2.离散型随机变量的分布列
- 格式:ppt
- 大小:634.00 KB
- 文档页数:20
专题10.4 离散型随机变量的分布列【考纲要求】1. 了解离散型随机变量; 2.离散型随机变量的分布列. 3. 独立重复试验. 【考向预测】1. 独立重复试验与二项分布.2. 离散型随机变量的分布列.【知识清单】1. 离散型随机变量随着试验结果变化而变化的变量称为_随机变量__,所有取值可以一一列出的随机变量,称为_离散型__随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的_概率分布列__(2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =_p 1+p 2+…+p n __=1. 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.4.独立重复试验与二项分布(1)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=_P (A 1)P (A 2)P (A 3)…P (A n )__.(2)二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ). 若X ~B (n ,p ),则E (X )=_np __,D (X )=_np (1-p )__.【考点分类剖析】考点一 独立重复试验的概率例1. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位). (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.【方法归纳】 1.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解.2.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验. 3.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.【变式探究】甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 考点二 离散型随机变量的分布列-二项分布例.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.【方法归纳】 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.【变式探究】一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是__ __. 考点三 二项分布的应用例.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为13,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.【方法归纳】 1.二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【变式探究】1.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.2.甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为23和34.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.①用X表示甲同学连续三次答题中答对的次数,求随机变量X的分布列和数学期望;②设M为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件M发生的概率.考点四离散型随机变量的分布列-超几何分布例1袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;【方法归纳】求离散型随机变量的分布列应注意的问题(1)正确求出分布列的前提是必须先准确写出随机变量的所有可能取值,再依古典概型求出每一个可能取值的概率.至于某一范围内取值的概率,应等于它取这个范围内各个值的概率之和.(2)在求解过程中注重知识间的融合,常常会用到排列组合、古典概率及互斥事件、对立事件的概率等知识.【变式探究】1.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.2.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.专题10.4 离散型随机变量的分布列【考纲要求】1. 了解离散型随机变量; 2.离散型随机变量的分布列. 3. 独立重复试验. 【考向预测】1. 独立重复试验与二项分布.2. 离散型随机变量的分布列.【知识清单】1. 离散型随机变量随着试验结果变化而变化的变量称为_随机变量__,所有取值可以一一列出的随机变量,称为_离散型__随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的_概率分布列__(2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =_p 1+p 2+…+p n __=1. 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.4.独立重复试验与二项分布(1)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=_P (A 1)P (A 2)P (A 3)…P (A n )__.(2)二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ). 若X ~B (n ,p ),则E (X )=_np __,D (X )=_np (1-p )__.【考点分类剖析】考点一 独立重复试验的概率例1. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位). (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率. [解析] (1)记预报一次准确为事件A ,则P (A )=0.8. 5次预报相当于5次独立重复试验,2次准确的概率为P =C 25×0.82×0.23=0.0512≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P =C 05×(0.2)5+C 15×0.8×0.24=0.00672≈0.01.所以所求概率为1-P =1-0.01=0.99.所以5次预报中至少有2次准确的概率约为0.99. (3)说明第1,2,4,5次中恰有1次准确.所以概率为P =C 14×0.8×0.23×0.8=0.02048≈0.02,所以恰有2次准确,且其中第3次预报准确的概率约为0.02.【方法归纳】 1.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解.2.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验.3.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.【变式探究】甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率.[解析] (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38,由于甲、乙射击相互独立,故P (A 2B 2)=49×38=16. 