2018-2019学年人教版八年级数学下册习题课件:期中达标测试题 (共29张PPT)
- 格式:ppt
- 大小:4.25 MB
- 文档页数:29
2018-2019学年山东省临沂市平邑县八年级第二学期期中数学试卷一、选择题(共12小题)1.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠22.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.B.C.D.24.正方形具有而菱形不一定具有的性质是()A.四个角为直角B.对角线互相垂直C.对角线互相平分D.对边平行且相等5.以下各组数据为三角形的三边长,能构成直角三角形的是()A.B.2,3,4C.2,2,1D.4,5,66.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+7.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC=3,BC=4.则BD的长是()A.2B.3C.4D.58.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm9.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.2410.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.1211.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣212.如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB 的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.14B.16C.18D.20二、填空题13.比较大小:.(填“>、<、或=”)14.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B 的距离为12m,这棵大树在折断前的高度为.15.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为米.16.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.17.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.18.观察下列各式:①;②=;③,…请用含n (n≥1)的式子写出你猜想的规律:.三、解答题(满分66分)19.计算(1)(2)20.如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.21.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.23.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为.24.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.参考答案一、选择题(本题共12小题.每小题3分,共36分)1.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠2【分析】根据负数没有平方根列出关于a的不等式,求出不等式的解集确定出a的范围即可.解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选:A.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.3.下列计算正确的是()A.B.C.D.2【分析】根据二次根式的加减法对A、C、D进行判断;根据二次根式的乘法法则对C 进行判断.解:A、原式=2,所以A选项的计算错误;B、原式=3,所以C选项的计算错误;C、原式=2,所以C选项的计算正确;D、2与不能合并,所以D选项的计算错误.故选:C.4.正方形具有而菱形不一定具有的性质是()A.四个角为直角B.对角线互相垂直C.对角线互相平分D.对边平行且相等【分析】举出正方形具有而菱形不一定具有的所有性质,即可得出答案.解:正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等,②正方形的四个角是直角,而菱形的四个角不一定是直角,故选:A.5.以下各组数据为三角形的三边长,能构成直角三角形的是()A.B.2,3,4C.2,2,1D.4,5,6【分析】由(2)2+(2)2=16=42,可得出三边长为2,2,4的三角形为直角三角形,此题得解.解:∵(2)2+(2)2=16=42,∴三边长为2,2,4的三角形为直角三角形.故选:A.6.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选:A.7.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC=3,BC=4.则BD的长是()A.2B.3C.4D.5【分析】首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB﹣AD即可算出答案.解:∵AC=3,BC=4,∴AB===5,∵以点A为圆心,AC长为半径画弧,交AB于点D,∴AD=AC,∴AD=3,∴BD=AB﹣AD=5﹣3=2.故选:A.8.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.9.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.24【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选:C.11.