2-7函数与导数
- 格式:ppt
- 大小:1.19 MB
- 文档页数:31
为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
导数基本知识汇总试题 基本知识点:知识点一、基本初等函数的导数公式表(须掌握的知识点)1、"02、 (乂7二心I (n 为正整数)3、 Ca x y=a x \na Ce x y=e x(long a xy=-^—4、 xina(lnxX=-5、 x6、 (sin Q 二 cos x7 (cos x )‘二-sin x'(ly=-±8. x 对知识点二:导数的四则运算法则1、 ("土 v y=u ± v r2、 (nv )r =u F v + //v r3、 (Cu7=Cu4、 v 知识点三:利用函数导数判断函数单调性的法则1. 如果在广(力>°,则/a )在此区间是增区间,为/(X )的单调增区间。
2、如果在(""),广(x )v0,则/(x )在此区间是减区间,(心)为/(X )的单调减区间。
一、计算题1. 计算下列函数的导数: (1)y = x 15(2) y = x* (XH O)(3) 5y = x 4 (x a 0)(4) 2 y = x^(XA O)(5) 2y = x 3 (X A 0)(6) y = x 5(7) >,=v2 , 24)(7) y = sin x(8) y = cos x(9) y=r(10) y = In x(11) y = e x2、求下列函数在给泄点的导数:2(1)尸存,“167T . X =— (4) y = xsinx ,4xy = ---(6) 1+F ,兀=1(2) y = sinx (3)y = cosx x = 2TT 3 (5) >,=v3、讣算下列各类函数的导数:(1)y = X7+6-3/X(2)(3)y = x'_cosx(4)J = X2+2COSX(5)y =(3x~+2)(x*5)(6)>, = <5x3-7)(3x + 8)x(7)〉Fsinxy =(8)(9) >!=<3X +5)2(10) A =(5x_7)8(12) J = x3+sinx(13) J = x3sinx(14) y= Q+3x) (3-5x+x2)3-x2y = --- (15) 3+x2cosxy = ------(16) 1+sinx(17) y = cos3xsin2x(18) A = Q+cosx)sinx(19) >'=(x+l) (x+2) (x+3)(20)>'= Qx- 1)'(2-3窃(21)y = (3x+2)sin5x(22)y = "'cos3x(24)=(3—5)1°(25) yin(5x + 7)5(26)尸(28)『=(3兀一5)4(29) J=2(5X-4)2(30)二、解答题K求抛物线过点(]」)的切线斜率。
§2-7 函数的凸性·勾画函数图形的方法1.凸函数 函数的“凸性”概念最初来自曲线的弯曲方向。
例如,曲线3x y =在O y 轴左边是向下弯曲的(称为上凸),而在O y 轴右边是向上弯曲的(称为下凸)(图2-28).虽然说“弯曲方向”或“凸性”这些名称是几何上的术语,但经过抽象后的凸函数理论在其他数学分支中也是很有用的.从图2-29中看出,向上弯曲(下凸)的曲线上任何两点的连线(弦)AB 的中点C 在弧 AB 的上方;而从图2-30中看出,向下弯曲(上凸)的曲线上任何两点的连线(弦)AB 的中点C 在弧 AB 的下方.根据上面几何上的启示,我们引入下面的定义:【注1】在国内早期的一些教科书(包括翻译前苏联的一些教科书)中,都把下凸函数称为“凹函数”,而把上凸函数称为“凸函数”.本书中的称呼与上面这些称呼恰好相反,但与新近一些教科书或论文中的称呼是一致的.请读者注意到这些区别.【注2】通常说“函数)(x f 在区间),(b a 内是下(上)凸函数”,若对于),(b a 内任意两点1x 和2x )(21x x ≠与任意)1,0(∈t ,都满足琴生(Jesen)不等式[]1212()(1)()(1)()f tx t x t f x t f x >+-<+-它等价于不等式())()()(22112211x f t x f t x t x t f +<+>(其中1t 和2t 为正数且121=+t t )显然,不等式(2-9)是琴生不等式的特殊情形.不过,对于连续函数来说,不等式(2-9)与琴生不等式是等价的.因此,我们就用简单的不等式(2-9)定义函数的凸性.关于两者等价性的证明,有兴趣的读者可登陆网站去看专题选讲( )【注3】若函数)(x f 在区间),(b a 内可微分,则从图2-31看出,下凸(上凸)函数的图形上,每一点处的切线都在图形的下面(上面),而且导函数)(x f '是增大(减小)的.我们也可以证明这个结论(有的教科书中就把这个结论作为凸函数的定义).图2-29图2-30x图2-28定理2-3 设函数)(x f 在区间),(b a 内可微分.若导数)(x f '在),(b a 内是增大(减小)的,则函数)(x f 在区间),(b a 内是下凸(上凸)的.从图2-31看出,逆命题也成立(在上面指出的网站上有证明).证 设1x 和2x 为区间),(b a 内任意两点(不妨认为1x <2x ).根据微分中值定理,当导数)(x f '增大(减小)时,1212121212()()1()()22222f x f x x x x x x x f f x f f x f ⎧⎫⎡⎤⎡⎤++++⎛⎫⎛⎫⎛⎫-=-+-⎨⎬ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭121211221()()222x x x x f c x f c x ⎧⎫++⎛⎫⎛⎫''=-+-⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭0)]()()[(41)(1212<>'-'-=c f c f x x 其中2221112x c x x c x <<+<<,即)(2)()()2(2121)(21x x x f x f x x f <+<+>因此,函数)(x f 在区间),(b a 内是下凸(上凸)的.假若函数)(x f 在区间),(b a 内有二阶导数,那么根据定理2-3和判别函数单调性的方法(定理2-2),就有下面判别函数凸性的方法.定理2-4 设函数)(x f 在区间),(b a 内有二阶导数)(x f ''. ⑴ 若()0()f x a x b ''><<,则)(x f 在区间),(b a 内是下凸函数; ⑵ 若()0()f x a x b ''<<<,则)(x f 在区间),(b a 内是上凸函数.对于函数)(3+∞<<-∞=x x y ,由于⎩⎨⎧+∞<<><<-∞<=''x x x y 0,00,06 所以,它在区间)0,(-∞内是上凸的,而在区间),0(+∞内是下凸的(图2-28).2.拐点(变曲点) 函数图形可能在这一段上是上凸的,而在相邻的另一段上又是下凸的(如图2-28中原点的两边).这样两段弧的连接点,就称为函数图形(曲线)的拐点(曲线拐弯的点)或变曲点(曲线改变弯曲方向的点).同时,也把函数图形的拐点的横坐标称为这个函数的拐点或变曲点.若点∈0(,)x a b 是函数()f x 的拐点且有二阶导数0''()f x ,则''=0()0f x .这是因为,例如函数)(x f 在点0x 的左边近旁下凸时,由于00()()()f x f x x x ''<<,所以图2-31(1) 下凸切线(2) 上凸切线0)()(lim)(0000≥-'-'=''-→x x x f x f x f x x且函数)(x f 在点0x 的右边上凸时,由于)()()(00x x x f x f <'>',所以0)()(lim)(0000≤-'-'=''+→x x x f x f x f x x因此0()0f x ''=. 同理,若函数)(x f 在点0x 的左边上凸且在点0x 的右边下凸时,也有0)(0=''x f .但是要注意,仅有..0)(0=''x f 时.,点.0x 不一定是函数......)(x f 的拐点....例如函数4()f x x =,尽管有(0)0f ''=,但0不是函数4()f x x =的拐点, 因为2()120(||0)f x x x ''=>>,即函数4()f x x = 在原点0的两边都是下凸的(图2-32).特别,假若函数()f x 在区间-+00(,)x x δδ内有二阶导数,且''()f x 在点0x 的两边有相反的符号,则0x就是函数()f x 的拐点.此时,显然有0()0f x ''=.3.勾画函数图形的方法 在中学数学中,绘制函数图形时,用的是描点法.它的缺点是不能从整体上把握函数变化的状态.下面的绘图方法称为解析法,而它的优点正好弥补了描点法的缺陷.因此,把两者结合起来就是最好的绘图方法.例29 勾画出函数3231y x x =+-的略图.解 2363(2)y x x x x '=+=+, 666(1)y x x ''=+=+用驻点2-和0(它们有可能是极值点),与二阶导数等于0的点1-(它有可能是拐点),将函数的定义区间),(+∞-∞划分为四个小区间:),0(),0,1(),1,2(),2,(+∞-----∞,再把函数)(x f 在这些小区间内有关)(x f '和)(x f ''的信息,填在下面的表格中.我们利用导数的有关信息所画出的略图 (见图2-33),使我们能够看出函数的变化状 态.例如在哪个区间内,它是增大的或减小的, 是下凸的或上凸的;又在哪个点上取到极大值 或极小值.图2-324.函数图形的渐近线 不管是描点法,还是上面用导数的方法(即解析法),都只能画出函数图形的有限部分.对于那些能够伸向无穷远处的函数图形,当函数图形伸向无穷远时,它有可能无限接近某一直线(称它为渐近线).例如,函数x y arctan =的图形就有两条渐近线2y π=±(图2-34).因为它们与Ox 轴平行,所以称它们为水平渐近线.求水平渐近线的方法很简单.若存在有穷极限b x f x =+∞→)(lim或 b x f x =-∞→)(lim则曲线)(x f y =就有水平渐近线b y =.函数图形也可能有垂直渐近线.例如函数x y tan =的图形(图2-35)有两条垂直渐近线2x π=±.求垂直渐近线的方法也很简单.观察函数)(x f y =,若它有无穷间断点a ,即∞=-→)(lim x f ax 或 ∞=+→)(lim x f ax则曲线)(x f y =就有垂直渐近线a x =.函数图形还可能有斜渐近线b kx y +=)0(≠k .如图2-36,设曲线)(x f y =上的点(,)P x y 到直线b kx y +=的距离为d .在直角三角形PAN 中,()()f x kx b P A -+==sec d θ=按照渐近线的定义,直线b kx y +=是曲线)(x f y =的渐近线,当且仅当点P 沿曲线伸向无穷远时,有0→d ;而0→d ,当且仅当有常数k 和b ,使[]lim ()()0x f x kx b →∞-+= 或 []lim ()x f x kx b →∞-=.图2-34图2-36于是,当条件满足时,可以按下面的方法求常数k 和b : 第一步,先求斜率.k 因为xx f kx xx f k )()(-+=且 ()lim0x kx f x x→∞-=,所以 ()limx f x k x→∞=.第二步,再求截距b , 即 []lim ()x b f x kx →∞=-. 例30 求曲线1222-+-=x x x y 的渐近线.解 因为∞=→y x 1lim ,所以它有垂直渐近线1=x . 又 222limlim1(1)x x y x x k xx x →∞→∞-+===-,222lim ()lim 1x x x x b y kx x x →∞→∞⎡⎤-+=-=-⎢⎥-⎣⎦2lim11x x x →∞-+==--,所以它有斜渐近线1-=x y (图2-37).例31 勾画函数1222-+-=x x xy 的图形. 解 2)1()2(--='x x x y ,3)1(2-=''x y像例29那样,用函数的驻点0和2(没有二阶导数等于0的点),把函数的定义域分成若干小区间(注意,1=x 是间断点),并把有关信息填入下表格中:【注】 有垂直渐近线1=x 和斜渐近线1-=x y . 根据表格中提供的信息,可勾画出函数的略图(见图2-37). 