考点二 离散型随机变量的分布列-二项分布例.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.[解析] (1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名考生选做同一道题的事件为“AB ∪A B ”,且事件A ,B 相互独立.所以P (AB ∪A B )=P (A )P (B )+P (A )P (B ) =12×12+(1-12)×(1-12)=12. (2)随机变量X 的可能取值为0,1,2,3,4.且X ~B (4,12).所以P (X =k )=C k 4(12)k (1-12)4-k=C k 4(12)4(k =0,1,2,3,4). 所以变量X 的分布列为:【方法归纳】 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.【变式探究】一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是__①③__.[解析] ①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②设A ={第一次取到红球},B ={第二次取到红球}.则P (A )=23,P (A ∩B )=4×36×5=25,∴P (B |A )=P (A ∩B )P (A )=35,故②错;③每次取到红球的概率P =23,所以至少有一次取到红球的概率为 1-(1-23)3=2627,故③正确.考点三 二项分布的应用例.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为13,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.[解析] (1)至少有3次发芽成功,即有3次、4次、5次发芽成功.设5次试验中种子发芽成功的次数为随机变量X ,则P (X =3)=C 35×(13)3×(23)2=40243,P (X =4)=C 45×(13)4×23=10243, P (X =5)=C 55×(13)5×(23)0=1243.所以至少有3次发芽成功的概率P =P (X =3)+P (X =4)+P (X =5)=40243+10243+1243=51243=1781.(2)随机变量ξ的可能取值为1,2,3,4,5. P (ξ=1)=13,P (ξ=2)=23×13=29,P (ξ=3)=(23)2×13=427,P (ξ=4)=(23)3×13=881,P (ξ=5)=(23)4×1=1681.所以ξ的分布列为:【方法归纳】 1.二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【变式探究】1.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.[解析] (1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为C 15·23·(13)4+(13)5, 所以所求的概率为1-[C 15·23·(13)4+(13)5]=232243. (2)当X =4时记为事件A , 则P (A )=C 13·23·(13)2·23=427.当X =5时,意味着前4次射击只击中一次或一次也未击中,记为事件B . 则P (B )=C 14·23·(13)3+(13)4=19, ∴射击次数不小于4的概率为427+19=727.2.甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为23和34.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.①用X 表示甲同学连续三次答题中答对的次数,求随机变量X 的分布列和数学期望;②设M 为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件M 发生的概率.[解析] ①X 的所有可能取值为0,1,2,3, 则P (X =0)=⎝⎛⎭⎫133=127; P (X =1)=C 13·23×⎝⎛⎭⎫132=29; P (X =2)=C 23⎝⎛⎭⎫232×13=49; P (X =3)=⎝⎛⎭⎫233=827. ∴随机变量X 的分布列为∴E (X )=0×127+1×29+2×49+3×827=2或E (ξ)=np =23.②设Y 为乙连续3次答题中答对的次数, 由题意知Y ~B ⎝⎛⎭⎫3,34, P (Y =0)=⎝⎛⎭⎫143=164,P (Y =1)=C 13⎝⎛⎭⎫341⎝⎛⎭⎫142=964,所以P (M )=P (X =3且Y =1)+P (X =2且Y =0) =827×964+49×164=7144. 即事件M 发生的概率为7144.考点四 离散型随机变量的分布列-超几何分布例1袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;[解析] (1)解法一:记“一次取出的3个小球上的数字互不相同”的事件记为A ,则P (A )=C 35C 12C 12C 12C 310=23. 解法二:记“一次取出的3个小球上的数字互不相同”为事件A ,“一次取出的3个小球上的数字中有两个数字相同”为事件B ,事件A 和事件B 是对立事件.因为P (B )=C 15C 22C 18C 310=13,所以P (A )=1-P (B )=1-13=23.(2)由题意,X 所有可能的取值为2,3,4,5.P (X =2)=C 22C 12+C 12C 22C 310=130;P (X =3)=C 24C 12+C 14C 22C 310=215; P (X =4)=C 26C 12+C 16C 22C 310=310;P (X =5)=C 28C 12+C 18C 22C 310=815. 所以随机变量X 的概率分布列为:【方法归纳】 求离散型随机变量的分布列应注意的问题(1)正确求出分布列的前提是必须先准确写出随机变量的所有可能取值,再依古典概型求出每一个可能取值的概率.至于某一范围内取值的概率,应等于它取这个范围内各个值的概率之和.(2)在求解过程中注重知识间的融合,常常会用到排列组合、古典概率及互斥事件、对立事件的概率等知识.【变式探究】1.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X 表示赢得的钱数,随机变量X 可以取哪些值?求X 的分布列; (2)求出赢钱(即X >0时)的概率.[解析] (1)从箱中取两个球的情形有以下6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.当取到2个白球时,随机变量X =-2;当取到1个白球,1个黄球时,随机变量X =-1; 当取到1个白球,1个黑球时,随机变量X =1; 当取到2个黄球时,随机变量X =0;当取到1个黑球,1个黄球时,随机变量X =2;当取到2个黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4. P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:(2)P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.所以赢钱的概率为1933.2.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.[解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为。