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空白部分的面积=(2+4)×4﹣12﹣16,=8+16﹣12﹣16,=(﹣12+8)cm2.故选:B.12.如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB 的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.14B.16C.18D.20【分析】过F作AM的垂线交AM于D,通过证明S1+S2+S3+S4=Rt△ABC的面积×3,依此即可求解.解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=S Rt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S Rt△ABC.易证Rt△ABC≌Rt△EBN,∴S4=S Rt△ABC,∴S1+S2+S3+S4=(S1+S3)+S2+S4=S Rt△ABC+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=4×3÷2×3=18.故选:C.二、填空题(每小题3分,满分18分)13.比较大小:<.(填“>、<、或=”)【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.14.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B 的距离为12m,这棵大树在折断前的高度为18m.【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC的长,进而可得出结论.解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13(m),∴这棵树原来的高度=BC+AC=5+13=18(m).答:棵树原来高18m.故答案为:18米.15.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为2400米.【分析】由D为AC的中点、E为BC的中点,可得出DE为△ABC的中位线,根据DE 的长度结合三角形中位线定理即可得出AB的长度.解:∵D为AC的中点,E为BC的中点,∵DE为△ABC的中位线,又∵DE=1200m,∴AB=2DE=2400m.故答案是:2400.16.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).17.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为8.【分析】首先证明∠ABF=∠EAD,再利用AAS定理证明△AFB≌△DEA,进而得到AF=ED=5,AE=BF=3,然后再根据线段的和差关系可得答案.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵BF⊥a,DE⊥a,∴∠AED=∠AFB=90°∴∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:818.观察下列各式:①;②=;③,…请用含n (n≥1)的式子写出你猜想的规律:=(n+1).【分析】从给出的三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,依此可以找出规律.解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).三、解答题(满分66分)19.计算(1)(2)【分析】(1)先根据二次根式的乘除法则运算,然后化简后合并即可;(2)先根据二次根式的除法法则和完全平方公式运算,然后合并即可.解:(1)原式=6﹣﹣+=6﹣﹣+=5﹣;(2)原式=2﹣+1﹣2+3=2﹣+4﹣2=4﹣.20.如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.【分析】由平行四边形性质可证得△AOE≌△COF,则可证得OE=OF.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥CD,OA=OC,∴∠EAO=∠FCO,在△AOE和△COF中∴△AOE≌△COF(ASA),∴OE=OF.21.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.【分析】(1)以3和2为直角边作出直角三角形,斜边即为所求;(2)以3和1为直角边作出直角三角形,斜边为正方形的边长,如图②所示.解:(1)如图①所示:(2)如图②所示.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.23.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为24.【分析】(1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;(3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB•AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.【解答】(1)证明:∵EF∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:由(2)得:四边形CEAF是矩形,∴∠AEC=90°,∴AC===5,△ACE的面积=AE×EC=×3×4=6,∵122+52=132,即AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴△ABC的面积=AB•AC=×12×5=30,∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=24;故答案为:24.24.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.