考点18 波粒二象性 原子物理
- 格式:doc
- 大小:809.50 KB
- 文档页数:9
2019年高考高三物理波粒二象性、原子结构、原子核单元总结与测知识网络学习重点和难点1、光电效应现象的基本规律。
在光电效应中(1)对光的强度的理解,(2)发生光电效应时光电流的强度为什么跟光电子的最大初动能无关,只与入射光的强度成正比,此处是难点之一;2、玻尔模型中能级的跃迁及计算。
在玻尔原子模型中能级的跃迁问题以及量子化的提出也是难点之一;3、原子核的衰变问题以及核能的产生与计算是本部分重点。
核能的计算与动量和能量的结合既是重点又是难点,要处理好。
知识要点知识梳理知识点一——光的本性1、光电效应(1)产生条件:入射光频率大于被照射金属的极限频率(2)入射光频率决定每个光子的能量决定光子逸出后最大初动能(3)入射光强度决定每秒逸出的光子数决定光电流的大小(4)爱因斯坦光电效应方程2、光的波粒二象性光既有波动性,又具有粒子性,即光具有波粒二象性,这就是光的本性。
(1)大量光子的传播规律体现波动性;个别光子的行为体现为粒子性。
(2)频率越低,波长越长的光,波动性越显著;频率越高,波长越短的波,粒子性越显著。
(3)可以把光的波动性看作是表明大量光子运动规律的一种概率波。
知识点二——原子核式结构1、α粒子散射α粒子散射实验结果:α粒子穿过金箔后,绝大多数沿原方向前进,少数发生较大角度偏转,极少数偏转角大于90°,有的甚至被弹回。
2、核式结构模型原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部的质量都集中在原子核,带负电的电子在核外空间绕核旋转。
原子半径大约为10-10m,核半径大约为10-15~10-14 m。
知识点三——氢原子跃迁对氢原子跃迁的理解:1、原子跃迁的条件原子从低能级向高能级或从高能级向低能级跃迁时吸收或放出恰好等于发生跃迁时的两能级间的能级差的光子;当光子的能量大于或等于13.6eV时,也可以被氢原子吸收,使氢原子电离;当氢原子吸收的光子能量大于13.6eV时,氢原子电离后,电子具有一定的动能;原子还可吸收实物粒子的能量而被激发,由于实物粒子的动能可全部或部分地被氢原子吸收,所以只要实物粒子的能量大于或等于两能级的差值,均可使原子发生能级跃迁。
原子物理粒子的波粒二象性知识点总结随着科学技术的不断发展,人们对于原子物理粒子的研究也越来越深入。
在这个过程中,科学家们发现了一些令人困惑的现象,即原子物理粒子既表现出波动性,又表现出粒子性,这就是著名的波粒二象性现象。
在本文中,我们将对原子物理粒子的波粒二象性进行总结和介绍。
一、波粒二象性的概念原子物理粒子的波粒二象性是指它既可以表现出波动性,又可以表现出粒子性的性质。
具体而言,当我们观察原子物理粒子的运动时,它们的行为既像波一样呈现出干涉和衍射等波动性现象,又像粒子一样具有质量和位置等粒子性的特征。
这种奇特的性质挑战了我们对于物质本质的认识。
二、波粒二象性的实验证据众多的实验证据证明了原子物理粒子的波粒二象性。
其中最为著名的实验是双缝干涉实验。
在这个实验中,科学家将一束光通过两个缝隙,并让光射到屏幕上。
实验结果表明,光通过两个缝隙后形成了干涉条纹,这意味着光既具有波动性,又具有粒子性。
三、德布罗意假设德布罗意假设是对波粒二象性的又一重要解释。
法国物理学家德布罗意提出了著名的德布罗意假设,即物质粒子具有波动性。
根据德布罗意的理论,物质粒子的波长与动量成反比,这一关系被称为德布罗意关系式。
这一假设在后续的实验中得到了验证,进一步巩固了原子物理粒子的波粒二象性。
四、应用波粒二象性的发现和理解在科学研究和技术应用上具有重要意义。
首先,在量子力学领域,波粒二象性成为了量子理论的基本概念,为我们解释微观世界的奇特现象提供了理论依据。
其次,在光电子学和材料科学领域,波粒二象性的应用十分广泛。
例如,基于波粒二象性的电子显微镜可以帮助科学家观察和研究原子尺度下的结构和性质,为材料设计和制备提供了关键支持。
总结起来,原子物理粒子的波粒二象性是一项引人入胜的科学研究领域。
通过实验和理论的探索,我们逐渐认识到了物质的本质是多样的,既可以呈现出波动性,又可以呈现出粒子性。
这些研究不仅有助于我们深入了解微观世界的奥秘,而且在科技创新和应用中也发挥着重要的作用。
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。
考点18 波粒二象性 原子物理一、选择题1.(2013·北京高考)以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出。
强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实。
光电效应实验装置示意如图。
用频率为ν的普通光源照射阴极K,没有发生光电效应。
换用同样频率ν的强激光照射阴极K,则发生了光电效应;此时,若加上反向电压U,即将阴极K 接电源正极,阳极A 接电源负极,在KA 之间就形成了使光电子减速的电场。
逐渐增大U,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U 可能是下列的(其中W 为逸出功,h 为普朗克常量,e 为电子电量) ( )A. hv W U e e =-B.2hv W U e e =-C. 2U hv W =-D. 52hv W U e e =-【解题指南】解答本题应注意以下两点:(1)逸出的光电子的最大初动能为k E nh W ν=- (n=2,3,4…)。
(2)逸出的光电子在KA 之间(电压为遏止电压U)运动时应有E k =eU 。
【解析】选B 。
由题意可知一个电子吸收多个光子仍然遵守光电效应方程,设电子吸收了n 个光子,则逸出的光电子的最大初动能为k E nh W ν=- (n=2,3,4…),逸出的光电子在遏止电压下运动时应有E k =eU,由以上两式联立得nh WU eν-=,若取n=2,则B 正确。
2. (2013·福建高考)在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止 不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的 是 ( )【解题指南】解答本题时应理解以下两点:(1)α粒子与原子核都是正电荷,作用力在连线上且距离越小,力越大。
高考物理新近代物理知识点之波粒二象性知识点总复习一、选择题1.如图所示为氢原子的能级图,用某种频率的光照射大量处于基态的氢原子,受到激发后的氢原子只辐射出三种不同频率的光a 、b 、c ,频率,让这三种光照射逸出功为10.2eV 的某金属表面,则( )A .照射氢原子的光子能量为12.75eVB .从n =3能级跃迁到n =2能级辐射出的光频率为C .逸出的光电子的最大初动能为1.89eVD .光a 、b 、c 均能使金属发生光电效应2.下列实验中,深入地揭示了光的粒子性一面的有( )①X 射线被石墨散射后部分波长增大②锌板被紫外线照射时有电子逸出但被可见光照射时没有电子逸出 ③轰击金箔的α粒子中有少数运动方向发生较大偏转 ④氢原子发射的光经三棱镜分光后,呈现线状光谱 A .①②B .①②③C .②③D .②③④3.三束单色光1、2和3的频率分别为1v 、2v 和3123()v v v v >>。
分别用这三束光照射同一种金属,已知用光束2照射时,恰能产生光电效应。
