB,=S△OCD,∴S△ACD=•π•=×π×=.∴S阴影=S扇形COD故答案为:.14.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.【考点】垂径定理;垂线段最短;勾股定理.【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,由Rt△ADB为等腰直角三角形,则AD=BD=1,即此时圆的直径为1,再根据圆周角定理可得到∠EOH=60°,则在Rt△EOH中,利用锐角三角函数可计算出EH=,然后根据垂径定理即可得到EF=2EH=.【解答】解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,∠ABC=45°,AB=,∴AD=BD=1,即此时圆的直径为1,∵∠EOF=2∠BAC=120°,而∠EOH=∠EOF,∴∠EOH=60°,在Rt△EOH中,EH=OE•sin∠EOH=•sin60°=,∵OH⊥EF,∴EH=FH,∴EF=2EH=,即线段EF长度的最小值为.故答案为.三、解答题(本大题2小题,每小题8分,满分16分)15.解方程:x2﹣6x﹣3=0.【考点】解一元二次方程-公式法;解一元二次方程-配方法.【分析】解法一:在左右两边同时加上一次项系数的一半的平方.解法二:先找出a,b,c,求出△=b2﹣4ac的值,再代入求根公式即可求解.【解答】解:解法一:x2﹣6x=3,x2﹣6x+32=3+32,(x﹣3)2=12,∴,∴.解法二:a=1,b=﹣6,c=﹣3,b2﹣4ac=36﹣4×1×(﹣3)=36+12=48.∴.∴.16.二次函数y=x2+bx+c的图象经过点(4,3),(3,0),求函数y的表达式,并求出当0≤x≤3时,y的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】利用待定系数法求出二次函数的解析式,根据二次函数的性质求出最大值即可.【解答】解:∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0),∴,解得,,∴函数解析式为:y=x2﹣4x+3,y=x2﹣4x+3=(x﹣2)2﹣1,∴当x=0时,y有最大值是3.四、(本大题共2小题,每小题8分,满分16分)17.如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理求出AD=6,∠ADO=90°,根据勾股定理得出方程,求出方程的解即可.【解答】解:连接AO,∵点C是弧AB的中点,半径OC与AB相交于点D,∴OC⊥AB,∵AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴在Rt△AOD中,由勾股定理得:AD2=OD2+AD2,即:R2=(R﹣2)2+62,∴R=10答:⊙O的半径长为10.18.如图,已知△ABC中,以AB为直径的半⊙O交AC于D,交BC于E,BE=CE,∠C=70°,求∠DOE 的度数.【考点】圆周角定理;等腰三角形的性质.【分析】连接AE,判断出AB=AC,根据∠B=∠C=70°求出∠BAC=40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠DOE的度数.【解答】解:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵BE=CE,∴AB=AC,∴∠B=∠C=70°,∠BAC=2∠CAE,∴∠BAC=40°,∴∠DOE=2∠CAE=∠BAC=40°.五、(本大题2小题,每小题10分,满分20分)19.某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米.设这个苗圃园垂直于墙的一边的长为x米(1)用含x的代数式表示平行于墙的一边的长为(30﹣2x)米,x的取值范围为6≤x<15;(2)这个苗圃园的面积为88平方米时,求x的值.【考点】一元二次方程的应用.【分析】(1)由总长度﹣垂直于墙的两边的长度=平行于墙的这边的长度,根据墙的长度就可以求出x的取值范围;(2)由长方形的面积公式建立方程求出其解即可.【解答】解:(1)由题意,得(30﹣2x),∵∴6≤x<15.故答案为:(30﹣2x),6≤x<15;(2)由题意得x(30﹣2x)=88,解得:x1=4,x2=11,因为6≤x<15,所以x=4不符合题意,舍去,故x的值为11米.答:x=11.20.如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,求线段B′E的值.【考点】旋转的性质;勾股定理.【分析】利用勾股定理列式求出AB,根据旋转的性质可得AO=A′O,A′B′=AB,再求出OE,从而得到OE=A′O,过点O作OF⊥A′B′于F,利用三角形的面积求出OF,利用勾股定理列式求出EF,再根据等腰三角形三线合一的性质可得A′E=2EF,然后根据B′E=A′B′﹣A′E代入数据计算即可得解.【解答】解:∵∠AOB=90°,AO=3,BO=6,∴AB==3,∵△AOB绕顶点O逆时针旋转到△A′OB′处,∴AO=A′O=3,A′B′=AB=3,∵点E为BO的中点,∴OE=BO=×6=3,∴OE=A′O,过点O作OF⊥A′B′于F,S△A′OB′=×3•O F=×3×6,解得OF=,在Rt△EOF中,EF==,∵OE=A′O,OF⊥A′B′,∴A′E=2EF=2×=(等腰三角形三线合一),∴B′E=A′B′﹣A′E=3﹣=.六、(本题满分12分)21.已知:二次函数y=﹣x2+2x+3(1)用配方法将函数关系式化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)画出所给函数的图象;(3)观察图象,指出使函数值y>3的自变量x的取值范围.【考点】二次函数的三种形式;二次函数的图象;二次函数的性质.【分析】(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.(2)根据对称轴,顶点坐标,抛物线与y轴的交点画出图象;(3)根据图象直接回答问题.【解答】解:(1)y=﹣x2+2x+3=﹣(x2﹣2x)+3=﹣(x﹣1)2+4,即y=﹣(x﹣1)2+4,该抛物线的对称轴是x=1,顶点坐标是(1,4);(2)由抛物线解析式y=﹣x2+2x+3知,该抛物线的开口方向向下,且与y轴的交点是(0,3).∵y=﹣x2+2x+3=﹣(x+1)(x﹣3),∴该抛物线与x轴的两个交点横坐标分别是﹣1、3.又由(1)知,该抛物线的对称轴是x=1,顶点坐标是(1,4);所以其图象如图所示:(3)根据图象知,当y>3时,0<x<2.七、(本题满分12分)22.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC相交于点F.