【分析】(1)先构造出△ADE≌△NCE,即可得出结论;(2)同(1)的方法即可得出结论;(3)设出MC=x,利用(2)的结论得出AM=9+x,再利用勾股定理建立方程求出CM 即可得出结论.解:(1)如图1,延长AE,BC相交于N,∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAE,∴∠∠DAE=∠MAE,∴∠ENC=∠MAE,在△ADE和△NCE中,,∴△ADE≌△NCE,∴AD=CN,∴AM=MN=NC+MC=AD+MC;(2)结论AM=AD+CM仍然成立,理由:如图2,延长AE,BC相交于N,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAE,∴∠DAE=∠MAE,∴∠ENC=∠MAE,在△ADE和△NCE中,,∴△ADE≌△NCE,∴AD=CN,∴AM=MN=NC+MC=AD+MC;(3)设MC=x,则BM=BC﹣CN=9﹣x,由(2)知,AM=AD+MC=9+x,在Rt△ABM中,AM2﹣BM2=AB2,(9+x)2﹣(9﹣x)2=36,∴x=1,∴AM=AD+MC=10.。
四川省南充市白塔中学2018-2019年度第二学期八年级下册期中考试数学测试卷一、选择题:(每题3分,共30分)1.下列运算错误的是( )A. =B. =C. =D. 2(2=【答案】A【解析】【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【详解】解:AB ,计算正确,故本选项错误;CD 、()2=2,计算正确,故本选项错误;故选A .【点睛】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.2.若k ,m ,n =,则下列关于k ,m ,n 的大小关系,正确的是( )A. m <k <nB. m =n >kC. m <n <kD. k <m =n【答案】A【解析】分析】化为最简二次根式,求得k 、m 、n 的值,比较即可解答.=∴k=3,m=2,n=5,∴m <k <n ,故选A.解决问题的关键.3.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的对角线AC 的长是( )A. 2B. 4C.D. 【答案】B【解析】【分析】 根据矩形的性质可得AC=BD ,OA=OC ,OD=OB ,由此可得OA=OB ,再由∠AOB=60°,根据有一个角为60°的等腰三角形是等边三角形,即可判定△AOB 是等边三角形,所以OA=OB=AB=2,即可得AC=2OA=4.【详解】∵矩形ABCD ,∴AC=BD ,OA=OC ,OD=OB ,∴OA=OB ,∵∠AOB=60°,∴△AOB 是等边三角形,∴OA=OB=AB=2,∴AC=2OA=2×2=4,故选B .【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.4.如图,在Rt ABC ∆中,9AB =,6BC =,90B ∠=︒,将ABC ∆折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A. 52B. 53C. 4D. 5【答案】C【解析】【分析】设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.【详解】设BN x =,则9AN x =-.由折叠的性质,得9DN AN x ==-.因为点D 是BC 的中点,所以3BD =.在Rt NBD ∆中,由勾股定理,得222BN BD DN +=,即()22239x x +=-,解得4x =,故线段BN 的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.5. 下列命题中,真命题是A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C.6.若x=﹣3,则1等于( )A. ﹣1B. 1C. 3D. ﹣3【答案】B【解析】分析:将x=-3代入二次根式进行计算即可得出答案.=-=,故选B.详解:当x=-3时,原式=1121点睛:本题主要考查的就是二次根式的计算法则,属于基础题型.明确二次根式的计算法则是解题的关键.7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A. 3.5B. 4C. 4.5D. 5【答案】C【解析】试题分析:如图,设水深h尺,在Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得,AC2=AB2+BC2,即(h+3)2=h2+62,∴h2+6h+9=h2+36,6h=27,解得h=4.5.故答案选C.考点:勾股定理.8.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A. 35°B. 55°C. 65°D. 75°【答案】B【解析】试题分析:由菱形的性质以及已知条件可证明△BOE≌△DOF,所以可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠CBD=35°,则可以求出∠DAO的度数.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OEB=∠OFD,∠EBO=∠ODF,∵BE=DF,∴在△BOE和△DOF中,,∴△BOE≌△DOF,∴BO=OD ,∴AO⊥BD ,∴∠AOD=90°,∵∠CBD=35°,∴∠ADO=35°,∴∠DAO=55°,故选B .点评:本题考查了菱形的性质、全等三角形的判定和性质,证明出AO⊥BD 是解题的关键.9.若△ABC 三边长a ,b ,c +|1b a --|+(5c -)2=0,则△ABC 是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形【答案】C【解析】【分析】 根据非负数的性质求得a 、b 、c 的值,再根据勾股定理的逆定理即可解答.