习 题1.验证下列函数在所示区间内是下凸的:⑴(1),(0,)y x αα=>+∞; ⑵),(,e +∞-∞=xy ; ⑶),0(,ln +∞=x x y ; ⑷)0(,∞+=x x y . 2.验证函数)10(<<=ααx y 与x y ln =在 区间),0(+∞内是上凸的.3.求下列函数的下凸区间与上凸区间:⑴323x x y -=; ⑵x x y sin +=; ⑶2e x y -=; ⑷)1ln(2x y +=. 答案:⑴在)1,(-∞内下凸,在),1(+∞内上凸;⑵在(2,2)k k ππ+π内上凸,在(2,22)k k π+ππ+π内下凸; ⑶在,⎛-∞-⎝与⎛⎫+∞ ⎪⎝⎭内下凸,在⎛⎝内上凸;⑷在)1,(--∞与),1(+∞内上凸,在)1,1(-内下凸.4.设函数)()(+∞<<-∞x x f 为偶函数.若在区间)0,(-∞内有0)(>'x f 且 0)(<''x f则在区间),0(+∞内,下列哪一种情形是对的?⑴0)(,0)(<''<'x f x f ; ⑵0)(,0)(>''>'x f x f ; ⑶0)(,0)(>''<'x f x f ; ⑷0)(,0)(<''>'x f x f .提示:)()(x f x f -=. 答案:⑴ 又问:若函数)()(+∞<<-∞x x f 为连续奇函数且在区间)0,(-∞内有0)(>'x f 且 0)(<''x f那么上述情形中哪一种是对的?点0是它的拐点吗? 答案:⑵;0是拐点.5.证明下列不等式:⑴ )1,,0,0(22>≠>>+<⎪⎭⎫ ⎝⎛+ααααy x y x y xy x ;⑵ )(2ee e2y x yxyx ≠+<+;⑶ ),0,0(ln ln 2ln)(y x y x y y x x y x y x ≠>>+<++.提示:选择适当的下凸函数.【注】勾画函数图形之前,要注意以下事项:①确定函数的定义域;②函数是否具有奇偶性或周期性;③求出函数的连续区间,并查明它是否有间断点;④若有零值点,求出函数的同号区间;⑤求出函数的极值点、最大(小)值点和拐点;⑥确定函数的增大或减小区间、下凸或上凸区间;⑦查明是否有渐近线;⑧查明函数是否还有其他特性.6.勾画下列函数的图形.⑴ x x y 33-=; ⑵ 2e x y -=; ⑶ 21xx y +=;⑷ xxy +=12; ⑸ x x y 1e )6(+=; ⑹ sin2x y π=.7.证明:若)(x f 在区间),(b a 内是下凸函数,则有n x f x f x f n x x x f n n )()()(2121+++≤⎪⎭⎫⎝⎛+++ 提示:先考虑k n 2=的情形(k 为正整数).对于其他情形,可取正整数m 使k m n 2=+. 8.证明:若),,2,1(0n i x i =>,则有nx x x x x x nnn +++≤2121 (几何平均值不超过算术平均值)提示:考虑下凸函数)0(ln )(>-=x x x f .。
导数综合讲义(含答案)(总55页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--导数综合讲义第1 讲导数的计算与几何意义 (3)第2 讲函数图像 (4)第3 讲三次函数 (7)第4 讲导数与单调性 (8)第5 讲导数与极最值 (9)第6 讲导数与零点 (10)第7 讲导数中的恒成立与存在性问题 (11)第8 讲原函数导函数混合还原(构造函数解不等式) (13)第9 讲导数中的距离问题 (17)第10 讲导数解答题 (18)10.1导数基础练习题 (21)10.2分离参数类 (24)10.3构造新函数类 (26)10.4导数中的函数不等式放缩 (29)10.5导数中的卡根思想 (30)10.6洛必达法则应用 (32)10.7先构造,再赋值,证明和式或积式不等式 (33)10.8极值点偏移问题 (35)10.9多元变量消元思想 (37)10.10导数解决含有ln x 与e的证明题(凹凸反转) (39)10.11导数解决含三角函数式的证明 (40)10.12隐零点问题 (42)10.13端点效应 (44)10.14其它省市高考导数真题研究 (45)导数【高考命题规律】2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。
近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!导数,也叫导函数值。
那么,高中数学导数公式及运算法则有哪些呢?高中数学导数公式有哪些1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2根据导数定义证明数学导数运算法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
导数的计算方法函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
高一下册数学章节知识点总结高一下册数学包含以下章节:1. 函数与导数2. 三角恒等变换与三角方程3. 运算与数列4. 空间解析几何5. 二次函数与二次方程6. 平面向量与立体几何7. 概率8. 统计与抽样调查下面为每个章节提供大致的知识点总结:1. 函数与导数:- 初等函数与常函数- 一次函数与变量关系- 幂函数与指数函数- 对数函数与指对数函数- 三角函数与反三角函数- 复合函数与反函数- 函数图像- 函数运算与函数关系- 导数的定义与性质- 导数的几何和物理意义- 导数的计算方法- 函数的极值与最值2. 三角恒等变换与三角方程:- 三角函数的定义与性质- 三角函数的图像与性质- 三角函数的和差化积、积化和差公式- 三角函数的倍角与半角公式- 三角函数的和差化积、积化和差公式的证明- 三角方程的解法- 化简与证明三角恒等式的方法3. 运算与数列:- 复数的运算与性质- 复数的共轭与模- 复数的辐角与幂次- 二项式展开定理- 数列的定义与性质- 等差数列与等比数列- 数列的通项与前n项和公式- 递推数列与数列的极限4. 空间解析几何:- 空间直角坐标系与坐标表示- 点、线、面的位置关系及相关公式- 空间三角形的性质与相关公式- 空间四边形的性质与相关公式- 空间向量的定义与性质- 空间向量的表示与运算- 空间向量的共线与垂直判定- 空间向量的相关公式与应用5. 二次函数与二次方程:- 二次函数的定义与性质- 二次函数的图像及相关公式- 二次函数的最值与解析式- 二次方程的定义与性质- 二次方程的求解方法- 二次不等式的性质与求解方法- 二次函数与二次方程的应用问题6. 平面向量与立体几何:- 平面向量的定义与性质- 平面向量的基本运算- 平面向量的线性相关与线性无关- 平面向量的数量积与向量积- 空间三角形的面积公式与性质- 空间四面体的体积公式与性质- 空间向量与几何相关问题7. 概率:- 随机事件与随机试验- 概率与条件概率- 事件的独立性与复合事件- 排列与组合的计数原理- 概率模型与概率分布- 随机变量与数学期望- 常见离散分布函数及相关计算8. 统计与抽样调查:- 统计调查与统计图表的表示- 样本与总体的估计- 抽样分布与抽样误差- 检验方法与统计推断- 统计应用问题的解决思路与方法以上为高一下册数学的大致章节知识点总结,希望能对你的学习有所帮助。
导数题的解题技巧【命题趋向】导数命题趋势:导数应用:导数-函数单调性-函数极值-函数最值-导数的实际应用. 【考点透视】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2006年辽宁卷)与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为A.ln(1y =B.ln(1y =C. ln(1y =-D. ln(1y =-[考查目的]本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力 [解答过程]2221(0)(1)x x x y e e x e y =-+≥⇒-=,0,1x x e ≥∴≥,即:1ln(1x e x ==,所以1()ln(1f x -=. 故选A.例2. ( 2006年湖南卷)设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题例3.(2004年重庆卷)已知曲线y =31x 3+34,则过点P (2,4)的切线方程是_____________.思路启迪:求导来求得切线斜率.解答过程:y ′=x 2,当x =2时,y ′=4.∴切线的斜率为4.∴切线的方程为y -4=4(x -2),即y =4x -4. 答案:4x -y -4=0.例4.(2006年安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= [考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5. ( 2006年重庆卷)过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222⎛⎫- ⎪⎝⎭由 ()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x -⎛⎫⎡⎤-++= ⎪⎣⎦⎝⎭∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程. 思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式.典型例题例7.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8. 设y f x =()为三次函数,且图象关于原点对称,当x =12时,f x ()的极小值为-1,求出函数f x ()的解析式.思路启迪:先设f x ax bx cx d a ()()=+++≠320,再利用图象关于原点对称确定系数. 解答过程:设f x ax bx cx d a ()()=+++≠320,因为其图象关于原点对称,即f x ()-=-f x (),得ax bx cx d ax bx cx d b d f x ax cx3232300+++=-+-∴===+,,,即() 由f x ax c '()=+32,依题意,f a c '()12340=+=,f a c()121821=+=-, 解之,得a c ==-43,.故所求函数的解析式为f x x x ()=-433.例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。