(1)求证:FD=DC;(2)若AE=8,DE=5,求⊙O的半径.【考点】切线的性质.【分析】(1)由切线的性质得BA⊥AC,则∠2+∠BAD=90°,再根据圆周角定理得∠ADB=90°,则∠B+∠BAD=90°,所以∠B=∠2,接着由DA=DE得到∠1=∠E,由圆周角定理得∠B=∠E,所以∠1=∠2,可判断AF=AC,根据等腰三角形的性质得FD=DC;(2)作DH⊥AE于H,如图,根据等腰三角形的性质得AH=EH=AE=4,再根据勾股定理可计算出DH=3,然后证明△BDA∽△EHD,利用相似比可计算出AB=,从而可得⊙O的半径.【解答】(1)证明:∵AC是⊙O的切线,∴BA⊥AC,∴∠2+∠BAD=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠B=∠2,∵DA=DE,∴∠1=∠E,而∠B=∠E,∴∠B=∠1,∴∠1=∠2,∴AF=AC,而AD⊥CF,∴FD=DC;(2)解:作DH⊥AE于H,如图,∵DA=DE=5,∴AH=EH=AE=4,在Rt△DEH中,DH==3,∵∠B=∠E,∠ADB=∠DHE=90°,∴△BDA∽△EHD,∴=,即=,∴AB=,∴⊙O的半径为.八、(本题满分14分)23.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)=﹣120x+12000;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,2×452+180×45+2000=6050,当x=45时,y最大=﹣当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.2017年1月19日。
阜阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选。
(共10题;共20分)1. (2分)为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2016·攀枝花) 若x=﹣2是关于x的一元二次方程x2+ ax﹣a2=0的一个根,则a的值为()A . ﹣1或4B . ﹣1或﹣4C . 1或﹣4D . 1或43. (2分) (2018九上·建瓯期末) 把抛物线y= x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A . y=(x+1)2-3B . y=(x-1)2-3C . y=(x+1)2+1D . y=(x-1)2+14. (2分)用配方法将x2﹣8x﹣1=0变形为(x﹣4)2=m,下列选项中,m的值是正确的是()A . 17B . 15C . 9D . 75. (2分) (2018九上·仁寿期中) 为执行“均衡教育”政策,某县2016年投入教育经费2500万元,预计到2018年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为,则下列方程正确的是()A .B .C .D .6. (2分)△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1 ,再将△A1B1C1绕点O旋转180°后得到△A2B2C2 .则下列说法正确的是()A . A1的坐标为(3,1)B . S四边形ABB1A1=3C . B2C=2D . ∠AC2O=45°7. (2分)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A . 8B . 20C . 8或20D . 108. (2分)(2012·苏州) 如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A . 25°B . 30°C . 35°D . 40°9. (2分)二次函数y=-x2+2x+k的部分图象如图所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2=()A . 1B . -1C . -2D . 010. (2分)对于二次函数,下列说法正确的是()A . 图象的开口向下B . 当x>1时,y随x的增大而减小C . 当x<1时,y随x的增大而减小D . 图象的对称轴是直线二、细心填一填。
人教版九年级上册数学期中试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版九年级上册数学期中试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版九年级上册数学期中试卷及答案(word版可编辑修改)的全部内容。
新人教版2014年秋季九年级数学上期中测试题一、选择题(3分×10=30分)1.下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2—3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2—3x+3=0A .①②B .①②④⑤C .①③④D .①④⑤ 2.在抛物线1322+-=x x y 上的点是( )A.(0,—1) B 。
⎪⎭⎫⎝⎛0,21C 。
(-1,5) D 。
(3,4) 3。
直线225-=x y 与抛物线x x y 212-=的交点个数是( )A 。
0个 B.1个 C 。
2个 D.互相重合的两个 4.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( )① 当a0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a 0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴 交点的横坐标。
A 。
①②③④B 。
①②③ C. ①② D.①5.方程(x —3)2=(x —3)的根为( ) A .3 B .4 C .4或3 D .—4或36.如果代数式x 2+4x+4的值是16,则x 的值一定是( )A .—2B .33.2,-6 D .30,—347.若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( ) A .1 B .—1 C .2 D .—28.从正方形铁片上截去2cm 宽的一个长方形,剩余矩形的面积为80cm 2,•则原来正方形的面积为( )A .100cm 2B .121cm 2C .144cm 2D .169cm 29.方程x 2+3x —6=0与x 2—6x+3=0所有根的乘积等于( ) A .-18 B .18 C .—3 D .310.三角形两边长分别是8和6,第三边长是一元二次方程x 2—16x+60=0一个实数根,则该三角形的面积是( )A .24B .48C .24或D .二、填空题(3分×10=30分) 11.二次函数)()(32+-=xy 的图象的顶点坐标是(1,-2)。