下列说法正确的是( ) A .用光束1照射时,一定不能产生光电效应 B .用光束3照射时,一定能产生光电效应C .用光束3照射时,只要光强足够强,照射时间足够长,照样能产生光电效应D .用光束1照射时,无论光强怎样,产生的光电子的最大初动能都相同 4.下列说法中正确的是A .阳光下肥皂泡上的彩色条纹和雨后彩虹的形成原理是相同的B .只有大量光子才具有波动性,少量光子只具有粒子性C .电子的衍射现象说明其具有波动性,这种波不同于机械波,它属于概率波D .电子显微镜比光学显微镜的分辨率更高,是因为电子穿过样品时发生了更明显的衍射 5.下列说法中正确的是A .钍的半衰期为24天,1g 针经过120天后还剩0.2gB .发生光电效应时,入射光越强,光电子的最大初动能就越大C .原子核内的中子转化成一个质子和电子,产生的电子发射到核外,就是β粒子D .根据玻尔的原子理论,氢原子从n=5的激发态跃迁到n=2的激发态时,核外电子动能减小6.关于光电效应,下列说法正确的是( ) A .极限频率越大的金属材料逸出功越大B .只要光照射的时间足够长,任何金属都能产生光电效应C .从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越小D .入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多7.如图为氢原子能级图,氢原子中的电子从n=5能级跃迁到n=2能级可产生a 光,从n=4能级跃迁到n=2能级可产生b 光,a 、b 光照射到逸出功为2. 29eV 的金属钠表面均可产生光电效应,则( )A .a 光的频率小于b 光的频率B .a 光的波长大于b 光的波长C .a 光照射所产生的光电子最大初动能0.57k E eV =D .b 光照射所产生的光电子最大初动能0.34kE eV = 8.关于光电效应,下列说法正确的是 A .光电子的最大初动能与入射光的频率成正比 B .光的频率一定时,入射光越强,饱和电流越大 C .光的频率一定时,入射光越强,遏止电压越大 D .光子能量与光的速度成正比9.用不同频率的光分别照射钨(W )和锌(Zn ),产生光电效应,根据实验可画出光电子的最大初动能k E 随入射光频率v 变化的k E v -图线.已知钨的逸出功是4.54eV ,锌的逸出功为4.62eV ,若将二者的图线画在同一个k E v -坐标系中,则正确的图是()A.B.C.D.10.利用金属晶格(大小约10-9 m)作为障碍物观察电子的衍射图样,方法是让电子束通过电场加速后,照射到金属晶格上,从而得到电子的衍射图样。
原子物理学中的波粒二象性引言原子物理学是研究微观领域的物理学科,涉及到原子和原子核的结构、性质以及它们与射线、电磁波等相互作用的规律。
在原子物理学的研究过程中,波粒二象性是一个重要的理论框架,它揭示了微观粒子的双重本质。
本文将深入探讨波粒二象性的原理、实验以及其在物理学研究和应用中的重要性。
波粒二象性的原理波粒二象性是指微观粒子既可以表现出粒子的离散性质,又可以表现出波的连续性质。
这一理论由法国物理学家路易斯·德布罗意于20世纪初提出,并在之后的实验证实了其正确性。
波粒二象性的实验验证波粒二象性最早的实验证明来自戴维森-革末实验,他们通过射线在晶体表面的衍射现象,验证了电子具有波动性质。
而后,有学者通过干涉实验观察到电子和光子的干涉条纹,进一步证实了波粒二象性的存在。
波粒二象性的重要性波粒二象性的发现对物理学的发展产生了深远的影响。
首先,它突破了牛顿力学的框架,对微观粒子世界的行为进行了全新的解释。
其次,波粒二象性为量子力学的建立奠定了基础,量子力学成为解释微观世界的重要理论。
此外,波粒二象性的实验研究促进了扫描隧道显微镜等现代科学仪器的发展,推动了纳米科技的重要进展。
波粒二象性在实践中的应用波粒二象性不仅在理论物理学中有重要应用,在实践中也具有广泛的应用价值。
例如,基于波粒二象性原理的激光技术在日常生活中广泛应用于激光器、光通讯和医学成像等领域。
此外,通过利用波粒二象性的特性,科学家们可以设计和制造出新型的量子计算机和量子通信设备,这将对信息科学和密码学等领域产生深远的影响。
总结波粒二象性作为原子物理学中的重要理论框架,揭示了微观粒子的双重本质。
通过实验验证和应用研究,波粒二象性的原理得到了确认,并持续推动着物理学的发展和应用。
深入理解波粒二象性的原理和实践意义,对于进一步拓展我们对微观世界的认识,以及发展新的科学技术具有重要意义。
高二物理波粒二象性知识点总结高二物理课本中,粒二象性是量子力学中非常重要的概念之一,学生要掌握相关知识点,下面给大家带来高二物理波粒二象性知识点,希望对你有帮助。
高二物理波粒二象性知识点一、量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2.量子论的主要内容①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即能量子或称量子,也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。
③到1925年左右,量子力学最终建立。
二、黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①物体在任何温度下都会辐射能量。
②物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。
黑体是指在任何温度下,全部吸收任何波长的辐射的物体。
3.实验规律:①随着温度的升高,黑体的辐射强度都有增加;②随着温度的升高,辐射强度的极大值向波长较短方向移动。
三、光电效应1.光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。
⑵光电效应的实验规律:①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。
1.爱因斯坦关系是什么?什么是波粒二象性?答:爱因斯坦关系:⎪⎩⎪⎨⎧========k n n h n c h n c E p h hv Eλπλνπω22 其中 波粒二象性:光不仅具有波动性,而且还具有质量、动量、能量等粒子的内禀属性,就是说光具有波粒二象性。
2.α粒子散射与夫兰克-赫兹实验结果验证了什么? 答:α粒子散射实验验证了原子的核式结构,夫兰克-赫兹实验验证了原子能量的量子化3.波尔理论的内容是什么?波尔氢原子理论的局限性是什么? 答:波尔理论:(1)原子能够而且只能够出于一系列分离的能量状态中,这些状态称为定态。
出于定态时,原子不发生电磁辐射。
(2)原子在两个定态之间跃迁时,才能吸收或者发射电磁辐射,辐射的频率v 由式12E E hv -=决定(3)原子处于定态时,电子绕原子核做轨道运动,轨道角动量满足量子化条件: n r m = υ 局限性:(1)不能解释较复杂原子甚至比氢稍复杂的氦原子的光谱; (2)不能给出光谱的谱线强度(相对强度);(3)从理论上讲,量子化概念的物理本质不清楚。
4.类氢体系量子化能级的表示,波数与光谱项的关系?答:类氢体系量子化能级的表示:()22202442nZ e E n πεμ-= 波数与光谱项的关系 ,4,5.3,3,5.2,121ˆ22=⎪⎭⎫ ⎝⎛-=n n R v5.索莫菲量子化条件是什么,空间取向量子化如何验证? 答:索莫菲量子化条件是nh q p =⎰d空间取向量子化通过史特恩-盖拉赫(Stern-Gerlach )实验验证。
、 6.碱金属的四个线系,选择定则,能级特点及形成原因? 答:碱金属的四个线系:主线系、第一辅线系(漫线系)、第二辅线系(锐线系)、柏格曼系(基线系)碱金属的选择定则:1,0,1±=∆±=∆j l碱金属的能级特点:碱金属原子的能级不但与主量子数n 有关,还和角量子数l 有关;且对于同一n ,都比氢(H)能级低。
⾼⼆物理波粒⼆象性知识点总结 ⾼⼆物理课本中,粒⼆象性是量⼦⼒学中⾮常重要的概念之⼀,学⽣要掌握相关知识点,下⾯店铺给⼤家带来⾼⼆物理波粒⼆象性知识点,希望对你有帮助。
⾼⼆物理波粒⼆象性知识点 ⼀、量⼦论 1.创⽴标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论⽂,标志着量⼦论的诞⽣。
2.量⼦论的主要内容 ①普朗克认为物质的辐射能量并不是⽆限可分的,其最⼩的、不可分的能量单元即“能量⼦”或称“量⼦”,也就是说组成能量的单元是量⼦。
②物质的辐射能量不是连续的,⽽是以量⼦的整数倍跳跃式变化的。
3.量⼦论的发展 ①1905年,爱因斯坦奖量⼦概念推⼴到光的传播中,提出了光量⼦论。
②1913年,英国物理学家玻尔把量⼦概念推⼴到原⼦内部的能量状态,提出了⼀种量⼦化的原⼦结构模型,丰富了量⼦论。
③到1925年左右,量⼦⼒学最终建⽴。
⼆、⿊体和⿊体辐射 1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的⼤⼩及辐射能量按波长的分布都与温度有关。
这种由于物质中的分⼦、原⼦受到热激发⽽发射电磁波的现象称为热辐射。
①物体在任何温度下都会辐射能量。
②物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能⼒越⼤,则它吸收该频率范围内电磁波能⼒也越⼤。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的⾯积。