高考数学二轮复习 专题2 函数与导数 教案 文专题二 函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】 1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )答案:BA B C D解析:在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=答案:-8解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知1212x x +=-,344x x +=.所以12341248x x x x +++=-+=-.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x 为何值时,不等式()23log log 2-<x x m m 成立.解析:当1>m 时,212132023023022<<⇔⎪⎪⎩⎪⎪⎨⎧<<>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x . 当10<<m 时,21322132023023022><<⇔⎪⎪⎩⎪⎪⎨⎧><>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x x x 或或. 故1>m 时,21<<x .10<<m 时,2132><<x x 或为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后x 的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的 平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积购地总费用)解析:设楼房每平方米的平均综合费为y 元,依题意得:*21601000010800(56048)56048(10,)2000y x x x x N x x⨯=++=++≥∈.则21080048y x '=-,令0y '=,即210800480x -=,解得15x =. 当15x >时,0y '>;当015x <<时,0y '<, 因此,当15x =时,y 取得最小值,min 2000y =元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 解析: (1)由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,)(x f 要取得极值,方程2210ax bx ++=必须有解,所以△2440b a =->,即2b a >, 此时方程2210ax bx ++=的根为:122b b x a a ---==,222b b x a a--+==,所以12'()()()f x a x x x x =-- 当0>a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 当0<a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 综上,当b a ,满足2b a >时,)(x f 取得极值.(2)要使)(x f 在区间(0,1]上单调递增,需使2'()210f x ax bx =++≥在(0,1]上恒成立.即1,(0,1]22ax b x x ≥--∈恒成立,所以max 1()22ax b x≥--, 设1()22ax g x x =--,2221()1'()222a x a a g x x x -=-+=, 令'()0g x =得x =或x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x<,1()22ax g x x =--单调减函数,所以当x =()g x取得最大,最大值为g = 所以b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立, 所以1()22ax g x x=--在区间(0,1]上单调递增,当1x =时()g x 最大,最大值为1(1)2a g +=-,所以12a b +≥-.综上,当1>a 时, b ≥01a <≤时, 12a b +≥-.点评:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.【模拟演练】1.函数22log 2xy x-=+的图象( ) A . 关于原点对称 B .关于主线y x =-对称 C . 关于y 轴对称 D .关于直线y x =对称 2. 定义在R 上的偶函数()f x 的部分图象如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B . ||1y x =+C . 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0x x e x oy e x -⎧≥⎪=⎨<⎪⎩3.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A .(25)(11)(80)f f f -<<B . (80)(11)(25)f f f <<-C . (11)(80)(25)f f f <<-D . (25)(80)(11)f f f -<<4. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为 .5. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .6.已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ; (Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点.7.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.【参考答案】 1.答案:A解析:由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,选A . 2.答案:C解析:根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增.而函数21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数321,01,0x x y x x +>⎧=⎨+<⎩在(,0]-∞上单调递减,理由如下y '=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数,0,0x x e x y e x -⎧≥⎪=⎨<⎪⎩,有y '=-x e -<0(x<0),故其在(,0]-∞上单调递减,不符合题意,综上选C . 3. 答案:D解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数,则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D . 4.答案:1解析:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1. 5.答案:21y x =-解析:由2()2(2)88f x f x x x =--+-得:2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =, ∴切线方程为12(1)y x -=-,即210x y --=. 6.解析:(I )依题意,得2'()2f x x ax b =++, 由'(1)120f a b -=-+=得21b a =-. (Ⅱ)由(I )得321()(21)3f x x ax a x =++-, 故2'()221(1)(21)f x x ax a x x a =++-=++-, 令'()0f x =,则1x =-或12x a =-, ①当1a >时,121a -<-,当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R ;③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --(Ⅲ)当1a =-时,得321()33f x x x x x=--,由2'()230f x x x =--=,得121,3x x =-=.由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在121,3x x =-=处取得极值,故5(1,),(3,9)3M N --,所以直线MN 的方程为813y x =--,由32133813y x x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩得32330x x x --+= 解得1231, 1.3x x x =-==,1233121135119,,33x x x y y y =-=⎧⎧=⎧⎪⎪∴⎨⎨⎨=-==-⎩⎪⎪⎩⎩, 所以线段MN 与曲线()f x 有异于,M N 的公共点11(1,)3-. 7.解析:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……① 又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-.(II )因为321()223g x x x x mx =-+-+.令21()34103g x x x m '=-++=.当函数有极值时,则0∆≥,方程2134103x x m -++=有实数解, 由4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故函数()g x 无极值; ②当1m <时,()0g x '=有两个实数根1211(2(2x x =-=+(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=-x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值..精品资料。
2019年高考文科数学考点梳理之导数的概念及计算和导数的应用汇编考点11 导数的概念及计算1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义. 2.导数的运算(1)能根据导数定义求函数y =C (C 为常数),21,,y x y x y x===的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. • 常见基本初等函数的导数公式:1()0();(),n n C C x nx n -+''==∈N 为常数; (sin )cos ;(cos )sin x x x x ''==-;(e )e ;()ln (0,1)x x x x a a a a a ''==>≠且;11(ln );(log )log e(0,1)a a x x a a x x''==>≠且. • 常用的导数运算法则:法则1:()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=.法则2:()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.法则3:2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠.一、导数的概念 1.平均变化率函数()y f x =从1x 到2x 的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,2()y f x ∆=-1()f x ,则平均变化率可表示为y x∆∆.2.瞬时速度一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数. 3.瞬时变化率4.导数的概念一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()limlim x x f x +x f x yx x∆→∆→∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00()l i mx yf x x ∆→∆'==∆000()()lim x f x +x f x x∆→∆-∆.【注】函数()y f x =在0x x =处的导数是()y f x =在0x x =处的瞬时变化率. 5.导函数的概念如果函数()y f x =在开区间(a ,b )内的每一点都是可导的,则称()f x 在区间(a ,b )内可导.这样,对开区间(a ,b )内的每一个值x ,都对应一个确定的导数()f x ',于是在区间(a ,b )内()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数(简称导数),记为()f x '或y ',即()f x y ''==0()()li mx f x +x f x x∆→∆-∆.二、导数的几何意义函数()y f x =在0x x =处的导数0()f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k ,即0000()()()limx f x +x f x k f x x∆→∆-'==∆.