§10.7 离散型随机变量及其分布列、数字特征学习目标1.理解取有限个值的离散型随机变量及其分布列的概念.2.理解并会求离散型随机变量的数字特征.知识梳理1.离散型随机变量一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X (ω)与之对应,我们称X 为随机变量;可能取值为有限个或可以一一列举的随机变量称为离散型随机变量. 2.离散型随机变量的分布列一般地,设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,称X 取每一个值x i 的概率P (X =x i )=p i ,i =1,2,…,n 为X 的概率分布列,简称分布列. 3.离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n ); ②p 1+p 2+…+p n =1.4.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为X x 1 x 2 … x n Pp 1p 2…p n(1)均值则称E (X )=x 1p 1+x 2p 2+…+x n p n =∑i =1nx i p i 为随机变量X 的均值或数学期望,数学期望简称期望.它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=(x 1-E (X ))2p1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,并称D (X )为随机变量X 的标准差,记为σ(X ),它们都可以度量随机变量取值与其均值的偏离程度. 5.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X )(a ,b 为常数). 常用结论均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数. (2)E (X 1+X 2)=E (X 1)+E (X 2). (3)D (X )=E (X 2)-(E (X ))2.(4)若X 1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)抛掷一枚质地均匀的硬币,出现正面的次数是随机变量.( √ )(2)在离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( × ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ ) (4)方差或标准差越小,则偏离均值的平均程度越小.( √ ) 教材改编题1.设随机变量X 的分布列如下:X 1 2 3 4 5 P112161316p则p 为( ) A.16 B.13 C.14 D.112 答案 C解析 由分布列的性质知, 112+16+13+16+p =1, ∴p =1-34=14.2.若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________. 答案 0解析 因为P (X =c )=1, 所以E (X )=c ×1=c , 所以D (X )=(c -c )2×1=0.3.已知随机变量X 的分布列如下:X-11P12 13 16若Y =2X +3,则E (Y )的值为________. 答案 73解析 E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.题型一 分布列的性质例1 (1)设X 是一个离散型随机变量,其分布列为X -1 0 1 P121-qq -q 2则q 等于( ) A .1 B.22或-22 C .1+22D.22 答案 D解析 由离散型随机变量分布列的性质得⎩⎪⎨⎪⎧12+1-q +q -q 2=1,0≤1-q ≤12,0≤q -q 2≤12,解得q =22. (2)(多选)设随机变量ξ的分布列为P ⎝⎛⎭⎫ξ=k5=ak (k =1,2,3,4,5),则( ) A .a =115B .P ⎝⎛⎭⎫12<ξ<45=15C .P ⎝⎛⎭⎫110<ξ<12=215D .P (ξ=1)=310答案 AB解析 对于选项A , ∵随机变量ξ的分布列为 P ⎝⎛⎭⎫ξ=k5=ak (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫ξ=15+P ⎝⎛⎭⎫ξ=25+P ⎝⎛⎭⎫ξ=35+P ⎝⎛⎭⎫ξ=45+P (ξ=1) =a +2a +3a +4a +5a =15a =1, 解得a =115,故A 正确;对于B ,易知P ⎝⎛⎭⎫12<ξ<45=P ⎝⎛⎭⎫ξ=35=3×115=15, 故B 正确; 对于C ,易知P ⎝⎛⎭⎫110<ξ<12=P ⎝⎛⎭⎫ξ=15+P ⎝⎛⎭⎫ξ=25 =115+2×115=15, 故C 错误;对于D ,易知P (ξ=1)=5×115=13,故D 错误. 教师备选1.设X 是一个离散型随机变量,其分布列为X 0 1 P9a 2-a3-8a则常数a 的值为( ) A.13 B.23C.13或23 D .-13或-23答案 A解析 由分布列的性质可知⎩⎪⎨⎪⎧0≤9a 2-a ≤1,0≤3-8a ≤1,9a 2-a +3-8a =1,解得a =13.2.离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=54×12+54×16=56. 思维升华 离散型随机变量分布列的性质的应用 (1)利用“概率之和为1”可以求相关参数的值.(2)利用“在某个范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率.(3)可以根据性质判断所得分布列结果是否正确.跟踪训练1 (1)若随机变量X 的分布列如下表,则mn 的最大值是( )A.116 B.18 C.14 D.12 答案 A解析 由分布列的性质, 得m +n =12,m ≥0,n ≥0,所以mn ≤⎝⎛⎭⎫m +n 22=116,当且仅当m =n =14时,等号成立.(2)随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______.答案 23 ⎣⎡⎦⎤-13,13 解析 因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.题型二 离散型随机变量的分布列及数字特征 例2 (1)(多选)设离散型随机变量X 的分布列为若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有( ) A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8 D .E (Y )=5,D (Y )=7.2 答案 ACD解析 因为q +0.4+0.1+0.2+0.2=1, 所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确; 因为Y =2X +1,所以E (Y )=2E (X )+1=5, D (Y )=4D (X )=7.2,故D 正确.(2)(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于( ) A.32 B.53 C.74 D.95 答案 A解析 由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种, 当X =1时,取法有C 24种, 即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种, 即P (X =2)=C 23C 35=310;当X =3时,取法有C 22种, 即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.