2.⿊体 物体具有向四周辐射能量的本领,⼜有吸收外界辐射来的能量的本领。
⿊体是指在任何温度下,全部吸收任何波长的辐射的物体。
3.实验规律: ①随着温度的升⾼,⿊体的辐射强度都有增加; ②随着温度的升⾼,辐射强度的极⼤值向波长较短⽅向移动。
三、光电效应 1.光电效应在光(包括不可见光)的照射下,从物体发射出电⼦的现象称为光电效应。
⑵光电效应的实验规律: ①任何⼀种⾦属都有⼀个极限频率,⼊射光的频率必须⼤于这个极限频率才能发⽣光电效应,低于极限频率的光不能发⽣光电效应。
大学原子物理知识点整理(一)引言概述:大学原子物理是一门研究微观世界的学科,涉及到原子结构、核物理、量子力学等内容。
本文将从五个大点来整理大学原子物理的知识点,包括原子结构、波粒二象性、量子力学基础、原子核物理和辐射与放射性。
原子结构:1. 原子的基本组成部分:质子、中子、电子。
2. 电子能级和轨道:描述了电子在原子周围的运动状态。
3. 泡利不相容原理:不同电子不能占据相同的量子态。
4. 电子云模型和概率密度图:描述了电子在原子周围空间的可能分布情况。
5. 光谱线和原子谱:不同原子在吸收和发射光线时产生的特征性谱线。
波粒二象性:1. 波粒二象性概述:粒子也具有波动性质,如电子的波动性质。
2. 德布罗意假设和德布罗意波长:描述了物质粒子的波动性。
3. 爱因斯坦光电效应:光子的行为可以解释光电效应现象。
4. 光谱线和量子力学:波粒二象性对光谱线解释的重要性。
5. 波包和干涉:波粒二象性在干涉现象中的应用。
量子力学基础:1. 核心概念:波函数、态、算符和测量。
2. 施密特正交化和归一化:展开波函数为正交归一化的基态。
3. 时间无关薛定谔方程:描述波函数随时间演化的方程。
4. 量子态和观测值:波函数幅值平方表示测量结果的概率。
5. 不确定性原理:测量位置和动量的不确定性的关系。
原子核物理:1. 核结构:质子和中子在原子核中的排布。
2. 核力:质子和中子之间的相互作用力。
3. 质子和中子的结合能:核反应中的能量变化。
4. 放射性衰变:有放射性核素的变化过程。
5. 核裂变和核聚变:核反应中核的变化和能量释放。
辐射与放射性:1. 辐射的种类:阿尔法射线、贝塔射线、伽马射线。
2. 辐射的危害和防护:辐射对生物体的影响和防护方法。
3. 放射性测量:测量放射线的强度和剂量。
4. 同位素和放射性定年:利用同位素的稳定性和放射性半衰期做年代测定。
5. 医学应用和核能利用:医学上的放射性应用和核能产生的利与弊。
总结:本文对大学原子物理的知识点进行了整理,包括原子结构、波粒二象性、量子力学基础、原子核物理和辐射与放射性五个大点。
原子物理中的波粒二象性与不确定性原理在原子物理学中,波粒二象性和不确定性原理是两个重要的概念。
它们揭示了微观领域的物质与能量行为,对于我们理解量子世界有着重要的指导作用。
本文将就波粒二象性和不确定性原理进行详细的讨论。
一、波粒二象性波粒二象性是指微观粒子既可以表现出波动性,又可以表现出粒子性的特点。
早在二十世纪初,物理学家发现光既可以像波一样进行干涉和衍射,又可以像粒子一样与物质发生碰撞。
随后的实验证明,不仅光具有这种波粒二象性,其他微观粒子如电子、质子等也存在这种特性。
波动性体现为微观粒子具有波浪传播的特性,能够通过干涉与衍射现象来解释。
在实验中,通过双缝干涉装置可以观察到电子和光子的干涉条纹,这表明它们具有波动性。
粒子性则体现为微观粒子具有离散的质量和位置,能够与其他粒子相互碰撞。
粒子性可以解释粒子在探测器上产生的痕迹或图像。
波粒二象性的存在挑战了我们对物质性质的直观感受,并且深刻地改变了我们对物质本质的认识。
二、不确定性原理不确定性原理是由德国物理学家海森堡在1927年提出的。
它断言了存在着测量某一微观量(如位置或动量)的不确定性,并且限制了我们同时准确测量这些物理量的可能性。
根据不确定性原理,对于具有波粒二象性的微观粒子,我们无法同时准确地确定其位置和动量。
如果我们尝试通过精确测量粒子的位置,那么粒子的动量将变得不确定;反之亦然。
这是由于测量过程中会对粒子产生干扰,使得其位置和动量无法同时被完全确定。
不确定性原理不仅适用于位置和动量,还适用于其他一对共轭变量,如能量和时间。
这个原理告诉我们,存在着一种固有的局限性,我们无法获得微观粒子在某一时刻的所有信息。
不确定性原理的提出,彻底颠覆了经典物理学中确定性的观念,揭示了量子世界的本质。
三、应用与启示波粒二象性和不确定性原理在原子物理学的研究中起到了重要的指导作用。
首先,波粒二象性的存在使我们能够更好地理解和解释微观世界的现象。
通过将微观粒子视为波或粒子来分析,我们可以更好地揭示其规律和行为。
高考物理最新近代物理知识点之波粒二象性知识点复习一、选择题1.下图为氢原子的能级图.现有两束光,a 光由图中跃迁①发出的光子组成,b 光由图中跃迁②发出的光子组成,已知a 光照射x 金属时刚好能发生光电效应,则下列说法正确的是A .x 金属的逸出功为2.86 eVB .a 光的频率大于b 光的频率C .氢原子发生跃迁①后,原子的能量将减小3.4 eVD .用b 光照射x 金属,打出的光电子的最大初动能为10.2 eV2.三束单色光1、2和3的频率分别为1v 、2v 和3123()v v v v >>。
分别用这三束光照射同一种金属,已知用光束2照射时,恰能产生光电效应。
下列说法正确的是( ) A .用光束1照射时,一定不能产生光电效应 B .用光束3照射时,一定能产生光电效应C .用光束3照射时,只要光强足够强,照射时间足够长,照样能产生光电效应D .用光束1照射时,无论光强怎样,产生的光电子的最大初动能都相同 3.下列说法正确的是( )A .原子核发生衰变时要遵守电荷守恒和质量守恒的规律B .射线、射线、射线都是高速运动的带电粒子流C .氢原子从激发态向基态跃迁只能辐射特定频率的光子D .发生光电效应时光电子的动能只与入射光的强度有关4.在研究甲、乙两种金属光电效应现象的实验中,光电子的最大初动能E k 与入射光频率v 的关系如图所示,则A .两条图线与横轴的夹角α和β一定不相等B.若增大入射光频率v,则所需的遏止电压U c随之增大C.若某一频率的光可以使甲金属发生光电效应,则一定也能使乙金属发生光电效应D.若增加入射光的强度,不改变入射光频率v,则光电子的最大初动能将增大5.用如图甲所示的装置研究光电效应现象.用频率为ν的光照射光电管时发生了光电效应.图乙是该光电管发生光电效应时光电子的最大初动能E k与入射光频率ν的关系图象,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b),下列说法中正确的是()A.普朗克常量为h=b aB.仅增加照射光的强度,光电子的最大初动能将增大C.保持照射光强度不变,仅提高照射光频率,电流表G的示数保持不变D.保持照射光强度不变,仅提高照射光频率,电流表G的示数增大6.关于光电效应,下列说法正确的是A.光电子的最大初动能与入射光的频率成正比B.光的频率一定时,入射光越强,饱和电流越大C.光的频率一定时,入射光越强,遏止电压越大D.光子能量与光的速度成正比7.用不同频率的光分别照射钨(W)和锌(Zn),产生光电效应,根据实验可画出光电子的最大初动能k E随入射光频率v变化的k E v-图线.已知钨的逸出功是4.54eV,锌的逸出功为4.62eV,若将二者的图线画在同一个k E v-坐标系中,则正确的图是()A.B.C.D.8.分别用波长为和的单色光照射同一金属板发出的光电子的最大初动能之比为,以表示普朗克常量,表示真空中的光速,则此金属板的逸出功为()A.B.C.D.9.一个质量为m、电荷量为q的带电粒子,由静止开始经加速电场加速后(加速电压为U),该粒子的德布罗意波长为( )A.h2mqUB.h2mqUC.h2mqU2mqUD.mqU10.如图所示为氢原子的能级图,用某种频率的光照射大量处于基态的氢原子,受到激发后的氢原子只辐射出三种不同频率的光a、b、c,频率,让这三种光照射逸出功为10.2eV的某金属表面,则()A.照射氢原子的光子能量为12.75eVB.从n=3能级跃迁到n=2能级辐射出的光频率为C.逸出的光电子的最大初动能为1.89eVD.光a、b、c均能使金属发生光电效应11.下列四幅图涉及不同的物理知识,其中说法正确的是()A.