【注】曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)当点P (x 0,y 0)是切点时,切线方程为y −y 0=f ′(x 0)(x −x 0); (2)当点P (x 0,y 0)不是切点时,可分以下几步完成:第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y −f (x 1)=f ′ (x 1)(x −x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y −f (x 1)=f ′(x 1)(x −x 1),可得过点P (x 0,y 0)的切线方程. 三、导数的计算1.基本初等函数的导数公式2.导数的运算法则(1)()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=.(2)()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.(3)2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠. 3.复合函数的导数复合函数y=f (g (x ))的导数和函数y=f (u ),u=g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.考向一 导数的计算1.导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. (2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导. 2.求复合函数的导数的关键环节和方法步骤 (1)关键环节:①中间变量的选择应是基本函数结构; ②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. (2)方法步骤:①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.典例1 求下列函数的导函数:(1)42356y x x x --=+; (2)21y x x=+; (3)2cos y x x =; (4)tan y x =.【名师点睛】熟记基本初等函数的求导公式,导数的四则运算法则是正确求导数的基础.(1)运用基本初等函数求导公式和运算法则求函数()y f x =在开区间(a ,b )内的导数的基本步骤: ①分析函数()y f x =的结构和特征;②选择恰当的求导公式和运算法则求导;③整理得结果.(2)对较复杂的函数求导数时,先化简再求导.如对数函数的真数是根式或分式时,可用对数的性质将真数转化为有理式或整式求解更为方便;对于三角函数,往往需要利用三角恒等变换公式,将函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导.1.已知函数2()22(1(1))f x x x f f ++'=,则()2f '的值为A .2-B .0C .4-D .6-考向二 导数的几何意义求曲线y =f (x )的切线方程的类型及方法(1)已知切点P (x 0, y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程; (2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0, y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0, y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k =f ′(x 0)求出切点坐标(x 0, y 0),最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.典例2 已知函数2ln y x x =.(1)求这个函数的图象在1x =处的切线方程;(2)若过点()0,0的直线l 与这个函数图象相切,求直线l 的方程. 【解析】(1)2ln y x x x '=+, 当1x =时,0,1y y '==,∴这个函数的图象在1x =处的切线方程为1y x =-.【规律总结】求切线方程的步骤: (1)利用导数公式求导数. (2)求斜率. (3)写出切线方程.注意导数为0和导数不存在的情形.2.已知函数,则函数的图象在处的切线方程为A .B .C .D .1.函数在处的导数是A .0B .1C .D .2.已知函数的导函数是,且,则实数的值为A .B .C .D .13.设函数的导函数记为,若,则A .-1B .C .1D .34.已知函数的图象如图,是的导函数,则下列数值排序正确的是A .B .C .D .5.已知过曲线e xy =上一点()00,P x y 作曲线的切线,若切线在y 轴上的截距小于0,则0x 的取值范围是A .()0,+∞BC .()1,+∞D .()2,+∞6.已知是函数的导函数,且对任意的实数都有(是自然对数的底数),,则A .B .C .D .7.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2t M t M -=,其中0M 为0t =时铯137的含量,已知30t =时,铯137含量的变化率为10ln 2-(太贝克/年),则(60)M = A .5太贝克 B .75ln 2太贝克 C .150ln 2太贝克 D .150太贝克8.设过曲线(为自然对数的底数)上任意一点处的切线为,总存在过曲线上一点处的切线,使得,则实数的取值范围为 A . B . C .D .9,则(1)f '=__________. 10.已知函数的导函数为,且满足,则_________.11.曲线的切线方程为,则实数的值为_________.12.曲线250xy x y -+-=在点()1,2A 处的切线与两坐标轴所围成的三角形的面积为_________. 13.求下列函数的导数:(1)21cos xy x +=; (2)()3ln xy x x =⋅-.14.已知函数()32f x x bx cx d =+++的图象过点()0,2P ,且在点()()1,1M f --处的切线方程为670x y -+=.(1)求()1f -和()1f '-的值;(2)求函数()f x 的解析式.1.(2018新课标全国Ⅰ文科)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =2.(2016山东文科)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 A .y =sin x B .y =ln x C .y =e xD .y =x 33.(2016四川文科)设直线l 1,l 2分别是函数f (x )=ln 01,ln ,1x x x x -<<⎧⎨>⎩,图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1) B .(0,2) C .(0,+∞)D .(1,+ ∞)4.(2018天津文科)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 5.(2018新课标全国Ⅱ文科)曲线2ln y x =在点(1,0)处的切线方程为__________.6.(2017天津文科)已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为___________.7.(2017北京文科节选)已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;8.(2017山东文科节选)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;9.(2017天津文科节选)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;10.(2017浙江节选)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;2.【答案】C【解析】∵,∴,∴,又,∴所求切线方程为,即.故选C.1.【答案】C【解析】因为,故选C.2.【答案】B【解析】,选B.3.【答案】D【解析】根据题意,得,由,得,化简可得,即,故选D.4.【答案】C【解析】结合函数的图象可知过点的切线的倾斜角较大,过点的切线的倾斜角较小,又因为过点的切线的斜率,过点的切线的斜率,直线的斜率,故,应选C.5.【答案】C【解析】因为()0e xk f x'==,所以切线方程为()00e xy y x x-=-,即()00e ex xy x x-=-,令0x=得()01e xy x=-,截距小于0时,()01e0xy x=-<,解得1x>,故选C.6.【答案】D【解析】令G (x )=()exf x ,则G ′(x )==2x -2,可设G (x )=x 2+c ,∵G (0)=f (0)=1,∴c =1.∴f (x )=(x 2+1)ex故选D.8.【答案】C【解析】因为切线,的切点分别为而,所以.因为,所以(.因为,所以,因此,选C .9.【答案】12.【解析】 1x =,得()()111f f ='-',解得 10.【答案】【解析】求导得,把代入得,解得.11.【答案】212.【答案】496【解析】由250xy x y -+-=,得()52x y f x x +==+,∴()()232f x x -='+,∴()113f '=-, ∴曲线在点()1,2A 处的切线方程为()1213y x -=--. 令0x =,得73y =;令0y =,得7x =. ∴切线与两坐标轴所围成的三角形的面积为17497236S =⨯⨯=. 13.【解析】(1()()()24sin 1cos 2x x x x x --+⋅=3sin 2cos 2x x x x++=-. (2)()()()3ln 3ln xxy x x x x '⋅⋅''=-+-()13ln3ln 31x x x x x ⎛⎫=⋅⋅-+⋅- ⎪⎝⎭13ln3ln ln31x x x x ⎛⎫=-+- ⎪⎝⎭.14.【解析】(1)∵()f x 在点()()1,1M f --处的切线方程为670x y -+=,故点()()1,1f --在切线670x y -+=上,且切线斜率为6,得()11f -=且()16f '-=.(2)∵()f x 过点()0,2P ,∴2d =,∵()32f x x bx cx d =+++,∴2()32f x x bx c '=++,由()16f '-=得326b c -+=,又由()11f -=,得11b c d -+-+=,联立方程得232611d b c b c d =-+==-+-+⎧⎪⎨⎪⎩,解得332b c d ⎧=-=-=⎪⎨⎪⎩,故()32332f x x x x =--+.1.【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.【名师点睛】该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【答案】A【解析】当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =的图象上存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值分别为10,e 0,x y y y x'''=>=>=230x ≥,不符合题意,故选A . 3.【答案】A【解析】设111222(,ln ),(,ln )P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程为1111ln ()y x x x x -=-,切线2l 的方程为2221ln ()y x x x x +=--,即1111ln ()y x x x x -=--.分别令0x =得11(0,1ln ),(0,1ln ).A x B x -++又1l 与2l 的交点为2111221121(,ln ).11x x P x x x -+++211122112111,||||1,01211PABA B P PABx x x S y y x S x x +>∴=-⋅=<=∴<<++△△,故选A.4.【答案】e【解析】由函数的解析式可得,则.即的值为e.【名师点睛】本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力. 5.