安徽省阜阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2011·嘉兴) 如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()A . 6B . 8C . 10D . 122. (1分)已知双曲线y=向右平移2个单位后经过点(4,1),则k的值等于()A . 1B . 2C . 3D . 53. (1分) (2018九上·朝阳期中) 二次函数y=(x+2)2+3的图象的顶点坐标是()A . (﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)4. (1分) (2019九上·东台月考) 将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A . 15B . 28C . 29D . 345. (1分)已知点A(k,4)在双曲线上,则k的值是()A . -4B . 4C . 1D . -16. (1分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A . 1B . 2C . 3D . 47. (1分)如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为()A .B .C .D .8. (1分) (2019九上·新泰月考) 在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是()A .B .C .D .9. (1分)土家传统建筑的窗户上常有一些精致花纹、小辰对土家传统建筑非常感兴趣,他观察发现窗格的花纹排列呈现有一定规律,如图.其中“O”代表的就是精致的花纹,第1个图有5个花纹,第2个图有8个花纹,第3个图有11个花纹…,请问第7个图的精致花纹有()A . 26个B . 23个C . 20个D . 17个10. (1分) (2016八上·沂源开学考) 如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A . x=10,y=14B . x=14,y=10C . x=12,y=15D . x=15,y=12二、填空题 (共8题;共8分)11. (1分)(2017·昌平模拟) 如图,四边形ABCD的顶点均在⊙O上,∠A=70°,则∠C=________°.12. (1分)已知二次函数y=﹣x2+4x﹣2与x轴交于A,B两点,与y轴交于点C,则△ABC的面积为________.13. (1分) (2018九上·达孜期末) 已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为________.14. (1分) (2017九下·沂源开学考) 某学生在体育测试时推铅球,千秋所经过的路线是二次函数图象的一部分,如果这名学生出手处为A(0,2),铅球路线最高处为B(6,5),则该学生将铅球推出的距离是________.15. (1分)(2017·郯城模拟) 如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论::①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是________.(请写出正确结论的序号).16. (1分)(2018·亭湖模拟) 已知反比例函数的图象经过点和,则的值是________.17. (1分) (2017九上·东台期末) 如图,菱形的顶点在以点为圆心的弧上,若∠=∠ ,则扇形的面积为________.18. (1分)如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆.……,按此规律,连续画半圆,则第4个半圆的面积是第3个半圆面积的________倍。
2016-2017学年安徽省阜阳十一中九年级(上)期中数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列生态环保标志中,是中心对称图形的是()A. B.C.D.2.(4分)如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150°B.140°C.130° D.120°3.(4分)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m 的值是()A.1 B.﹣1 C.0 D.无法确定4.(4分)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定5.(4分)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.6.(4分)抛物线y=﹣3x2﹣x+4与坐标轴的交点个数是()A.3 B.2 C.1 D.07.(4分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.48.(4分)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队 B.6队 C.5队 D.4队9.(4分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°10.(4分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°二、填空题:每小题5分,共4小题,共计20分.11.(5分)如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为.12.(5分)把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为.13.(5分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交着⊙O于点D,连接OD,∠C=70°,则∠AOD的度数为.14.(5分)解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2﹣4(2x+5)+3=0的解为.三、本大题共2小题,每小题8分,共16分.15.(8分)解方程:x2﹣4x+1=0.16.(8分)已知:抛物线.(1)写出抛物线的对称轴;(2)完成下表;(3)在下面的坐标系中描点画出抛物线的图象.四、本大题共2小题,每小题8分,共16分。