图(甲):用紫外线照射到金属锌板表面时会发生光电效应,当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能也随之增大B.图(乙):卢瑟福通过分析α粒子散射实验结果,提出了原子的核式结构模型C.图(丙):氢原子由较高能级跃迁到较低能级时,会吸收一定频率的光子D.图(丁):原有50个氡核,经过一个半衰期的时间,一定还剩余25个12.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图所示,这时()A .金属内的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属B .锌板带正电,指针带正电C .锌板带负电,指针带正电D .若仅减弱照射光的强度,则可能不再有光电子飞出 13.波粒二象性是微观世界的基本特征,以下说法正确的是 ( ) A .黑体辐射规律可用光的波动性解释 B .光电效应现象揭示了光的波动性C .电子束射到晶体上产生衍射图样说明电子具有波动性D .动能相等的质子和电子,它们的德布罗意波长也相等 14.下列说法正确的是( )A .康普顿在研究X 射线散射时,发现散射光线的波长发生了变化,为波动说提供了依据B .汤姆孙发现了电子,并测出了电子的荷质比,从而揭示了原子核具有复杂结构C .查德威克发现了中子,揭开了原子核组成的神秘面纱,开创了人类认识原子核的新纪元D .伽利略发现了单摆具有等时性,并提出了单摆的周期性公式2gL T π= 15.如图所示,把一块不带电的锌板用导线连接在验电器上,当用某频率的紫外线照射锌板时,发现验电器指针偏转一定角度,下列说法正确的是( )A .验电器带正电,锌板带负电B .验电器带负电,锌板也带负电C .若改用红光照射锌板,验电器的指针一定也会偏转D .若改用同等强度频率更高的紫外线照射锌板,验电器的指针也会偏转16.图甲为氢原子部分能级图,大量处于n =4激发态的氢原子向低能级跃迁时能辐射出多种不同频率的光。
自主命题卷全国卷考情分析2021·广东卷·T1原子核的衰变2021·全国甲卷·T17原子核的衰变2021·湖南卷·T1衰变、半衰期2021·全国乙卷·T17半衰期2021·河北卷·T1衰变、半衰期2020·全国卷Ⅰ·T19核反应2021·浙江6月选考·T14核反应2020·全国卷Ⅱ·T18核能2020·天津卷·T1原子核式结构实验2020·全国卷Ⅲ·T19原子核的衰变2020·江苏卷·T12(1)(2)黑体辐射、能级跃迁、光子的动量2019·全国卷Ⅰ·T14能级跃迁2020·浙江7月选考·T14核聚变、核能2019·全国卷Ⅱ·T15核能2019·天津卷·T5光电效应2018·全国卷Ⅱ·T17光电效应试题情境生活实践类医用放射性核素、霓虹灯、氖管、光谱仪、原子钟、威耳逊云室、射线测厚仪、原子弹、反应堆与核电站、太阳、氢弹、环流器装置等学习探究类光电效应现象、光的波粒二象性、原子的核式结构模型、氢原子光谱、原子的能级结构、射线的危害与防护、原子核的结合能、核裂变反应和核聚变反应等第1讲原子结构和波粒二象性目标要求 1.了解黑体辐射的实验规律.2.知道什么是光电效应,理解光电效应的实验规律.会利用光电效应方程计算逸出功、截止频率、最大初动能等物理量.3.知道原子的核式结构,掌握玻尔理论及能级跃迁规律.4.了解实物粒子的波动性,知道物质波的概念.考点一黑体辐射及实验规律1.热辐射(1)定义:周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.(2)特点:热辐射强度按波长的分布情况随物体温度的不同而有所不同.2.黑体、黑体辐射的实验规律(1)黑体:能够完全吸收入射的各种波长的电磁波而不发生反射的物体.(2)黑体辐射的实验规律①对于一般材料的物体,辐射电磁波的情况除与温度有关外,还与材料的种类及表面状况有关.②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动,如图.3.能量子(1)定义:普朗克认为,当带电微粒辐射或吸收能量时,只能辐射或吸收某个最小能量值ε的整数倍,这个不可再分的最小能量值ε叫作能量子.(2)能量子大小:ε=hν,其中ν是带电微粒吸收或辐射电磁波的频率,h称为普朗克常量.h =6.626×10-34 J·s(一般取h=6.63×10-34 J·s).1.黑体能够反射各种波长的电磁波,但不会辐射电磁波.(×)2.黑体辐射电磁波的强度按波长的分布只与温度有关,随着温度的升高,各种波长的辐射强度都增加,辐射强度极大值向波长较短的方向移动.(√)3.玻尔为得出黑体辐射的强度按波长分布的公式,提出了能量子的假说.(×)例1(多选)关于黑体辐射的实验规律如图所示,下列说法正确的是()A.黑体能够完全吸收照射到它上面的光波B .随着温度的降低,各种波长的光辐射强度都有所增加C .随着温度的升高,辐射强度极大值向波长较长的方向移动D .黑体辐射的强度只与它的温度有关,与形状和黑体材料无关 答案 AD解析 能完全吸收照射到它上面的各种频率的电磁辐射的物体称为黑体,A 正确;由题图可知,随温度的降低,各种波长的光辐射强度都有所减小,选项B 错误;随着温度的升高,黑体辐射强度的极大值向波长较短的方向移动,选项C 错误;一般物体辐射电磁波的情况与温度有关,还与材料的种类及表面情况有关,但黑体辐射电磁波的情况只与它的温度有关,选项D 正确.例2 在“焊接”视网膜的眼科手术中,所用激光的波长λ=6.4×10-7 m ,每个激光脉冲的能量E =1.5×10-2 J .求每个脉冲中的光子数目.(已知普朗克常量h =6.63×10-34J·s ,光速c =3×108 m/s.计算结果保留一位有效数字) 答案 5×1016解析 每个光子的能量为E 0=hν=h cλ,每个激光脉冲的能量为E ,所以每个脉冲中的光子数目为:N =EE 0,联立且代入数据解得:N =5×1016个.考点二 光电效应1.光电效应及其规律 (1)光电效应现象照射到金属表面的光,能使金属中的电子从表面逸出,这个现象称为光电效应,这种电子常称为光电子.(2)光电效应的产生条件入射光的频率大于或等于金属的截止频率. (3)光电效应规律①每种金属都有一个截止频率νc ,入射光的频率必须大于或等于这个截止频率才能产生光电效应.②光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大. ③光电效应的发生几乎是瞬时的,一般不超过10-9 s.④当入射光的频率大于或等于截止频率时,在光的颜色不变的情况下,入射光越强,饱和电流越大,逸出的光电子数越多,逸出光电子的数目与入射光的强度成正比,饱和电流的大小与入射光的强度成正比.2.爱因斯坦光电效应方程(1)光电效应方程①表达式:hν=E k+W0或E k=hν-W0.②物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能.(2)逸出功W0:电子从金属中逸出所需做功的最小值,W0=hνc=h cλc.(3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.1.光子和光电子都不是实物粒子.(×)2.只要入射光的强度足够大,就可以使金属发生光电效应.(×)3.要使某金属发生光电效应,入射光子的能量必须大于或等于金属的逸出功.(√) 4.光电子的最大初动能与入射光子的频率成正比.(×)1.光电效应的分析思路2.光电效应图像图像名称图线形状获取信息最大初动能E k与入射光频率ν的关系图线①截止频率(极限频率)νc:图线与ν轴交点的横坐标②逸出功W0:图线与E k轴交点的纵坐标的绝对值W0=|-E|=E③普朗克常量h:图线的斜率k=h遏止电压U c 与入射光频率ν的关系图线①截止频率νc:图线与横轴的交点的横坐标②遏止电压U c:随入射光频率的增大而增大③普朗克常量h:等于图线的斜率与电子电荷量的乘积,即h=ke(注:此时两极之间接反向电压)颜色相同、强度不同的光,光电流与电压的关系①遏止电压U c:图线与横轴的交点的横坐标②饱和电流:电流的最大值;③最大初动能:E k=eU c颜色不同时,光电流与电压的关系①遏止电压U c1、U c2②饱和电流③最大初动能E k1=eU c1,E k2=eU c2考向1光电效应的规律例3研究光电效应的电路图如图所示,关于光电效应,下列说法正确的是()A.任何一种频率的光,只要照射时间足够长,电流表就会有示数B.若电源电动势足够大,滑动变阻器滑片向右滑,电流表的示数能一直增大C.