【答案】y =2x –2 【解析】由,得.则曲线在点处的切线的斜率为,则所求切线方程为,即.【名师点睛】求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理. 6.【答案】1【解析】由题可得(1)f a =,则切点为(1,)a ,因为1()f x a x'=-,所以切线l 的斜率为(1)1f a '=-,切线l 的方程为(1)(1)y a a x -=--,令0x =可得1y =,故l 在y 轴上的截距为1.【名师点睛】本题考查导数的几何意义,属于基础题型,函数()f x 在点0x 处的导数0()f x '的几何意义是曲线()y f x =在点00(,)P x y 处的切线的斜率,切线方程为000()()y y f x x x '-=-.解题时应注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,没切点应设出切点坐标,建立方程组进行求解.7.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.9.【解析】(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()exx x x g g'⎧=⎪⎨=⎪⎩,所以0000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0. 10.【解析】(Ⅰ)因为(1x '=,(e )e x x '--=-,所以()(1(x xf x x --'=-1)2xx -=>.考点12 导数的应用1.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 2.生活中的优化问题 会利用导数解决某些实际问题.一、导数与函数的单调性一般地,在某个区间(a ,b )内:(1)如果()0f x '>,函数f (x )在这个区间内单调递增; (2)如果()0f x '<,函数f (x )在这个区间内单调递减; (3)如果()=0f x ',函数f (x )在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数f (x )在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性. 二、利用导数研究函数的极值和最值 1.函数的极值一般地,对于函数y =f (x ),(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x=a 为f (x )的极小值点,()f a 叫做函数f (x )的极小值.(2)若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x=b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.(3)极小值点与极大值点通称极值点,极小值与极大值通称极值. 2.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值与最小值的步骤为: (1)求()f x 在(,)a b 内的极值;(2)将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.3.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;(2)在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; (4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得. 三、生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.导数是求函数最值问题的有力工具.解决优化问题的基本思路是:考向一 利用导数研究函数的单调性1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 2.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.典例1 已知函数,其中.(1)函数的图象能否与轴相切?若能,求出实数,若不能,请说明理由;(2)讨论函数的单调性.(2)由于,当时,,当时,,单调递增,当时,,单调递减;当时,由得或,①当时,,当时,,单调递增,当时,,单调递减,当,,单调递增;②当时,,单调递增;③当时,,当时,,单调递增,当时,,单调递减,当时,,单调递增.综上,当时,在上是减函数,在上是增函数;当时,在上是增函数,在上是减函数;当时,在上是增函数;当时,在上是增函数,在上是减函数.典例2 设函数2()e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,2()2lnf x a a a≥+. 【解析】(1)()f x 的定义域为(0+),¥,2()=2e (0)x af x x x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2=e x y 单调递增,ay x=-单调递增,所以()f x ¢在(0+),¥上单调递增. 又()0f a ¢>,当b 满足04a b <<且14b <时,()0f b ¢<,故当0a >时,()f x ¢存在唯一零点.(2)由(1),可设()f x ¢在(0+),¥上的唯一零点为0x . 当0(0)x x ,Î时,()0f x ¢<;当0(+)x x ,违时,()0f x ¢>. 故()f x 在0(0)x ,上单调递减,在0(+)x ,¥上单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202e=0x a x -,所以02000022()=e ln 2ln 2ln 2xa f x a x ax a a a x a a -=++?(当且仅当0022aax x =,即012x =时,等号成立).故当0a >时,2()2lnf x a a a?.1(1)当1a =时,求()y f x =在0x =处的切线方程;(2)若函数()f x 在[]1,1-上单调递减,求实数a 的取值范围.考向二 利用导数研究函数的极值和最值1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 2.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 3.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.典例3 已知函数21()e 2xf x ax x =-+. (1)当1a >-时,试判断函数()f x 的单调性;(2)若1e a <-,求证:函数()f x 在[1,)+∞上的最小值小于12.(2)由(1)知()f 'x 在[1,)+∞上单调递增, 因为1e a <-,所以()e 110f 'a =-+<,所以存在(1,)t ∈+∞,使得()0f 't =,即e 0t t a -+=,即e t a t =-, 所以函数()f x 在[1,)t 上单调递减,在(,)t +∞上单调递增,所以当[1,)x ∈+∞时222min 111()()e e (e )e (1)222t t t t f f t at t t t t t x t ==-+=-+-=-+,令21()e (1)2x h x x x =-+,1x >,则()(1e )0x h'x x =-<恒成立,所以函数()h x 在(1,)+∞上单调递减,所以211()e(11)122h x <-+⨯=, 所以211e (1)22tt t -+<,即当[1,)x ∈+∞时min 1()2x f <, 故函数()f x 在[1,)+∞上的最小值小于12. 典例4 已知函数,.(1)若曲线与曲线在它们的交点处的公共切线为,求,,的值;(2)当时,若,,求的取值范围.【解析】(1)设它们的公共交点的横坐标为,则.,则,①;,则,②.由②得,由①得.将,代入得,∴,.(2)由,得,即在上恒成立,令,则,其中在上恒成立,∴在上单调递增,在上单调递减,则,∴.故的取值范围是.2.已知函数()1 lnf x a x xx=+-,其中a为实常数.(1)若12x=是()f x的极大值点,求()f x的极小值;(2)若不等式1lna xb xx-≤-对任意52a-≤≤,122x≤≤恒成立,求的最小值.考向三(导)函数图象与单调性、极值、最值的关系1.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴的交点的横坐标为函数的极值点.典例 5 设函数2()f x ax bx c =++(a ,b ,c ∈R ),若函数()e x y f x =在1x =-处取得极值,则下列图象不可能为()y f x =的图象是【答案】D【解析】2()e ()e e [(2)]x x x y f x f x ax a b x b c ''=+=++++,因为函数()e x y f x =在1x =-处取得极值,所以1x =-是2(2)0ax a b x b c ++++=的一个根,整理可得c a =,所以2()f x ax bx a =++,对称轴对于A,由图可得0,(0)0,(1)0a f f >>-=,适合题意; 对于B,由图可得0,(0)0,(1)0a f f <<-=,适合题意;对于C, 对于D, D.3.已知函数的导函数的图象如图所示,则函数A .有极大值,没有最大值B .没有极大值,没有最大值C .有极大值,有最大值D .没有极大值,有最大值考向四生活中的优化问题1.实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值. 2.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.典例 6 如图,点为某沿海城市的高速公路出入口,直线为海岸线,,,是以为圆心,半径为的圆弧型小路.该市拟修建一条从通往海岸的观光专线CP PQ-,其中为上异于的一点,与平行,设.(1)证明:观光专线CP PQ-的总长度随的增大而减小;(2)已知新建道路的单位成本是翻新道路CP的单位成本的2倍.当取何值时,观光专线CP PQ-的修建总成本最低?请说明理由.【解析】(1)由题意,,所以π3CPθ=-,又,所以观光专线的总长度为,,因为当时,,所以在上单调递减,即观光专线CP PQ-的总长度随的增大而减小.(2)设翻新道路的单位成本为,则总成本,,,令,得,因为,所以, 当时,;当时,.所以,当时,最小.答:当时,观光专线CP PQ -的修建总成本最低.4.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.1.已知函数()()2e e ln exf x f x '=-(e 是自然对数的底数),则()f x 的极大值为 A .2e-1 B .C .1D .2ln22.已知函数,则的单调递减区间为A .B .C .和D .和3.函数在闭区间上的最大值,最小值分别是A .B .C .D .4.设定义在上的函数的导函数满足,则 A .B .C .D .5.若函数在上有最小值,则的取值范围为A .B .C .D .6.已知函数()22,2e 2,2x x xx f x x x ⎧+>⎪=⎨⎪+≤⎩,函数有两个零点,则实数的取值范围为A .B .C .D .7.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________.①当x =时函数取得极小值; ②f (x )有两个极值点; ③当x =2时函数取得极小值;④当x =1时函数取得极大值.8.已知函数.若函数在定义域内不是单调函数,则实数的取值范围是__________. 9.定义在上的函数满足,则当时,与的大小关系为__________.(其中为自然对数的底数)10.用一张16cm 10cm ⨯的长方形纸片,经过折叠以后,糊成了一个无盖的长方体形纸盒,则这个纸盒的最大容积是_________3cm .11.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.12.如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD 及其矩形附属设施EFGH ,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O ,半径为R ,矩形的一边AB 在直径上,点C 、D 、G 、H 在圆周上,E 、F 在边CD BOC θ∠=.(1)记游泳池及其附属设施的占地面积为()fθ,求()f θ的表达式;(2)当cos θ为何值时,能符合园林局的要求?13.设函数.(1)讨论函数的单调性; (2)若,且在区间上恒成立,求的取值范围.14.设.(1)在上单调,求的取值范围; (2)已知在处取得极小值,求的取值范围.15.已知函数.(1)若曲线的切线经过点,求的方程;(2)若方程有两个不相等的实数根,求的取值范围.1.(2016四川文科)已知a 为函数()3–12f x x x =的极小值点,则a =A .–4B .–2C .4D .22.(2017浙江)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是3.(2016新课标全国Ⅰ文科)若函数1()sin2sin 3f x x x a x =-+在(,)-∞+∞上单调递增,则a 的取值范围是 A .[1,1]-B .1[1,]3-C .11[,]33-D .1[1,]3--4.(2017浙江)已知函数f (x )=(x e x -(12x ≥). (1)求f (x )的导函数;。