教师备选1.已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 0 1 2 P1613a则随机变量Y 的方差D (Y )等于( ) A.59 B.209 C.43 D.299 答案 B解析 由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )=⎝⎛⎭⎫0-432×16+⎝⎛⎭⎫1-432×13+⎝⎛⎭⎫2-432×12=59, 又Y =2X +1,所以D (Y )=4D (X )=209.2.已知m ,n 为正常数,离散型随机变量X 的分布列如表:X -1 0 1 Pm14n若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________.答案118 13解析 由题意知⎩⎨⎧m +n +14=1,n -m =712,解得⎩⎨⎧m =112,n =23,所以mn =118,P (X ≤0)=m +14=13.思维升华 求离散型随机变量ξ的均值与方差的步骤 (1)理解ξ的意义,写出ξ可能的全部值. (2)求ξ取每个值的概率. (3)写出ξ的分布列.(4)由均值、方差的定义求E (ξ),D (ξ).跟踪训练2 (2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1表2(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率; (2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.解 (1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分; ②购买实物商品积分为4分,购买虚拟商品的积分为4分, 故小张一个月积分不低于8分的概率为 14×⎝⎛⎭⎫1-13+12×16=14. (3)由条件可知X 的可能取值为3,4,5. P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:E (X )=3×25+4×310+5×310=3910.题型三 均值与方差中的决策问题例3 (12分)(2021·新高考全国Ⅰ)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;[切入点:X 的取值情况] (2)为使累计得分的均值最大,小明应选择先回答哪类问题?并说明理由. [关键点:均值大小比较]高考改编某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.解(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P(Y=6)=0.7×(1-0.8)=0.14,P(Y=10)=0.7×0.8=0.56,则Y的均值为E(Y)=0×0.3+6×0.14+10×0.56=6.44,因为E(X)>E(Y),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.思维升华随机变量的均值和方差从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.跟踪训练3(2021·北京)为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X的分布列和均值E(X);(2)若采用“5合1检测法”,检测次数Y的均值为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).解(1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次,所以总检测次数为20.②由题意,X可以取20,30,P(X=20)=111,P(X=30)=1-111=1011,则X的分布列为X 20 30 P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599, 则E (Y )=25×499+30×9599=2 95099>E (X ).课时精练1.一串钥匙有6枚,只有一枚能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X 的最大可能取值为( ) A .6 B .5 C .4 D .2 答案 B解析 由于是逐次试验,可能最后一枚钥匙才能打开锁,即前5次都打不开锁,所以试验次数X 的最大可能取值为5. 2.若随机变量X 的分布列为X 1 2 3 Paba则X 的均值E (X )等于( ) A .2a +b B .a +2b C .2 D .3 答案 C解析 E (X )=1×a +2×b +3×a =2(2a +b ),由分布列的性质可知2a +b =1,所以E (X )=2. 3.已知随机变量X 的分布列是X 1 2 3 P1213a则E (2X +a )等于( ) A.53 B.73 C.72 D.236答案 C解析 由分布列的性质可得12+13+a =1,解得a =16,所以E (X )=1×12+2×13+3×16=53,因此E (2X +a )=E ⎝⎛⎭⎫2X +16=2E (X )+16=2×53+16=72. 4.(2022·南平模拟)某企业计划加大技改力度,需更换一台设备,现有两种品牌的设备可供选择,A 品牌设备需投入60万元,B 品牌设备需投入90万元,企业对两种品牌设备的使用年限情况进行了抽样调查:更换设备技改后,每年估计可增加效益100万元,从年均收益的角度分析( ) A .不更换设备 B .更换为A 设备 C .更换为B 设备D .更换为A 或B 设备均可 答案 C解析 设更换为A 品牌设备使用年限为X ,则E (X )=2×0.4+3×0.3+4×0.2+5×0.1=3,更换为A 品牌设备年均收益为3×100-60=240(万元);设更换为B 品牌设备使用年限为Y ,则E (Y )=2×0.1+3×0.3+4×0.4+5×0.2=3.7,更换为B 品牌设备年均收益为3.7×100-90=280(万元).280>240,所以更换为B 品牌设备.5.(多选)(2022·烟台模拟)中华人民共和国第十四届运动会于2021年9月在陕西省举办.为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍,向全国人民奉献一场精彩圆满的体育盛会,第十四届全国运动会组织委员会欲从4名男志愿者,3名女志愿者中随机抽取3人聘为志愿者队的队长.下列说法正确的有( )A .设事件A :“抽取的三人中既有男志愿者,也有女志愿者”,则P (A )=67B .设事件A :“抽取的3人中至少有一名男志愿者”,事件B :“抽取的3人中全是男志愿者”,则P (B |A )=217C .用X 表示抽取的三人中女志愿者的人数,则E (X )=127D .