调换电源的正负极,调节滑动变阻器的滑片,电流表的示数可能变为零D.光电效应反映了光具有波动性答案 C解析能否发生光电效应取决于光的频率,与照射时间长短无关,A错误;增加极板间电压,会出现饱和电流,电流表示数不会一直增大,B错误;调换电源正负极,若反向电压达到遏止电压,则电流表示数变为零,C正确;光电效应反映了光具有粒子性,D错误.考向2光电效应的图像例4 (多选)如图所示,甲、乙、丙、丁是关于光电效应的四个图像,以下说法正确的是( )A .由图甲可求得普朗克常量h =be aB .由图乙可知虚线对应金属的逸出功比实线对应金属的逸出功小C .由图丙可知在光的颜色不变的情况下,入射光越强,饱和电流越大D .由图丁可知电压越高,则光电流越大 答案 BC解析 根据光电效应方程,结合动能定理可知eU c =E k =hν-W 0=hν-hνc ,变式可得U c =he ν-h e νc ,斜率k =b 2a =h e ,解得普朗克常量为h =be2a ,故A 错误;根据爱因斯坦光电效应方程E k =hν-W 0可知,纵轴截距的绝对值表示逸出功,则实线对应金属的逸出功比虚线对应金属的逸出功大,故B 正确;入射光频率一定,饱和电流由入射光的强度决定,即光的颜色不变的情况下,入射光越强,光子数越多,饱和电流越大,故C 正确;分析题图丁可知,当达到饱和电流以后,增加光电管两端的电压,光电流不变,故D 错误.例5 (多选)一定强度的激光(含有三种频率的复色光)沿半径方向入射到半圆形玻璃砖的圆心O 点,如图甲所示.现让经过玻璃砖后的A 、B 、C 三束光分别照射相同的光电管的阴极(如图乙所示),其中C 光照射时恰好有光电流产生,则( )A .若用B 光照射光电管的阴极,一定有光电子逸出B .若用A 光和C 光分别照射光电管的阴极,A 光照射时逸出的光电子的最大初动能较大 C .若入射光的入射角从0开始增大,C 光比B 光先消失D .若是激发态的氢原子直接跃迁到基态辐射出B 光、C 光,则C 光对应的能级较低 答案 BC解析 由题图甲可得,B 光和C 光为单色光,C 光的折射率大,频率高;A 光除了B 、C 光的反射光线外,还含有第三种频率的光,为三种光的复合光.C 光照射光电管恰好有光电流产生,用B 光照射同一光电管,不能发生光电效应,故A 错误;A 光为三种频率的复合光,但A 光中某频率的光发生了全反射,其临界角最小,折射率最大,频率最高,则A 光和C 光分别照射光电管的阴极时,A 光照射时逸出的光电子的最大初动能较大,故B 正确;根据sin C =1n 可知,C 光的临界角比B 光小,若入射光的入射角从0开始增大,C 光比B 光先消失,故C 正确;C 光的频率比B 光高,根据能级跃迁规律可知,若是激发态的氢原子直接跃迁到基态辐射出B 光、C 光,则C 光对应的能级较高,故D 错误.考点三 光的波粒二象性与物质波1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性. 2.物质波(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.(2)物质波:任何一个运动着的物体,小到微观粒子,大到宏观物体,都有一种波与它对应,其波长λ=hp,p 为运动物体的动量,h 为普朗克常量.1.光的频率越高,光的粒子性越明显,但仍具有波动性.( √ )2.法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现为波动性.( √ )例6(2022·上海师大附中高三学业考试)用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图(a)(b)(c)所示的图像,则()A.图像(a)表明光具有波动性B.图像(c)表明光具有粒子性C.用紫外线观察不到类似的图像D.实验表明光是一种概率波答案 D解析题图(a)只有分散的亮点,表明光具有粒子性;题图(c)呈现干涉条纹,表明光具有波动性,A、B错误;紫外线也具有波粒二象性,也可以观察到类似的图像,C错误;实验表明光是一种概率波,D正确.考点四原子结构1.电子的发现:英国物理学家汤姆孙发现了电子.2.α粒子散射实验:1909年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来.3.原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.1.在α粒子散射实验中,少数α粒子发生大角度偏转是由于它跟金原子中的电子发生了碰撞.(×)2.原子中绝大部分是空的,原子核很小.(√)3.核式结构模型是卢瑟福在α粒子散射实验的基础上提出的.(√)例7关于α粒子散射实验的下述说法中正确的是()A.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180°B.使α粒子发生明显偏转的力来自带正电的核及核外电子,当α粒子接近核时是核的排斥力使α粒子发生明显偏转,当α粒子接近电子时,是电子的吸引力使之发生明显偏转C.实验表明原子中心有一个极小的核,它占有原子体积的极小部分,实验事实肯定了汤姆孙的原子结构模型D.实验表明原子中心的核带有原子的全部正电及全部质量答案 A解析在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180°,所以A正确;使α粒子发生明显偏转的力是来自带正电的核,当α粒子接近核时,核的排斥力使α粒子发生明显偏转,电子对α粒子的影响忽略不计,所以B错误;实验表明原子中心有一个极小的核,它占有原子体积的极小部分,实验事实否定了汤姆孙的原子结构模型,所以C错误;实验表明原子中心的核带有原子的全部正电及绝大部分质量,所以D错误.考点五玻尔理论能级跃迁1.玻尔理论(1)定态假设:电子只能处于一系列不连续的能量状态中,在这些能量状态中电子绕核的运动是稳定的,电子虽然绕核运动,但并不产生电磁辐射.(2)跃迁假设:电子从能量较高的定态轨道(其能量记为E n)跃迁到能量较低的定态轨道(能量记为E m,m<n)时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=E n-E m.(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道量子化假设:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.2.氢原子的能量和能级跃迁(1)能级和半径公式:①能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.②半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态轨道半径,其数值为r1=0.53×10-10 m.(2)氢原子的能级图,如图所示1.处于基态的氢原子可以吸收能量为11 eV 的光子而跃迁到高能级.( × ) 2.氢原子吸收或辐射光子的频率条件是hν=E n -E m (m <n ).( √ ) 3.氢原子各能级的能量指电子绕核运动的动能.( × ) 4.玻尔理论能解释所有元素的原子光谱.( × )1.两类能级跃迁(1)自发跃迁:高能级→低能级,释放能量,发射光子. 光子的频率ν=ΔE h =E 高-E 低h.(2)受激跃迁:低能级→高能级,吸收能量. 吸收光子的能量必须恰好等于能级差hν=ΔE . 2.光谱线条数的确定方法(1)一个氢原子跃迁发出可能的光谱线条数最多为n -1. (2)一群氢原子跃迁发出可能的光谱线条数N =C 2n =n (n -1)2. 3.电离(1)电离态:n =∞,E =0.(2)电离能:指原子从基态或某一激发态跃迁到电离态所需要吸收的最小能量. 例如:氢原子从基态→电离态: E 吸=0-(-13.6 eV)=13.6 eV(3)若吸收能量足够大,克服电离能后,获得自由的电子还具有动能.例8 (2019·全国卷Ⅰ·14)氢原子能级示意图如图所示.光子能量在1.63 eV ~3.10 eV 的光为可见光.要使处于基态(n =1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为()A.12.09 eV B.10.20 eVC.1.89 eV D.1.51 eV答案 A解析因为可见光光子的能量范围是1.63 eV~3.10 eV,所以处于基态的氢原子至少要被激发到n=3能级,要给氢原子提供的能量最少为E=(-1.51+13.60) eV=12.09 eV,故选项A 正确.