2018届高三理科数学函数与导数解题方法规律技巧详细总结版【3年高考试题比较】对于导数的解答题,考纲的要求是:1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.会用导数解决实际问题.通过比较近三年的高考卷总结如下:一般有两问,(16年3卷出现了三问),第一问往往是以讨论函数单调性和切线问题为主,也有根据不等式恒成立或零点问题求参数范围的问题,但一般难度不大,第二问主要涉及不等式的恒成立问题,零点问题,函数最值问题,一元的不等式证明和二元的不等式证明,方法灵活,难度较大.【必备基础知识融合】1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 4.函数的单调性与导数(1)在区间D 上,若f ′(x )≥0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递增;(2)在区间D 上,若f ′(x )≤0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递减; (3)在区间D 上,若f ′(x )=0恒成立⇔函数f (x )在区间D 上是常函数. 5.函数的极值与导数6.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【解题方法规律技巧】典例1:已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.【规律方法】(1)求切线方程的方法:①求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;②求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.典例2:设函数f(x)=a ln x+x-1x+1,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.【规律方法】 (1)确定函数单调区间的步骤: ①确定函数f (x )的定义域; ②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; ④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)个别导数为0的点不影响所在区间的单调性,如函数f (x )=x 3,f ′(x )=3x 2≥0(x =0时,f ′(x )=0),但f (x )=x 3在R 上是增函数.(3)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.典例3: 已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,③即a ≥1x 2-2x 恒成立.设G (x )=1x 2-2x ,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.【规律方法】利用单调性求参数的两类热点问题的处理方法: (1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题; 方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 易错警示 对于①:处理函数单调性问题时,应先求函数的定义域;对于②:h (x )在(0,+∞)上存在递减区间,应等价于h ′(x )<0在(0,+∞)上有解,易误认为“等价于h ′(x )≤0在(0,+∞)上有解”,多带一个“=”之所以不正确,是因为“h ′(x )≤0在(0,+∞)上有解即为h ′(x )<0在(0,+∞)上有解,或h ′(x )=0在(0,+∞)上有解”,后者显然不正确;对于③:h (x )在[1,4]上单调递减,应等价于h ′(x )≤0在[1,4]上恒成立,易误认为“等价于h ′(x )<0在[1,4]上恒成立”.典例4:已知函数()()2ln R 2a f x x x x a =-∈ .(1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <()1'01,g x x a ⎛⎫<∈ ⎪⎝⎭,时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意.③当1a =时,当()0,1x ∈ 时, ()'0h x >, ()'g x 在()0,1内单调递增, ()1,x ∈+∞时, ()()'0,'h x g x < 在()1,+∞内单调递减,所以当()0,x ∈+∞时, ()()'0,g x g x ≤单调递减,不合题意. ④当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时, ()()'0,'h x g x < 单调递减, ()'0g x > ,当()1,x ∈+∞时, ()()'0,'h x g x <单调递减, ()'0g x < ,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a < .【规律方法】函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.典例5:已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.①当-a2≤1时,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意. ②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]上的最小值为f ⎝⎛⎭⎫-a2=0,不符合题意. ③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8, 由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.【规律方法】(1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.典例6:已知函数f(x)=ax+ln x,x∈[1,e].(1)若a=1,求f(x)的最大值;(2)若f(x)≤0恒成立,求实数a的取值范围.【规律方法】 由不等式恒(能)成立求参数的范围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 典例7:设函数f(x)=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【规律方法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.典例8:已知函数f (x )=ax +b x 2+1在点(-1,f (-1))处的切线方程为x +y +3=0. (1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立;(3)若0<a <b ,求证:ln b -ln a b -a >2a a 2+b 2.【规律方法】 证明不等式通常需要构造函数,利用函数的最值、单调性证明.(1)证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可;(2)对于证明含有两个变量a ,b 的不等式时,一种方法是通过变形构造成不等式f (a )>f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =b a然后再利用已知关系证明即可.典例9:设k ∈R ,函数()ln f x x kx =-.(Ⅰ)若2k =,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若()f x 无零点,求实数k 的取值范围;(Ⅲ)若()f x 有两个相异零点12x x ,,求证: 12ln ln 2x x +>.【答案】(Ⅰ) 10x y ++=;(Ⅱ) 1,e ∞⎛⎫+ ⎪⎝⎭;(Ⅲ)证明见解析.(Ⅱ)①若k 0<时,则()()'0f x f x >,是区间()0,∞+上的增函数,∵()()()10e e 1e 0k k k f k f k k k =->=-=-<,,∴()()1e 0k f f ⋅<,函数()f x 在区间()0,∞+有唯一零点; ②若()0ln k f x x ==,有唯一零点1x =;③若0k >,令()'0f x =,得1x k =, 在区间10,k ⎛⎫ ⎪⎝⎭上, ()'0f x >,函数()f x 是增函数;【规律方法】涉及到二元问题的证明问题,通常是将二元问题一元化,进而利用函数导数求最值即可得解. 二元问题一元化的一般思路有:(1)等量代换,将题中的等量关系代入即可;(2,12t x x =+,12t x x =-等手段将二元关系换成关于t 的一元函数即可; (3)利用“极值点偏移”的思想,将二元换为一元.典例10:设函数()()2(x f x x ax a e a R -=+-⋅∈). (1)当0a =时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围. 【答案】(1) 320ex y e ++=;(2) 1a ≤-或24a e ≥-.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦ ()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时, ()'0f x ≥在[]0,2上恒成立, ()f x 在[]0,2上为单调递增函数, ()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时, ()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e +⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时, ()'0f x ≤在[]0,2上恒成立, ()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.【规律方法】利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容是考查的重点.