用Y 表示抽取的三人中男志愿者的人数,则D (Y )=2449答案 ABD解析 对于A ,所有可能的情况有C 37=35(种),其中既有男志愿者,也有女志愿者的情况有C 14C 23+C 24C 13=30(种), 故P (A )=3035=67,故A 正确;对于B ,P (AB )=C 34C 37=435,P (A )=C 14C 23+C 24C 13+C 34C 37=3435, 所以P (B |A )=P (AB )P (A )=434=217,故B 正确;对于C ,X 的所有可能取值为0,1,2,3, 则P (X =0)=C 34C 37=435,P (X =1)=C 13C 24C 37=1835,P (X =2)=C 23C 14C 37=1235,P (X =3)=C 33C 37=135,所以E (X )=0×435+1×1835+2×1235+3×135=97,故C 错误;对于D ,Y 的所有可能取值为0,1,2,3, 则P (Y =0)=C 33C 37=135,P (Y =1)=C 23C 14C 37=1235,P (Y =2)=C 13C 24C 37=1835,P (Y =3)=C 34C 37=435,则E (Y 2)=0×135+1×1235+4×1835+9×435=247,E (Y )=0×135+1×1235+2×1835+3×435=127,则D (Y )=E (Y 2)-(E (Y ))2=247-⎝⎛⎭⎫1272=2449,故D 正确.6.(多选)(2022·永州模拟)已知14<p <1,随机变量X 的分布列如下,则下列结论正确的有( )A .P (X =2)的值最大B .P (X =0)<P (X =1)C .E (X )随着p 的增大而减小D .E (X )随着p 的增大而增大 答案 BD解析 当p =12时,P (X =2)=14,P (X =1)=1-12=12>14,A 错误;因为14<p <1,所以p -p 2=p (1-p )<1-p , 即P (X =0)<P (X =1),B 正确; E (X )=1-p +2p 2=2⎝⎛⎭⎫p -142+78, 因为14<p <1,所以E (X )随着p 的增大而增大,C 错误,D 正确.7.(2022·无锡质检)设X 是一个离散型随机变量,其分布列为则X 的均值为__________. 答案 1+22解析 由12+1-q +q -q 2=1得,q 2=12,q =22,∴E (X )=12+2-2q +3q -3q 2=52+q -3q 2 =52+22-32 =1+22. 8.某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为34,乙、丙科目合格的概率相等,且3个科目是否合格相互独立.设小张3科中合格的科目数为X ,若P (X =3)=316,则E (X )=__________.答案 74解析 乙、丙科目合格的概率相等,可设乙、丙科目合格的概率均为p , 则P (X =3)=34p 2=316,解得p =12,故P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-34=116, P (X =1)=12×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-34+12×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-34+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-12×34=516, P (X =2)=12×12×⎝⎛⎭⎫1-34+12×⎝⎛⎭⎫1-12×34+⎝⎛⎭⎫1-12×12×34=716, 故X 的分布列为E (X )=0×116+1×516+2×716+3×316=74.9.2021年,“十四五”开启全面建设社会主义现代化国家新征程,这一年,中国共产党迎来建党100周年.某企业开展“学党史,颂党恩,跟党走”的知识问答活动,该企业收集了参与此次知识问答活动的员工得分情况,得到如下频率分布表:其中样本的平均数是73.6.(假设同一组中的每个数据可用该组区间的中点值代替) (1)求a ,b 的值;(2)根据此次知识问答活动的得分,评出四个等级,并根据等级给予如下的奖励:每次抽奖的中奖率均为12,每次中奖的奖金都为100元,求参与此次知识问答活动的某员工所获奖金X 的均值.解 (1)因为样本的平均数是73.6,所以45×0.04+55×0.10+65a +75b +85×0.20+95×0.12=73.6, 即65a +75b =37.9,①又a +b =1-0.04-0.10-0.20-0.12=0.54,② 由①②解得a =0.26,b =0.28.(2)当该员工的评定等级为优秀时,奖金的均值为12×4×100=200,当该员工的评定等级为良好时,奖金的均值为12×2×100=100,当该员工的评定等级为合格时,奖金的均值为12×1×100=50,当该员工的评定等级为不合格时,奖金的均值为12×0×100=0,E (X )=0×0.14+50×0.26+100×0.28+200×0.32=105, 故参与此次知识问答活动的某员工所获奖金X 的均值为105元.10.(2022·广州模拟)已知袋中装有大小、形状都相同的小球共5个,其中3个红球,2个白球. (1)若从袋中任意摸出4个球,求恰有2个红球的概率;(2)若每次随机地摸出一个球,记下颜色后放回,摸到白球即停止摸球,这样的摸球最多四次,η1表示停止时的摸球次数;又若每次随机地摸出一个球,记下颜色后不放回,摸到白球即停止摸球,η2表示停止时的摸球次数.分别求出η1和η2的分布列,并计算η1≠η2的概率. 解 (1)设事件A 为“从袋中任意摸4个球,恰有2个红球”, 则P (A )=C 23C 45=35.(2)η1的所有可能取值为1,2,3,4, 则P (η1=1)=C 12C 15=25,P (η1=2)=3×25×5=625,P (η1=3)=3×3×25×5×5=18125,P (η1=4)=3×3×3×55×5×5×5=27125,η1的分布列为η1 1 2 3 4 P256251812527125η2的所有可能取值为1,2,3,4, 则P (η2=1)=C 12C 15=25,P (η2=2)=3×25×4=310,P (η2=3)=3×2×25×4×3=15,P (η2=4)=3×2×1×25×4×3×2=110,η2的分布列为η2 1 2 3 4 P2531015110从而P (η1≠η2)=1-P (η1=η2)=1-⎝⎛⎭⎫25×25+625×310+18125×15+27125×110 =8971 250.11.某公司圆满完成年初制定的生产目标,为答谢各位员工一年来的辛勤工作,公司决定召开年终总结联欢晚会,在联欢晚会上准备举行一个抽奖游戏,规定每位员工从一个装有4张奖券的箱子中,一次性随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.若箱子中所装的4张奖券中有1张面值为80元,其余3张面值均为40元,则每位员工所获得的奖励额的均值是( ) A .80元 B .100元 C .120元 D .140元答案 B解析 设每位员工所获得的奖励额为X 元,则X 所有可能的取值为80,120,且P (X =80)=C 23C 24=12,P (X =120)=C 13C 11C 24=12,所以每位员工所获得的奖励额的均值 E (X )=80×12+120×12=100.12.(2022·榆林模拟)设0<a <12,0<b <12,随机变量的分布列为则当a 在⎝⎛⎭⎫0,12内增大时,( ) A .E (ξ)增大,D (ξ)增大 B .E (ξ)增大,D (ξ)减小 C .E (ξ)减小,D (ξ)增大 D .E (ξ)减小,D (ξ)减小 答案 D解析 由分布列中概率之和为1, 可得a +b =12,∴E (ξ)=-12+b =-12+⎝⎛⎭⎫12-a =-a , ∴当a 在⎝⎛⎭⎫0,12内增大时,E (ξ)减小, 又由D (ξ)=(-1+a )2×12+(0+a )2×a +(1+a )2×b =-⎝⎛⎭⎫a +122+54, 可知当a 在⎝⎛⎭⎫0,12内增大时,D (ξ)减小. 13.