例9氢原子的能级图如图所示.用氢原子从n=4能级跃迁到n=1能级辐射的光照射逸出功为6.34 eV的金属铂,下列说法正确的是()A.产生的光电子的最大初动能为6.41 eVB.产生的光电子的最大初动能为12.75 eVC.氢原子从n=2能级向n=1能级跃迁时辐射的光不能使金属铂发生光电效应D.氢原子从n=4能级向n=2能级跃迁时辐射的光也能使金属铂发生光电效应答案 A解析从n=4能级跃迁到n=1能级辐射的光子能量为-0.85 eV-(-13.6 eV)=12.75 eV,产生的光电子的最大初动能为E k=hν-W0=12.75 eV-6.34 eV=6.41 eV,故A正确,B错误;氢原子从n=2能级向n=1能级跃迁时辐射的光子能量为10.2 eV,能使金属铂发生光电效应,故C错误;氢原子从n=4能级向n=2能级跃迁时辐射的光子能量小于金属铂的逸出功,故不能使金属铂发生光电效应,故D错误.课时精练1.(多选)波粒二象性是微观世界的基本特征,以下说法正确的有()A.光电效应现象揭示了光的粒子性B.热中子束射到晶体上产生衍射图样说明中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波的波长也相等答案AB2.关于光电效应,下列说法正确的是()A.截止频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能发生光电效应C.从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越小D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多答案 A解析逸出功W0=hνc,W0∝νc,A正确;只有照射光的频率ν大于或等于金属截止频率νc,才能发生光电效应,B错误;由光电效应方程E k=hν-W0知,入射光频率ν不确定时,无法确定E k与W0的关系,C错误;频率一定,入射光的光强越大,单位时间内逸出的光电子数越多,D错误.3.频率为ν的光照射某金属时,产生光电子的最大初动能为E km.改为频率为2ν的光照射同一金属,所产生光电子的最大初动能为(h为普朗克常量)()A.E km-hνB.2E kmC.E km+hνD.E km+2hν答案 C解析根据爱因斯坦光电效应方程得E km=hν-W0,若入射光频率变为2ν,则E km′=h·2ν-W0=2hν-(hν-E km)=hν+E km,故选项C正确.4.如图所示为氢原子的能级图,下列说法正确的是()A.用能量为9.0 eV的电子激发n=1能级的大量氢原子,可以使氢原子跃迁到高能级B.n=2能级的氢原子可以吸收能量为3.3 eV的光子而发生电离C.大量处于n=4能级的氢原子跃迁到基态放出的所有光子中,n=4能级跃迁到n=1能级释放的光子的粒子性最显著D.大量处于基态的氢原子吸收12.09 eV的光子后,只可以放出两种频率的光子答案 C解析n=1能级与n=2能级的能量差为10.2 eV,由于9.0 eV<10.2 eV,因此用能量为9.0 eV 的电子激发n=1能级的大量氢原子,不能使氢原子跃迁到高能级,故A错误;n=2能级的氢原子的能量为-3.40 eV,因此欲使其发生电离,吸收的能量至少为3.40 eV,故B错误;光子的波长越长波动性越显著,光子的频率越高,粒子性越显著,由玻尔理论可知,从n=4能级跃迁到n=1能级释放的光子能量最大,由E=hν可知,该光子的频率最高,该光子的粒子性最显著,故C正确;大量处于基态的氢原子吸收12.09 eV的光子后,由跃迁规律可知,大量的氢原子可以跃迁到n=3能级,则放出C23=3种频率的光子,故D错误.5.(多选)(2017·全国卷Ⅲ·19)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b,光电子的最大初动能分别为E k a和E k b.h 为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b答案BC解析由爱因斯坦光电效应方程得,E k=hν-W0,由动能定理得,E k=eU,用a、b单色光照射同种金属时,逸出功W0相同.当νa>νb时,一定有E k a>E k b,U a>U b,故选项A错误,B正确;若U a<U b,则一定有E k a<E k b,故选项C正确;因逸出功相同,有W0=hνa-E k a =hνb-E k b,故选项D错误.6.(2020·江苏卷·12(1)(2))(1)“测温枪”(学名“红外线辐射测温仪”)具有响应快、非接触和操作方便等优点.它是根据黑体辐射规律设计出来的,能将接收到的人体热辐射转换成温度显示.若人体温度升高,则人体热辐射强度I及其极大值对应的波长λ的变化情况是________.A.I增大,λ增大B.I增大,λ减小C.I减小,λ增大D.I减小,λ减小(2)大量处于某激发态的氢原子辐射出多条谱线,其中最长和最短波长分别为λ1和λ2,则该激发态与基态的能量差为________,波长为λ1的光子的动量为________.(已知普朗克常量为h,光速为c)答案 (1)B (2)h c λ2 h λ1解析 (1)若人体温度升高,则人体的热辐射强度I 增大,由ε=hν,故对应的频率ν变大,由c =λν知对应的波长λ变小,选项B 正确.(2)该激发态与基态的能量差ΔE 对应着辐射最短波长的光子,故能量差为ΔE =hν=h c λ2;波长为λ1的光子的动量p =h λ1.7.(多选)对于钠和钙两种金属,其遏止电压U c 与入射光频率ν的关系如图所示.用h 、e 分别表示普朗克常量和电子电荷量,则( )A .钠的逸出功小于钙的逸出功B .图中直线的斜率为h eC .在得到这两条直线时,必须保证入射光的光强相同D .若这两种金属产生的光电子具有相同的最大初动能,则照射到钠的光频率较高 答案 AB解析 根据U c e =E k =hν-W 0,即U c =h e ν-W 0e,则由题图可知钠的逸出功小于钙的逸出功,选项A 正确;题图中直线的斜率为h e,选项B 正确;在得到这两条直线时,与入射光的光强无关,选项C 错误;根据E k =hν-W 0,若这两种金属产生的光电子具有相同的最大初动能,则照射到钠的光频率较低,选项D 错误.8.用金属铷为阴极的光电管,观测光电效应现象,实验装置示意如图甲所示,实验中测得铷的遏止电压U c 与入射光频率ν之间的关系如图乙所示,图线与横轴交点的横坐标为5.15× 1014 Hz.已知普朗克常量h =6.63×10-34 J·s.则下列说法中正确的是( )A.欲测遏止电压,应选择电源左端为正极B.当电源左端为正极时,滑动变阻器的滑片向右滑动,电流表的示数持续增大C.增大照射光的强度,产生的光电子的最大初动能一定增大D.如果实验中入射光的频率ν=7.00×1014Hz,则产生的光电子的最大初动能约为E k=1.2×10-19 J答案 D解析遏止电压产生的电场对电子起阻碍作用,则电源的右端为正极,故A错误;当电源左端为正极时,滑动变阻器的滑片向右滑动,加速电场增强,电流增加但增加到一定值后不再增加,故B错误;由E k=hν-W0可知,最大初动能与光的强度无关,故C错误;E k=hν-W0=hν-hνc,νc=5.15×1014 Hz,代入数值求得E k≈1.2×10-19 J,故D正确.9.(多选)(2020·浙江1月选考·14)由玻尔原子模型求得氢原子能级如图所示,已知可见光的光子能量在1.62 eV到3.11 eV之间,则()A.氢原子从高能级向低能级跃迁时可能辐射出γ射线B.氢原子从n=3能级向n=2能级跃迁时会辐射出红外线C.处于n=3能级的氢原子可以吸收任意频率的紫外线并发生电离D.大量氢原子从n=4能级向低能级跃迁时可辐射出2种频率的可见光答案CD解析γ射线是放射性元素的原子核从高能级向低能级跃迁时辐射出来的,氢不是放射性元素,A错误;氢原子从n=3能级向n=2能级跃迁时辐射出的光子的能量E=E3-E2=-1.51 eV-(-3.4 eV)=1.89 eV,1.62 eV<1.89 eV<3.11 eV,故氢原子从n=3能级向n=2能级跃迁时辐射出的光为可见光,B错误;根据E=hν及题给条件可知,紫外线光子的能量大于3.11 eV,要使处于n=3能级的氢原子发生电离,需要的能量至少为1.51 eV,故C正确;大量氢原子从n=4能级向低能级跃迁时辐射出的光子能量有0.66 eV、2.55 eV、12.75 eV、1.89 eV、12.09 eV、10.2 eV,故大量氢原子从n=4能级向低能级跃迁时可辐射出2种频率的可见光,D正确.10.