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“任意”和“存在”问题的等价转化,可以简化解题过程.本题“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”. 【归纳常用万能模板】设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .满分解答 (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.2分当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.4分又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),故当a >0时,f ′(x )存在唯一零点.6分(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)9分由于2e2x 0-a x 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f (x )的最小值和基本不等式的应用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =x 0处最值的判定.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,求解使f ′(b )<0的b 满足的约束条件0<b <a 4,且b<14.如第(2)问中x 0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表述.1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.。
导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
第二章导数与微分一、教学目标与基本要求1.理解函数在一点的导数的三种等价定义和左、右导数的定义;了解导函数与函数在一点的导数的区别和联系;会用导数的定义求一些极限,证明一些有关导数的命题,验证导数是否存在;了解导数的几何意义及平面曲线的切线和法线的求法。
2.掌握常数、基本初等函数及双曲函数与反双曲函数的导数公式;掌握导数的四则运算法则和复合函数的求导法则。
3.理解高阶导数定义;掌握两函数乘积高阶导数的莱布尼兹公式;综合运用基本初等函数的高阶导数公式,两函数和、差、积的高阶导数公式及莱布尼兹公式等,求函数高阶导数。
4.理解隐函数定义并会求隐函数的一阶、二阶导数;掌握反函数的求导法则。
5.掌握参数方程所确定的函数的一、二阶导数的求导公式;会用对数求导法求幂指函数和具有复杂乘、除、乘方、开方运算的函数的导数。
6.理解微分的定义以及导数与微分之间的区别和联系;掌握基本初等函数的微分公式;理解微分形式的不变性;了解微分在近似计算及误差估计中的应用。
7.理解函数在一点处可导、可微和连续之间的关系。
二、教学内容与学时分配第一节导数的概念,计划3.5学时;第二节函数的和、差、积、商的求导法则,计划1.5学时;第三节反函数的导数、复合函数的求导法则,计划3.5学时;第四节初等函数的导数问题,计划1学时;第五节高阶导数,计划2.5学时;第六节隐函数的导数、由参数方程所确定的函数的导数,计划3.5学时;第七节函数的微分,计划2.5学时;第八节微分在近似计算中的应用,计划1.5学时;共计20学时。
三、重点与难点1.导数的概念与几何意义及物理意义;2.可导与连续的关系;3.导数的运算法则与基本求导公式;4.微分的概念与微分的运算法则;5.可微与可导的关系。
四、内容的深化与拓宽1.导数概念的深刻背景2.复合函数的求导法则的应用3.综合运用基本初等函数的高阶导数公式,两函数和、差、积的高阶导数公式及莱布尼兹公式等,求函数的高阶导数。
第2讲导数与函数的单调性1.借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).1.函数的单调性与导数的关系条件恒有结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)上□1单调递增f′(x)<0f(x)在(a,b)上□2单调递减f′(x)=0f(x)在(a,b)上是□3常数函数“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.利用导数判断函数单调性的步骤第1步,确定函数的□4定义域;第2步,求出导函数f′(x)的□5零点;第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.常用结论1.若可导函数f(x)在(a,b)上存在单调递增区间,则x∈(a,b)时,f′(x)>0有解;若可导函数f(x)在(a,b)上存在单调递减区间,则x∈(a,b)时,f′(x)<0有解.2.可导函数f(x)在(a,b)上单调递增(减)的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)任意子区间内都不恒为零.1.思考辨析(在括号内打“√”或“×”)(1)函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.()(4)函数f(x)=x-sin x在R上是增函数.()答案:(1)×(2)√(3)×(4)√2.回源教材(1)函数f (x )=cos x -x 在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数解析:D ∵当x ∈(0,π)时,f ′(x )=-sin x -1<0,∴f (x )在(0,π)上是减函数.(2)函数f (x )=x 3+2x 2-4x 的单调递增区间是.解析:由f ′(x )=3x 2+4x -4>0得x <-2或x >23,故单调递增区间为(-∞,-2),(23,+∞).答案:(-∞,-2),(23,+∞)(3)若函数y =x +a 2x(a >0)在[2,+∞)上单调递增,则a 的取值范围是.解析:由题意可知,y ′=1-a 2x 2≥0,即a 2≤x 2在[2,+∞)上恒成立,由x 2≥4,∴a 2≤4,即-2≤a ≤2.又a >0,故0<a ≤2.答案:(0,2]求函数的单调性不含参函数的单调区间1.函数f (x )=x ln x -3x +2的单调递减区间为.解析:f (x )的定义域为(0,+∞),f ′(x )=ln x -2,当x ∈(0,e 2)时,f ′(x )<0,当x ∈(e 2,+∞)时,f ′(x )>0,∴f (x )的单调递减区间为(0,e 2).答案:(0,e 2)2.若函数f (x )=ln x +1e x,则函数f (x )的单调递增区间为.解析:f (x )的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,当x∈(1,+∞)时,φ(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴函数f(x)的单调递增区间为(0,1).答案:(0,1)反思感悟确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.含参函数的单调性例1已知函数g(x)=(x-a-1)e x-(x-a)2,讨论函数g(x)的单调性.解:g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①若a>ln2,则当x∈(-∞,ln2)∪(a,+∞)时,g′(x)>0,当x∈(ln2,a)时,g′(x)<0,∴g(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减.②若a=ln2,则g′(x)≥0恒成立,且g′(x)不恒等于0,∴g(x)在R上单调递增,③若a<ln2,则当x∈(-∞,a)∪(ln2,+∞)时,g′(x)>0,当x∈(a,ln2)时,g′(x)<0,∴g(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.综上,当a >ln 2时,g (x )在(-∞,ln 2),(a ,+∞)上单调递增,在(ln 2,a )上单调递减;当a =ln 2时,g (x )在R 上单调递增;当a <ln 2时,g (x )在(-∞,a ),(ln 2,+∞)上单调递增,在(a ,ln 2)上单调递减.反思感悟1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.训练1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解:函数f (x )的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x =(ax -1)(x -1)x .令f ′(x )=0,得x =1a 或x =1.①当0<a <1时,1a>1,∴x ∈(0,1)和(1a ,+∞)时,f ′(x )>0;x ∈(1,1a)时,f ′(x )<0,∴函数f (x )在(0,1)和(1a ,+∞)上单调递增,在(1,1a )上单调递减;②当a =1时,1a=1,∴f ′(x )≥0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)上单调递增;③当a >1时,0<1a<1,∴x ∈(0,1a)和(1,+∞)时,f ′(x )>0;x ∈(1a,1)时,f ′(x )<0,∴函数f (x )在(0,1a )和(1,+∞)上单调递增,在(1a,1)上单调递减.综上,当0<a <1时,函数f (x )在(0,1)和(1a ,+∞)上单调递增,在(1,1a )上单调递减;当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在(0,1a )和(1,+∞)上单调递增,在(1a,1)上单调递减.函数单调性的应用比较大小或解不等式例2(1)已知函数f (x )=x sin x ,x ∈R ,则f (π5),f (1),f (-π3)的大小关系为()A.f (-π3)>f (1)>f (π5)B.f (1)>f (-π3)>f (π5)C.f (π5)>f (1)>f (-π3)D.f (-π3)>f (π5)>f (1)解析:A因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f (-π3)=f (π3).又当x ∈(0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在(0,π2)上是增函数,所以f (π5)<f (1)<f (π3),即f (-π3)>f (1)>f (π5),故选A.(2)(2024·苏锡常镇四市第一次调研)已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=e x +sin x ,则不等式f (2x -1)<e π的解集是()A.(1+π2,+∞) B.(0,1+π2)C.(0,1+e π2)D.(1-π2,1+π2)解析:D 当x ≥0时,f ′(x )=e x +cos x ,因为e x ≥1,cos x ∈[-1,1],所以f ′(x )=e x +cos x ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增.又因为f (x )是定义在R 上的偶函数,所以f (x )在(-∞,0)上单调递减.因为f (-π)=f (π)=e π,所以由f (2x -1)<e π可得-π<2x -1<π,解得x ∈(1-π2,1+π2).