【详解】+|b-a-1|+(c-5)2=0,∴a+b-25=0,b-a-1=0,c-5=0,∴a=12,b=13,c=5,∵222169a c b +==,∴△ABC 直角三角形.故选C.【点睛】本题考查了非负数的性质及勾股定理的逆定理,根据非负数的性质求得a 、b 、c 的值是解决问题的关键.10.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…依此类推,则平行四边形AO 4C 5B 的面积为A. 54cm 2B. 58cm 2C. 516cm 2D. 532cm 2 【答案】B【解析】【详解】根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形面积的12. 设矩形ABCD 的面积为S ,则S =20cm 2.∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12 ∴平行四边形AOC 1B 的面积12S =. ∵平行四边形AOC 1B 的对角线交于点O 1, ∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC1B 底边AB 上的高的12, ∴平行四边形AO 1C 2B 的面积=12⨯12S =212S , ……依此类推,平行四边形AO 4C 5B 的面积55205228S ===(cm 2). 二、填空题:(每题3分,共24分)11.3-x ,则x 的取值范围是__________.【答案】3x ≤【解析】﹣x,∴x-3≤0,解得:x≤3,12..E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=____.【答案】51°【解析】【分析】由平行四边形的性质和折叠的性质得出∠BFE=∠A=52°,∠FBE=∠ABE,由等腰三角形的性质和三角形的外角性质得出∠EDF=∠DEF=12∠BFE=26°,由三角形内角和定理求出∠ABD=102°,即可得出∠ABE的度数.【详解】∵四边形ABCD为平行四边形,∴∠A=∠C=52°,AD∥B C.由折叠的性质可得∠ABE=∠FBE,∠A=∠BFE=52°,∵EF=DF,∴∠FED=∠EDF,∴∠EFB=∠FED+∠EDF=2∠EDF=52°,即∠EDF=26°. ∵AD∥BC,∴∠CBD=∠EDF=26°,∠ABC=180°-∠A=128°,∴∠ABF=∠ABC-∠CBD=128°-26°=102°.又∵∠ABE=∠FBE,∴∠ABE=12∠ABF=12×102°=51°.【点睛】本题是图形翻折变换的题目,掌握翻折变换的性质以及平行四边形的性质是关键.13.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积和为______.【答案】81 【解析】【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.【详解】两个阴影正方形的面积和为152-122=81,故答案为81.【点睛】本题考查了正方形的面积以及勾股定理的应用,准确识图是解题的关键.14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为 .【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2 =,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故答案为:32或3.15.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=4, 则AB长为_____.【答案】8【解析】【分析】根据垂线的性质可知△ADC是直角三角形,再Rt△ADC中,利用直角三角形斜边上的中线是斜边的一半可得AC=8;由AB=AC即可得AB=8.【详解】∵在△ABC中,AD⊥BC,垂足为D,∴△ADC是直角三角形;∵E是AC的中点.∴DE=12AC(直角三角形的斜边上的中线是斜边的一半);又∵DE=4,AB=AC,∴AB=8;故答案为8.【点睛】本题考查了直角三角形斜边上的中线的性质.熟知直角三角形的斜边上的中线是斜边的一半是解决问题的关键.16.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF 的长为______.【答案】4-【解析】∵四边形ABCD是正方形,其边长为4,BD是其对角线,∴∠BAD=90°,∠ABD=∠ADB=45°,BD=又∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°=∠DAE,∴DE=AD=4,∴BE=4,∵EF⊥AB于点F,∠ABD=45°,∴△BEF是等腰直角三角形,∴4=-故答案为4-17.计算:3=___________【答案】1【解析】【分析】根据实数的乘除法混合运算法则计算即可.【详解】原式=1333=⨯=1.故答案为1.【点睛】本题考查了实数的混合运算.解题的关键是掌握实数混合运算的顺序与法则.18.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是____.【答案】5【解析】【详解】试题分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,考点:1、菱形的性质;2、轴对称-最短路线问题三、解答题(共计66分)19.计算:25|.【答案】【解析】试题分析:先进行二次根式的乘法运算,再去绝对值,然后把二次根式化为最简二次根式后合并即可.试题解析:原式.20.为了增强学生体质,学校鼓励学生多参加体育锻炼,小华同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED为正方形,∠DCE=45°,AB=100米.小华某天绕该道路晨跑5 1.41)【答案】小华该天晨跑的路程约为2705米【解析】分析:由正方形的性质得△DEC是等腰直角三角形,然后利用勾股定理求出CD的长度,然后求出小胖每天晨跑的路程.