(多选)(2022·烟台质检)某学校共有6个学生餐厅,甲、乙、丙、丁四位同学每人随机地选择一家餐厅就餐(选择每个餐厅的概率相同),则下列结论正确的是( ) A .四人去了四个不同餐厅就餐的概率为518B .四人去了同一餐厅就餐的概率为11 296C .四人中恰有两人去了第一餐厅就餐的概率为25216D .四人中去第一餐厅就餐的人数的均值为23答案 ACD解析 四人去餐厅就餐的情况共有64种,其中四人去了四个不同餐厅就餐的情况有A 46种,则四人去了四个不同餐厅就餐的概率为A 4664=518,故A 正确;同理,四人去了同一餐厅就餐的概率为664=1216,故B 错误;四人中恰有两人去了第一餐厅就餐的概率为C 24×5264=25216,故C正确;设四人中去第一餐厅就餐的人数为ξ, 则ξ=0,1,2,3,4.则P (ξ=0)=5464,P (ξ=1)=C 145364,P (ξ=2)=C 245264,P (ξ=3)=C 34×564,P (ξ=4)=164,则四人中去第一餐厅就餐的人数的分布列为ξ 0 123 4 P5464C 145364C 245264C 34×564164则四人中去第一餐厅就餐的人数的均值E (ξ)=0×5464+1×C 145364+2×C 245264+3×C 34×564+4×164=23,故D 正确. 14.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=______. 答案310解析 由题意可知,P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=310.15.(多选)设随机变量ξ的分布列如表:ξ 1 2 3 … 2 021 2 022 Pa 1a 2a 3…a 2 021a 2 022则下列说法正确的是( )A .当{a n }为等差数列时,a 2+a 2 021=11 011B .数列{a n }的通项公式可能为a n = 2 0232 022n (n +1)C .当数列{a n }满足a n =12n (n =1,2,…,2 021)时,a 2 022=122 022D .当数列{a n }满足P (ξ≤k )=k 2a k (k =1,2,…,2 022)时,(n +1)a n =(n -1)a n -1(n ≥2) 答案 ABD解析 对于A ,因为{a n }为等差数列, 所以S 2 022=2 022(a 1+a 2 022)2=1,则有a 2+a 2 021=a 1+a 2 022=11 011, 故A 正确;对于B ,若数列{a n }的通项公式为 a n = 2 0232 022n (n +1)=2 0232 022⎝⎛⎭⎫1n -1n +1,则S 2 022=2 0232 022⎝⎛⎭⎫1-12+12-13+…+12 022-12 023 =2 0232 022⎝⎛⎭⎫1-12 023=1, 故B 正确;对于C ,因为a n =12n ,所以S 2 022=12⎝⎛⎭⎫1-122 0211-12+a 2 022=1-122 021+a 2 022=1,则有a 2 022=122 021,故C 错误;对于D ,令S k =P (ξ≤k )=k 2a k , 则a k +1=S k +1-S k =(k +1)2a k +1-k 2a k , 故a k +1a k =kk +2, 所以a n a n -1=n -1n +1(n ≥2),即(n +1)a n =(n -1)a n -1(n ≥2),故D 正确.16.(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一表二(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.解 (1)由题意可知,η的所有可能取值为23,8,5, 产品为一等品的概率为0.5×0.75×0.8=0.3, 产品为二等品的概率为(1-0.5×0.75)×0.8=0.5, 产品为三等品的概率为1-0.3-0.5=0.2, 所以η的分布列为E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x , 设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x , 所以一等品的概率为⎝⎛⎭⎫0.5+19x ×0.75×0.8=0.3+x 15,二等品的概率为⎣⎡⎦⎤1-⎝⎛⎭⎫0.5+x 9×0.75×0.8=0.5-x 15,三等品的概率为1-⎝⎛⎭⎫0.3+x 15-⎝⎛⎭⎫0.5-x15=0.2, 所以E (ξ)=⎝⎛⎭⎫0.3+x 15(23-x )+⎝⎛⎭⎫0.5-x15(8-x )+0.2×(5-x ) =6.9-0.3x +2315x -115x 2+4-0.5x -815x +115x 2+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.。
2.1.2 离散型随机变量的分布列1.离散型随机变量的分布列(1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:(2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ②11=∑=ni ip2.两个特殊分布列 (1)两点分布列如果随机变量X 的分布列是P (X =1)为成功概率. (2)超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=nNkn MN k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布列如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.(3)公式P (X =k )=C k M C n -k N -MC n N的推导由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有nN C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有kn M N k M C C --个基本事件,由古典概型的概率公式可知P (X =k )=C k M C n -kN -MC n N.[知识点拨]1.离散型随机变量分布列表格形式的结构特征分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点(1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.3.两点分布的适用范围(1)研究只有两个结果的随机试验的概率分布规律. (2)研究某一随机事件是否发生的概率分布规律.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.4.对超几何分布的三点说明 (1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.题型一、离散型随机变量的分布列例1、一袋中装有6个同样大小的小球,编号分别为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.[解析] 随机变量X 的可能取值为3、4、5、6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 33;事件“X =4”包含的基本事件总数为C 23;事件“X =5”包含的基本事件总数为C 24;事件“X =6”包含的基本事件总数为C 25.从而有P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.