根据函数的单调性求参数的值(范围)例3(2023·新课标Ⅱ卷)已知函数f (x )=a e x -ln x 在区间(1,2)上单调递增,则a 的最小值为()A.e 2B.eC.e -1D.e -2解析:C依题可知,f ′(x )=a e x -1x≥0在(1,2)上恒成立,显然a >0,所以x e x ≥1a ,设g (x )=x e x ,x ∈(1,2),所以g ′(x )=(x +1)e x >0,所以g (x )在(1,2)上单调递增,g (x )>g (1)=e ,故e ≥1a ,即a ≥1e=e -1,即a 的最小值为e -1.故选C.反思感悟1.根据函数单调性求参数的方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增(减)函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f ′(x )≤0),且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解(需验证解的两侧导数是否异号).2.利用导数比较大小,其关键是判断已知(或构造后的)函数的单调性,利用其单调性比较大小.3.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数,再利用导数研究新函数的单调性,从而解不等式.训练2(1)已知函数f(x)=sin x+cos x-2x,a=f(-π),b=f(2e),c=f(ln2),则a,b,c的大小关系是()A.a>c>bB.a>b>cC.b>a>cD.c>b>a解析:A∵f(x)的定义域为R,f′(x)=cos x-sin x-2=2cos(x+π4)-2<0,∴f(x)在R上单调递减,又2e>1,0<ln2<1,∴-π<ln2<2e,故f(-π)>f(ln2)>f(2e),即a>c>b.(2)已知函数f(x)=2ln x+1x-x,则不等式f(2x-1)<f(1-x)的解集为()A.(0,23) B.(23,1)C.(12,1) D.(1 2,23)解析:B由题意可知,函数f(x)的定义域为(0,+∞).因为f′(x)=2x-1x2-1=-(1x-1)2≤0恒成立,所以f(x)在(0,+∞)上单调递减.则由f(2x-1)<f(1-x)可x-1>0,-x>0,x-1>1-x,解得23<x<1,即原不等式的解集为(23,1).故选B.(3)已知函数g(x)=2x+ln x-ax在区间[1,2]上不单调,则实数a的取值范围是.解析:g′(x)=2x2+x+ax2,∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-2(x+14)2+18在(1,2)内有解,易知函数y=-2x2-x在(1,2)上是减函数,∴y=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).答案:(-10,-3)限时规范训练(十八)A 级基础落实练1.(2023·三明一中月考)函数f (x )=x -ln(2x +1)的单调递增区间是()A.(-12,0)B.(-12,12)C.(-12,+∞)D.(12,+∞)解析:D f (x )的定义域是(-12,+∞),f ′(x )=1-22x +1=2x -12x +1,令f ′(x )>0,得x >12,故f (x )的单调递增区间是(12,+∞),故选D.2.已知f ′(x )是函数y =f (x )的导函数,且y =f ′(x )的图象如图所示,则y =f (x )函数的图象可能是()解析:D 根据导函数的图象可得,当x ∈(-∞,0)时,f ′(x )<0,则f (x )单调递减;当x ∈(0,2)时,f ′(x )>0,则f (x )单调递增;当x ∈(2,+∞)时,f ′(x )<0,则f (x )单调递减,所以只有D 选项符合.3.(2024·亳州一中考试)若函数y =f (x )满足xf ′(x )>-f (x )在R 上恒成立,且a >b ,则()A.af (b )>bf (a )B.af (a )>bf (b )C.af (a )<bf (b )D.af (b )<bf (a )解析:B 由题意,设g (x )=xf (x ),则g ′(x )=xf ′(x )+f (x )>0,所以g (x )在R 上是增函数,又a >b ,所以g (a )>g (b ),即af (a )>bf (b ),故选B.4.(2024·甘肃部分学校联考)已知R 上的可导函数f (x )的图象如图所示,则不等式(x -2)f ′(x )>0的解集为()A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(2,+∞)D.(-1,1)∪(2,+∞)解析:D 由图象知f ′(x )>0的解集为(-∞,-1)∪(1,+∞),f ′(x )<0的解集为(-1,1),则(x -2)f ′(x )>0-2>0,(x )>0-2<0,(x )<0,所以x >2或-1<x <1,即所求不等式的解集为(-1,1)∪(2,+∞).故选D.5.(2024·洛阳新安一高摸底)函数f (x )x -x +2a ,x >0,a -1)x +3a -2,x ≤0在(-∞,+∞)上是单调函数,则a 的取值范围是()A.[1,+∞) B.(1,3]C.12,D.(1,2]解析:B当x >0时,f (x )=e x -x +2a ,则f ′(x )=e x -1>0,所以函数f (x )在(0,+∞)上单调递增,由题意可知,函数f (x )在(-∞,+∞)上是单调函数,故当x ≤0时,f (x )=(a -1)x +3a -2单调递增,则a -1>0,且3a -2≤e 0+2a ,得1<a ≤3.故选B.6.(2024·豫南地区联考)不等式2ln x >x ln 2的解集是()A.(1,2)B.(2,4)C.(2,+∞)D.(4,+∞)解析:B设f (x )=ln xx(x >0),则f ′(x )=1-ln xx 2,当0<x <e 时,f ′(x )>0,当x >e 时,f ′(x )<0,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.原不等式可化为ln x x >ln 22,即f (x )>f (2),结合f (2)=f (4),可得2<x <4.7.函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为.解析:f ′(x )=-e -x cos x -e -x sin x=-e -x (cos x +sin x )=-2e -x sin(x +π4),当x ∈(0,3π4)时,e -x >0,sin(x +π4)>0,则f ′(x )<0;当x ∈(3π4,π)时,e -x >0,sin(x +π4)<0,则f ′(x )>0,∴f (x )在(0,π)上的单调递增区间为(3π4,π).答案:(3π4,π)8.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是.解析:由题意知f ′(x )=3ax 2+6x -1.由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3且a ≠0,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)9.已知函数f (x )=x 3+x -sin x ,则满足不等式f (2m 2)≤f (1-m )成立的实数m 的取值范围是.解析:由f (x )=x 3+x -sin x ,得f ′(x )=3x 2+1-cos x ≥0,∴函数f (x )为增函数,由f (2m 2)≤f (1-m ),得2m 2≤1-m ,∴2m 2+m -1≤0,解得-1≤m ≤12.答案:-1,1210.已知函数f(x)=x2+ax-ln x,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)在[1,3]上是减函数,求实数a的取值范围.解:(1)当a=1时,f(x)=x2+x-ln x.所以f′(x)=2x+1-1x,f′(1)=2,又f(1)=2,所以曲线y=f(x)在点(1,f(1))处的切线方程为2x-y=0.(2)因为函数f(x)在[1,3]上是减函数,所以f′(x)=2x+a-1x=2x2+ax-1x≤0在[1,3]上恒成立.即2x2+ax-1≤0在[1,3]上恒成立,则a≤1x-2x在[1,3]上恒成立,令h(x)=1x-2x,显然h(x)在[1,3]上单调递减,则a≤h(x)min=h(3),得a≤-173.即实数a的取值范围为(-∞,-173].11.(2024·吉安质检)已知函数f(x)=3a ln x-12x2-(a-3)x,a∈R.(1)当a=1时,求曲线g(x)=f(x)-3ln x+12x2-sin x在x=π2处的切线方程;(2)试讨论f(x)的单调性.解:(1)当a=1时,g(x)=f(x)-3ln x+12x2-sin x=2x-sin x,则g(π2)=π-1,g′(x)=2-cos x,∴g′(π2)=2,∴曲线g(x)在x=π2处的切线方程为y-(π-1)=2(x-π2),即2x-y-1=0.(2)由题意,f(x)的定义域为(0,+∞),f′(x)=3ax-x-(a-3)=-x2+(a-3)x-3ax=-(x-3)(x+a)x,①若a≥0,则当0<x<3时,f′(x)>0,当x>3时,f′(x)<0,∴f(x)在(0,3)上单调递增,在(3,+∞)上单调递减;②若-3<a<0,由f′(x)<0,得0<x<-a或x>3,由f′(x)>0,得-a<x<3,∴f(x)在(0,-a),(3,+∞)上单调递减,在(-a,3)上单调递增;③若a=-3,则f′(x)≤0恒成立,∴f(x)在(0,+∞)上单调递减;④若a<-3,由f′(x)<0,得0<x<3或x>-a,由f′(x)>0,得3<x<-a,∴f(x)在(0,3),(-a,+∞)上单调递减,在(3,-a)上单调递增.B级能力提升练12.(多选)已知函数f(x)=ln(e2x+1)-x,则下列说法正确的是()A.f(ln2)=ln52B.f(x)是奇函数C.f(x)在(0,+∞)上单调递增D.f(x)的最小值为ln2解析:ACD f(ln2)=ln(e2ln2+1)-ln2=ln5-ln2=ln 52,A正确;f(x)=ln(e2x+1)-x=ln(e x+e-x)定义域为R,其中f(-x)=ln(e-x+e x)=f(x),故f(x)是偶函数,B错误;f′(x)=e x-e-xe x+e-x,当x∈(0,+∞)时,f′(x)=e x-e-xe x+e-x>0,故f(x)在(0,+∞)上单调递增,C正确;根据f(x)在(0,+∞)上单调递增,且f(x)是偶函数,可得f(x)在(-∞,0)上单调递减,故f(x)的最小值为f(0)=ln2,D正确.13.设函数f(x)的定义域为R,f′(x)是其导函数,若3f(x)+f′(x)>0,f(0)=1,则不等式f(x)>e-3x的解集是()A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(0,1)解析:A令g(x)=e3x f(x),则g′(x)=3e3x f(x)+e3x f′(x),因为3f(x)+f′(x)>0,所以3e3x f(x)+e3x f′(x)>0,所以g′(x)>0,所以函数g(x)=e3x f(x)在R上单调递增,而f(x)>e-3x可化为e3x f(x)>1,又g(0)=e3×0f(0)=1,即g(x)>g(0),解得x>0,所以不等式f(x)>e-3x的解集是(0,+∞).14.讨论函数f(x)=(a-1)ln x+ax2+1的单调性.解:f(x)的定义域为(0,+∞),f′(x)=a-1x+2ax=2ax2+a-1x.①当a≥1时,f′(x)>0,故f(x)在(0,+∞)上单调递增;②当a≤0时,f′(x)<0,故f(x)在(0,+∞)上单调递减;③当0<a<1时,令f′(x)=0,解得x=1-a 2a,则当x∈(0,1-a2a)时,f′(x)<0;当x∈(1-a2a,+∞)时,f′(x)>0,故f(x)在(0,1-a2a)上单调递减,在(1-a2a,+∞)上单调递增.综上,当a≥1时,f(x)在(0,+∞)上单调递增;当a≤0时,f(x)在(0,+∞)上单调递减;当0<a<1时,f(x)在(0,1-a2a)上单调递减,在(1-a2a,+∞)上单调递增.。