17.(8分)如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC 的外接圆相交于点D.(1)求证:∠BAD=∠CBD;(2)求证:DE=DB.18.(8分)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,求∠E1D1B的度数.五、本大题共2小题,每小题10分,共20分.19.(10分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.六、本题满分38分。
21.(12分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y 件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?22.(12分)如图,AB是⊙O的直径,C是⊙O上一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且AC平分∠BAD.(1)求证:直线MN是⊙O的切线;(2)若CD=4,AC=5,求⊙O的直径.23.(14分)已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP 沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.2016-2017学年安徽省阜阳十一中九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列生态环保标志中,是中心对称图形的是()A. B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.2.(4分)如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150°B.140°C.130° D.120°【解答】解:∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选:A.3.(4分)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m 的值是()A.1 B.﹣1 C.0 D.无法确定【解答】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选:B.4.(4分)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定【解答】解:半径r=5,圆心到直线的距离d=3,∵5>3,即r>d,∴直线和圆相交,故选:C.5.(4分)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.【解答】解:A、最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==180°;D、最小旋转角度==72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选:A.6.(4分)抛物线y=﹣3x2﹣x+4与坐标轴的交点个数是()A.3 B.2 C.1 D.0【解答】解:抛物线解析式y=﹣3x2﹣x+4,令x=0,解得:y=4,∴抛物线与y轴的交点为(0,4),令y=0,得到﹣3x2﹣x+4=0,即3x2+x﹣4=0,分解因式得:(3x+4)(x﹣1)=0,解得:x1=﹣,x2=1,∴抛物线与x轴的交点分别为(﹣,0),(1,0),综上,抛物线与坐标轴的交点个数为3.故选:A.7.(4分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选:C.8.(4分)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队 B.6队 C.5队 D.4队【解答】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=10,即=10,∴x2﹣x﹣20=0,∴x=5或x=﹣4(不合题意,舍去).故选:C.9.(4分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.10.(4分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°【解答】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.二、填空题:每小题5分,共4小题,共计20分.11.(5分)如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为42°.【解答】解:由旋转得:∠ACA′=48°,∵∠BAC=90°,∴∠B′A′C=∠BAC=90°,∴∠B′=90°﹣48°=42°,故答案为:42°.12.(5分)把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为4.【解答】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴新抛物线的顶点为(1,2),∵向右平移3个单位,再向上平移2个单位,∴原抛物线的顶点坐标为(﹣2,0),∴原抛物线解析式为y=(x+2)2=x2+4x+4,∴b=4.故答案为:4.13.(5分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交着⊙O于点D,连接OD,∠C=70°,则∠AOD的度数为40°.【解答】解:∵AB是⊙O的直径,AC切⊙O于点A,∴AB⊥AC,∵∠C=70°,∴∠B=90°﹣∠C=20°,∴∠AOD=2∠B=40°.故答案为:40°.14.(5分)解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2﹣4(2x+5)+3=0的解为x1=﹣2,x2=﹣1.【解答】解:(2x+5)2﹣4(2x+5)+3=0,设y=2x+5,方程可以变为y2﹣4y+3=0,∴y1=1,y2=3,当y=1时,即2x+5=1,解得x=﹣2;当y=3时,即2x+5=3,解得x=﹣1,所以原方程的解为:x1=﹣2,x2=﹣1.故答案为:x1=﹣2,x2=﹣1.三、本大题共2小题,每小题8分,共16分.15.(8分)解方程:x2﹣4x+1=0.【解答】解:移项得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.16.(8分)已知:抛物线.(1)写出抛物线的对称轴;(2)完成下表;(3)在下面的坐标系中描点画出抛物线的图象.【解答】解:(1)抛物线的对称轴为直线x=﹣1.(2)填表如下:(3)描点作图如下:四、本大题共2小题,每小题8分,共16分。