所以随机变量X 的分布列如下表:例[解析] 将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1、2、3、4、5、6.P (ξ=1)=136,ξ=2包含三个基本事件(1,2)、(2,1)、(2,2),(x ,y )表示第一枚骰子点数为x ,第二枚骰子点数为y .∴P (ξ=2)=336=112.同理可求P (ξ=3)=536,P (ξ=4)=736,P (ξ=5)=14,P (ξ=6)=1136,∴ξ的分布列为例3、设随机变量ξ的分布列为P (ξ=k )=a (13)k .(k =1,2,…,n ),求实数a 的值.[解析] 依题意,有P (ξ=1)=13a ,P (ξ=2)=(13)2a ,…,P (ξ=n )=(13)n a ,由P (ξ=1)+P (ξ=2)+…+P (ξ=n )=1知,a (13+132+…+13n )=1.则a ·13(1-13n )1-13=1.∴a =2×3n 3n -1.例4、(1)设随机变量X 的分布列P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.(2)设随机变量X 的概率分布列为,则P (|X -3|=1)=________.[答案] (1)37 (2)512题型三、两点分布例5、袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎨⎧0,两球全红;1,两球非全红.求X 的分布列.[解析] 由题设可知X 服从两点分布P (X =0)=C 25C 215=221,P (X =1)=1-P (X =0)=1921.∴X 的分布列为例6η,才能使η满足两点分布,并求其分布列.[解析] 随机变量η可以定义为:η=⎩⎨⎧1 掷出点数小于4,0 掷出点数不小于4.显然η只取0,1两个值.且P (η=1)=P (掷出点数小于4)=36=12,故η的分布列为题型四、超几何分布列例7、盒中有16个白球和4个黑球,从中任意取出3个,设ξ表示其中黑球的个数,求出ξ的分布列.(精确到0.001)[解析] ξ可能取的值为0、1、2、3,P (ξ=0)=C 04C 316C 320≈0.491,P (ξ=1)=C 14C 216C 320≈0.421,P (ξ=2)=C 24C 116C 320≈0.084,P (ξ=3)=C 34C 016C 320≈0.004.∴ξ的分布列为箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.求X 的分布列.[解析] 由题意得X 取3、4、5、6,且P (X =3)=C 35C 39=542;P (X =4)=C 14·C 25C 39=1021;P (X =5)=C 24·C 15C 39=514;P (X =6)=C 34C 39=121. 所以X 的分布列为题型五、综合应用例9、已知A 盒中有2个红球和2个黑球;B 盒中有2个红球和3个黑球,现从A 盒与B 盒中同时各取出一个球再放入对方盒中.(1)求A 盒中有2个红球的概率;(2)求A 盒中红球数ξ的分布列.[解析] (1)A 盒与B 盒中各取出一个球来再放入对方盒中后,A 盒中还有2个红球有下面两种情况:①互换的是红球,将该事件记为A 1,则P (A 1)=C 12·C 12C 14·C 15=15. ②互换的是黑球,将该事件记为A 2,则P (A 2)=C 12·C 13C 14·C 15=310.故A 盒中有2个红球的概率为P =P (A 1)+P (A 2)=15+310=12.(2)A 盒中红球数ξ的所有可能取值为1,2,3.而P (ξ=1)=C 12·C 13C 14·C 15=310;P (ξ=2)=12; P (ξ=3)=C 12·C 12C 14·C 15=15,因而ξ的分布列为抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列.[解析] (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A -表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得P (A )=1-P (A -)=1-C 23C 26=1-15=45.(2)X 的所有可能值为0、1、2、3、4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P (X =4)=1C 26=115.从而知X 的分布列为:用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.[正解] ξ的所有可能取值为3,4,5,6.P (ξ=3)=C 33C 312=1220;P (ξ=4)=C 19C 23C 312=27220;P (ξ=5)=C 29C 13C 312=2755;P (ξ=6)=C 39C 312=2155.所以ξ的分布列为例12在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.[解析] (1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为课后作业1.已知随机变量X 的分布列为:P (X =k )=12k ,k =1、2、…,则P (2<X ≤4)=( )A .316B .14C .116D .516[答案] A[解析] P (2<X ≤4)=P (X =3)+P (X =4) =123+124=316. 2.已知随机变量ξ的概率分布如下:则P (ξ=10)=( A .239 B .2310 C .139D .1310[答案] C[解析] P (ξ=10)=m =1-⎝⎛⎭⎫23+232+…+239=1-23⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=139.3.已知随机变量ξ的分布列为P (ξ=i )=i2a(i =1,2,3),则P (ξ=2)=( )A .19B .16C .13D .14[答案] C[解析] 由离散型随机变量分布列的性质知12a +22a +32a =1,∴62a =1,即a =3,∴P (ξ=2)=1a =13.4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%[答案] B[解析] 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,∴x =2或8. ∵次品率不超过40%,∴x =2, ∴次品率为210=20%.5.设随机变量ξ的概率分布为P (ξ=k )=ck +1,k =0、1、2、3,则c =________.[答案]1225[解析] c +c 2+c 3+c 4=1,∴c =1225.6.已知离散型随机变量X 的分布列P (X =k )=k15,k =1、2、3、4、5,令Y =2X -2,则P (Y >0)=________.[答案]1415[解析] 由已知Y 取值为0、2、4、6、8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415. 7.某学院为了调查本校学生2015年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.导学号 03960365(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0、1、2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:8.