如图所示为氢原子的能级示意图,则关于氢原子在能级跃迁过程中辐射或吸收光子的特征,下列说法中正确的是()A.一群处于n=4能级的氢原子向基态跃迁时,能辐射出5种不同频率的光子B.一群处于n=3能级的氢原子吸收能量为0.9 eV的光子可以跃迁到n=4能级C.处于基态的氢原子吸收能量为13.8 eV的光子可以发生电离D.若氢原子从n=3能级跃迁到n=1能级辐射出的光照在某种金属表面上能发生光电效应,则从n=5能级跃迁到n=2能级辐射出的光也一定能使该金属发生光电效应答案 C解析一群处于n=4能级的氢原子向基态跃迁时,能辐射出C24=6种不同频率的光子,故A 错误;一群处于n=3能级的氢原子吸收能量为0.9 eV的光子后的能量为E=-1.51 eV+0.9 eV=-0.61 eV,0.9 eV不等于能级间的能量差,该光子不能被吸收,故B错误;处于基态的氢原子吸收能量为13.8 eV的光子可以发生电离,剩余的能量变为光电子的初动能,故C 正确;氢原子从n=3能级跃迁到n=1能级辐射出的光子能量为ΔE1=E3-E1=12.09 eV,从n=5能级跃迁到n=2能级辐射出的光子能量为ΔE2=E5-E2=2.86 eV,所以若氢原子从n =3能级跃迁到n=1能级辐射出的光照在某种金属表面上能发生光电效应,则从n=5能级跃迁到n=2能级辐射出的光不一定能使该金属发生光电效应,故D错误.11.(多选)为了解决光信号长距离传输中的衰减问题,常常在光纤中掺入铒元素.如图所示是铒离子的能级示意图,标识为4I13/2的铒离子处在亚稳态,不会立即向下跃迁:如果用光子能量约为2.03×10-19J的激光把处于基态能级4I15/2的铒离子激发到4I11/2能级,再通过“无辐射跃迁”跃迁到能级4I13/2,从而使该能级积聚的离子数远超过处于基态的离子数.当光纤中传输某波长的光波时,能使处在亚稳态能级的离子向基态跃迁,产生大量能量约为1.28×。
高考理综物理知识点总结考点复习 波粒二象性 原子物理1.(15江苏卷)(1)波粒二象性时微观世界的基本特征,以下说法正确的有_______A .光电效应现象揭示了光的粒子性B .热中子束射到晶体上产生衍射图样说明中子具有波动性C .黑体辐射的实验规律可用光的波动性解释D .动能相等的质子和电子,它们的德布罗意波也相等(2)核电站利用原子核链式反应放出的巨大能量进行发电,23592U 是常用的核燃料.23592U 受一个中子轰击后裂变成14456Ba 和8936Kr 两部分,并产生_____个中子.要使链式反应发生,裂变物质的体积要_________(选填“大于”或者“小于”)它的临界体积.(3)取质子的质量271.672610p m kg -=⨯,中子的质量271.674910n m kg -=⨯,α粒子的质量276.646710m kg α-=⨯,光速8310/c m s =⨯,请计算α粒子的结合能,(计算结果保留两位有效数字)答案:(1)BC(2) 1.5 不容易(3)质量亏损αm m m m n P -+=∆)22(结合能2mc E ∆=∆代入数据得J E 12103.4-⨯=∆2.(15福建卷)(1)下列有关原子结构和原子核的认识,其中正确的是.( )A.γ射线是高速运动的电子流B.氢原子辐射光子后,其绕核运动的电子动能增大C.太阳辐射能量的主要来源是太阳中发生的重核裂变D. 21083Bi 的半衰期是5天,100克21083Bi 经过10天后还剩下50克 答案:(1)B解析:γ射线是光子流,所以A 项错误;氢原子辐射光子以后,半径减小,电子动能增加,所以B 项正确;太阳辐射能量的主要来源是热核反应,所以C 项错误; 21083Bi 的半衰期是5天,经过10天,100克21083Bi 还余25D 项错误.3.(15海南卷)(1)氢原子基态的能量为.大量氢原子处于某一激发态.由这些氢原子可能发出的所有光子中,频率最大的光子能量为0.96,频率最小的光子的能量为 eV(保留2位有效数字),这些光子可具有种不同的频率.答案:,10解析:频率最小的光子是从跃迁,即频率最小的光子的能量为频率最大的光子能量为0.96,即,解得即,从能级开始,共有,,,,,,,,,,10种不同频率的光子(2)运动的原子核放出粒子后变成静止的原子核Y.已知X、Y和粒子的质量分别是M、和,真空中的光速为c,粒子的速度远小于光速.求反应后与反应前的总动能之差以及粒子的动能.答案:,解析:反应后由于存在质量亏损,所以反应前后总动能之差等于质量亏损而释放出的能量,故根据爱因斯坦质能方程可得①反应过程中三个粒子组成的系统动量守恒,故有,②联立①②可得4.2015·全国新课标Ⅱ·35(1):(多选题)实物粒子和光都具有波粒二象性,下列事实中突出体现波动性的是 .A.电子束通过双缝实验后可以形成干涉图样B.β射线在云室中穿过会留下清晰的径迹C.人们利慢中子衍射来研究晶体的结构D.人们利用电子显微镜观测物质的微观结构E.光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关答案:ACD解析:电子束通过双缝实验后可以形成干涉图样,可以说明电子是一种波,故A正确;β射线在云室中穿过会留下清晰的径迹,可以说明β射线是一种粒子,故B错误;人们利慢中子衍射来研究晶体的结构,中子衍射说明中子是一种波,故C正确;人们利用电子显微镜观测物质的微观结构,利用了电子的干涉现象,说明电子是一种波,故D正确;光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关,说明光是一种粒子,故E错误.。
考点18 波粒二象性原子物理一、选择题1.(2014·新课标全国卷Ⅰ)(1)关于天然放射性,下列说法正确的是( )A.所有元素都可能发生衰变B.放射性元素的半衰期与外界的温度无关C.放射性元素与别的元素形成化合物时仍具有放射性D.α、β和γ三种射线中,γ射线的穿透能力最强E.一个原子核在一次衰变中可同时放出α、β和γ三种射线【解析】选B、C、D。
本题考查了原子核的衰变。
原子序数大于83的元素,都可以发生衰变,A错误;放射性、半衰期都与元素所处的物理、化学状态无关,B、C 正确;三种射线α、β、γ穿透能力依次增强,D正确;原子核发生α或β衰变时常常伴随γ光子,但同一原子核不会同时发生α、β、γ衰变,E错误。
【误区警示】E选项中说的是一个原子核可同时放出三种射线,不要理解为是某种放射性物质可同时放出三种射线。
2. (2014·北京高考)质子、中子和氘核的质量分别为m1、m2和m3。
当一个质子和一个中子结合成氘核时,释放的能量是(c表示真空中的光速)( )A.(m1+m2-m3)cB.(m1-m2-m3)cC.(m1+m2-m3)c2D.(m1-m2-m3)c2【解题指南】解答本题可按以下思路进行:(1)确定质量的变化量Δm;(2)根据质能方程ΔE=Δmc2计算释放的能量。
【解析】选C。
由题意可知,质量的变化量Δm=m1+m2-m3;根据质能方程ΔE=Δmc2计算释放的能量为E=(m1+m2-m3)c2。
3.(2014·福建高考)如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是( )A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线【解题指南】解答本题时应从以下两点进行分析:(1)三种射线的带电特点;(2)带电粒子在磁场或电场中的偏转情况。
【解析】选C。
由放射现象中α射线带正电,β射线带负电,γ射线不带电,结合在电场与磁场中的偏转可知②⑤是γ射线,③④是α射线,故选C。
4.(2014·广东高考)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是( )A.增大入射光的强度,光电流增大B.减小入射光的强度,光电效应现象消失C.改用频率小于ν的光照射,一定不发生光电效应D.改用频率大于ν的光照射,光电子的最大初动能变大【解题指南】解答本题时应从以下两点进行分析:(1)爱因斯坦光电效应方程221mv W h =-逸ν中,各个物理量的含义及影响因素。
(2)产生光电效应的实验规律。