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A .12B .56C .34D .23[答案] B[解析] 由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n )有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为P =3036=56,故选B .9.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 56[解析] 从10名同学中选出3名同学有C 310种不同选法,在3名同学中没有女同学的选法有C 36种,∴所求概率为P =1-C 36C 310=56.10.某校2015~2016学年高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数.(1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率. [解析] (1)依题意得,随机变量X 服从超几何分布, ∵随机变量X 表示其中男生的人数,∴X 可能取的值为0,1,2,3,4.∴P (X =k )=C k 6·C 4-k4C 410,k =0,1,2,3,4.∴X 的分布列为:(2)即P (X ≥3)=P (X =3)+P (x =4)=821+114=1942.11.盒子中装着标有数字1、2、3、4、5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求: (1)取出的3张卡片上的数字互不相同的概率; (2)随机变量ξ的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A ,则P (A )=C 35C 12C 12C 12C 310=23. (2)由题意ξ可能的取值为2、3、4、5,P (ξ=2)=C 22C 12+C 12C 22C 310=130, P (ξ=3)=C 24C 12+C 14C 22C 310=215,P (ξ=4)=C 26C 12+C 16C 22C 310=310, P (ξ=5)=C 28C 12+C 18C 22C 310=815.所以随机变量ξ的分布列为:。
2.3 离散型随机变量的分布列及其期望基础梳理1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.(3)分布列设离散型随机变量X可能取得值为x1,x2,…,x i,…x n,X取每一个值x i(i=1,2,…,n)的概率为P(X=x i)=p i,则称表X x1x2…x i…x nP p1p2…p i…p n为随机变量X的概率分布列,简称X的分布列.(4)分布列的两个性质①p i≥0,i=1,2,…,n;②p1+p2+…+p n=_1_.2.两点分布如果随机变量X的分布列为X 10P p q其中0<p<1,q=1-p,则称离散型随机变量X服从参数为p的两点分布.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为:P(X=k)=C k M C n-kN-MC n N(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n、M、N∈N*,则称分布列X 01…mP C0M·C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N为超几何分布列.4.二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 5.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n基础训练1.抛掷均匀硬币一次,随机变量为( ).A .出现正面的次数B .出现正面或反面的次数C .掷硬币的次数D .出现正、反面次数之和2.如果X 是一个离散型随机变量,那么下列命题中假命题是( ). A .X 取每个可能值的概率是非负实数 B .X 取所有可能值的概率之和为1C .X 取某2个可能值的概率等于分别取其中每个值的概率之和D .X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值 或 ,它反映了离散型随机变量取值的 .(2)方差称D (X )=∑i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均 ,其算术平方根D (X )为随机变量X 的标准差.数学期望 平均水平 偏离程度3.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( ). A.316 B.14 C.116 D.5164.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ). A .25 B .10 C .7 D .65.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是________. 6.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.227由统计数据求离散型随机变量的分布列【例1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的期望是________.(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.【训练1】某射手进行射击训练,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列【例2】►某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A 饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.而超几何分布就是此类问题中的一种.【训练2】着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E(ξ).【例3】►(某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=112,则随机变量X的数学期望E(X)=________.本题考查了相互独立事件同时发生的概率求法以及分布列,期望的相关知识,公式应用,计算准确是解题的关键.【训练3】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例4】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.【训练4】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列.巩固提升1、设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.,则同一工作日至少3人需使用设备的概率为______________;2、甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6、0.5、0.4,能通过面试的概率分别是0.6、0.6、0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后,至少有一人被该高校预录取的概率.3.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.4.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列、数学期望和方差.。