【解析】选A 、D 。
增大入射光的强度,单位时间内照到单位面积上的光子数增加,光电流增大,A 项正确。
减小入射光的强度,只是光电流减小,光电效应现象是否消失与光的频率有关,而与光的强度无关,B 项错误。
改用频率小于ν的光照射,但只要光的频率大于极限频率ν0仍然可以发生光电效应,C 项错误。
由爱因斯坦光电效应方程221mv W h =-逸ν得:光频率ν增大,而W 逸不变,故光电子的最大初动能变大,D 项正确。
5. (2014·山东高考)氢原子能级如图,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656nm 。
以下判断正确的是( )A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656nmB.用波长为325nm 的光照射,可使氢原子从n=1跃迁到n=2的能级C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D.用波长为633nm 的光照射,不能使氢原子从n=2跃迁到n=3的能级【解题指南】解答本题应注意以下两点:(1)能级间跃迁辐射的光子能量等于两能级间的能级差;(2)能级间跃迁辐射的谱线条数遵守组合规律。
【解析】选C 、D 。
能级间跃迁辐射的光子能量等于两能级间的能级差,能级差越大,辐射的光子频率越大,波长越小,A 错误;由m n E E h -=cλ可知,B 错误,D 正确;根据23=3C 可知,辐射的光子频率最多3种,C 正确。
6.(2014·重庆高考)碘131的半衰期约为8天,若某药物含有质量为m 的碘131,经过32天后,该药物中碘131的含量大约还有( ) A.4mB.8mC. 16mD.32m 【解题指南】解答本题时应注意以下两点:(1)正确书写原子核的衰变公式;(2)准确求解原子核衰变的次数。
【解析】选C 。
由原子核的衰变公式n )21(m m =余,其中4832===T t n ,为衰变的次数,解得16m m =余,故选C 。
7.(2014·江苏高考)已知钙和钾的截止频率分别为7.73×1014Hz 和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( )A.波长B.频率C.能量D.动量【解析】选A 。
根据爱因斯坦光电效应方程:E km =h ν-h ν0,因为钙的ν0大,所以能量E km 小,频率小,波长大,B 、C 项错误,A 项正确;根据物质波波长ph =λ,所以钙逸出的光电子动量小,D 项错误。
8. (2014·新课标全国卷Ⅱ)在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用。
下列说法符合历史事实的是( )A.密立根通过油滴实验测出了基本电荷的数值B.贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核C.居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素D.卢瑟福通过α粒子散射实验证实了在原子核内部存在质子E.汤姆逊通过阴极射线在电场和磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成的,并测出了该粒子的比荷【解题指南】解答本题时应注意以下两个方面:(1)熟悉有关原子物理的物理学史;(2)了解测定带电粒子比荷的方法。
【解析】选A、C、E。
密立根通过油滴实验测出了基本电荷的数值为1.6×10-19C,A 正确;贝克勒尔发现了天然放射现象,B错误;居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素,C正确;卢瑟福通过α粒子散射实验,得出了原子的核式结构理论,D错误;汤姆逊通过对阴极射线在电场及在磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成,并测定了粒子的比荷,E正确。
9.(2014·天津高考)下列说法正确的是( )A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立B.可利用某些物质在紫外线照射下发出荧光来设计防伪措施C.天然放射现象中产生的射线都能在电场或磁场中发生偏转D.观察者与波源互相远离时接收到波的频率与波源频率不同【解析】选B、D。
原子的核式结构模型源于卢瑟福的α粒子散射实验,A错;紫外线可使荧光物质发光,此现象广泛应用于人民币等的防伪措施,B对;天然放射现象中的γ射线是电磁波,不会在电磁场中偏转,C错;由多普勒效应可知,观察者与波源靠近或远离时,接收到波的频率相对于波源频率会增大或减小,D对。
10.(2014·上海高考)核反应方程9412426Be He C X +→+中的X 表示( )A.质子B.电子C.光子 `D.中子【解题指南】解答本题注意以下两点:(1)核反应方程的书写满足电荷数守恒;(2)核反应方程的书写满足质量数守恒。
【解析】选D 。
根据质量数守恒可知X 的质量数为1;根据电荷数守恒可知X 的电荷数为0,所以X 表示中子。
11.(2014·上海高考)不能用卢瑟福原子核式结构模型得出的结论是( )A.原子中心有一个很小的原子核B.原子核是由质子和中子组成的C.原子质量几乎全部集中在原子核内D.原子的正电荷全部集中在原子核内【解题指南】解答本题的关键是了解卢瑟福原子的核式结构模型。
【解析】选B 。
能用卢瑟福原子的核式结构得出的结论:在原子中心有一个很小的原子核,原子的全部正电荷和几乎全部的质量都集中在原子核内,带负电的电子在核外空间绕核旋转。
而“原子核是由质子和中子组成的”结论并不能用卢瑟福原子的核式结构得出。
12.(2014·上海高考)链式反应中,重核裂变时放出的可以使裂变不断进行下去的粒子是( )A.质子B.中子C.β粒子D.α粒子【解题指南】解答本题的关键是了解链式反应的概念。
【解析】选B 。
链式反应是重核裂变产生的中子使裂变反应一代接一代继续下去的过程,故选项B正确。
13.(2014·上海高考)在光电效应的实验结果中,与光的波动理论不矛盾的是( )A.光电效应是瞬时发生的B.所有金属都存在极限频率C.光电流随着入射光增强而变大D.入射光频率越大,光电子最大初动能越大【解题指南】解答本题注意以下两点:(1)知道光电效应的实验规律;(2)知道光的波动理论。
【解析】选C。
光电效应产生的时间极短,电子吸收光的能量是瞬间完成的,而不像波动理论所预计的那样可以逐渐叠加,A错误。
光电效应中所有金属都存在极限频率,当入射光的频率低于极限频率时不能发生光电效应。
光的波动理论认为不管光的频率如何,只要光足够强,电子都可以获得足够能量从而逸出表面,不应存在极限频率,B错误。
光电效应中入射光越强,光电流越大,这与光的波动理论不矛盾,C正确。
光电效应中入射光的频率越大,光电子的最大初动能越大。
光的波动理论认为光强越大,电子可获得更多的能量,光电子的最大初动能越大,D 错误。
14.(2014·海南高考)在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能产生光电效应。
对于这两个过程,下列四个物理量中,一定不同的是( ) A.遏止电压 B.饱和光电流C.光电子的最大初动能D.逸出功【解题指南】解答此题应注意以下两点:(1)理解金属的逸出功、光电子的最大初动能和遏止电压的关系;(2)理解饱和光电流与光照强度的关系。
【解析】选A 、C 、D 。
不同金属的逸出功W 0不同,所以用同一种单色光照射锌和银的表面,光电子逸出后最大初动能E k =h ν-W 0也不同,C 、D 均正确;遏止电压满足eU c =E k ,所以遏止电压也不同,A 正确;饱和光电流的大小与光照强度有关,只要光照强度相同,光电效应产生的饱和光电流就相同,B 错误。
二、填空题1. (2014·江苏高考)氡222是一种天然放射性气体,被吸入后,会对人的呼吸系统造成辐射损伤。
它是世界卫生组织公布的主要环境致癌物质之一。
其衰变方程是2222188684Rn Po →+ 。
已知22286Rn 的半衰期约为3.8天,则约经过 天, 16g 的22286Rn 衰变后还剩1g 。
【解析】根据质量数守恒和电荷数守恒可知空内应填42He (或α),根据τtm m )21(0=, 解得t=3.8×4天=15.2天。