详解:∵四边形ABCD是正方形,∴DE=AB=BE=AD=100,∠DEC=∠DEB=90°,又∵∠DCE=45°,∴△DEC是等腰直角三角形,∴EC=DE=100,∴DC==5(AB+BC+CD+AD)=5(100+100+100+100)=5(400+≈2705(米),∴小华该天晨跑的路程约为2705米.点睛:本题主要考查了正方形的性质和解直角三角形的应用,解题的关键是利用勾股定理求出DC的长度,此题难度不大.21.如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC =30°,AB=2.求CF的长.【答案】.【解析】【分析】首先证明四边形ABDE是平行四边形,可得AB=DE=CD,即D为CE中点,然后再得CE=4,再利用三角函数可求出HF和CH的长即可.【详解】四边形ABCD是平行四边形,=,//∴,AB DCAB CDAE DB,//∴四边形ABDE是平行四边形,∴==,即D为CE中点,AB DE CDAB=,2∴=,CE4//AB CD ,45ECF ABC ∴∠=∠=,过E 作EH BF ⊥于点H ,4CE =,45ECF ∠=,EH CH ∴==,30EFC ∠=,FH ∴=CF ∴=.【点睛】本题考查了平行四边形的判定与性质,以及三角函数的应用,关键是掌握平行四边形对边相等. 22.如图,四边形ABCD 是菱形,,BE AD BF CD ⊥⊥,垂足分别为点,E F .()1求证:BE BF =;()2当菱形ABCD 的对角线8AC =,BD=6时,求BE 的长.【答案】(1)见解析;(2)245BE =. 【解析】【分析】(1)根据菱形的邻边相等,对角相等,证明△ABE 与△CBF 全等,再根据全等三角形对应边相等即可证明;(2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.【详解】(1)证明:四边形ABCD 是菱形,BAE BCF ∴∠=∠, BA BC =又BE AD ⊥,BF CD ⊥AEB CFB ∴∠=∠∴△ABE ≌△CBF(AAS)BE BF ∴=(2)解:四边形ABCD 是菱形,142OA AC ∴==,132OB BD ==,90AOB ∠︒=,AD AB =,5AD AB ∴===,1··2ABCD S AD BE AC BD 菱形==, 15862BE ∴⨯⨯=, 245BE ∴=. 故答案为(1)见解析;(2)245. 【点睛】本题考查了全等三角形的性质和判定,菱形的性质和面积,注意:菱形的四条边都相等,菱形的对角相等.23.当=1x x 2-4x +2的值. 【答案】1【解析】试题分析:先化简x ,然后代入求值.试题解析:解:2x ==+原式=2(2)2x --=2(22)2-=3-2=1.24.已知:如图,AB=3,AC=4,AB ⊥AC ,BD=12,CD=13,(1)求BC 的长度;(2)证明:BC ⊥BD .【答案】(1)5;(2)证明见解析.【解析】(1)在Rt△ABC中,直接利用勾股定理即可求出BC 的长;(2)利用勾股定理的逆定理判断出△BCD为直接三角形,其中∠CBD=90°,即可得证.25. 如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A 重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.【答案】(1)见解析(2)①1;②2【解析】试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=12AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.试题解析:(1)证明:∵四边形ABCD是菱形,∴ND∥AM ,∴∠NDE=∠MAE ,∠DNE=∠AME ,又∵点E 是AD 边的中点,∴DE=AE ,∴△NDE≌△MAE ,∴ND=MA ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下: ∵AM=1=12AD , ∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN 是矩形;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD 是等边三角形,∴AM=DM ,∴平行四边形AMDN 是菱形,考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.26.如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段______和______;:ABCD AEFG S S =Y 矩形______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长;(3)如图4,梯形ABCD 纸片满足//AD BC ,AD BC <,AB BC ⊥,8AB =,10CD =.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD 、BC 的长. 【答案】 (1). AE (2). GF (3). 1:2【解析】分析:(1)由图可直接得到第一、二空答案,根据折叠的性质可得△AEH 与△ABE 面积相等、梯形HFGA 与梯形FCDG 面积相等,据此不难得到第三空答案;(2)对图形进行点标注,如图所示:首先根据勾股定理求得FH 的长,再根据折叠的性质以及请到的知识可得AH =FN ,HD =HN ,然后根据线段和差关系即可得到AD 的长;(3)根据题目信息,动手这一下,然后将结合画出来,再结合折叠的性质以及勾股定理的知识分析解答即可.详解:(1)根据题意得:操作形成的折痕分别是线段AE 、GF ;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG ,∴△ABE 的面积=△AHE 的面积,四边形AHFG 的面积=四边形DCFG 的面积,∴S 矩形AEFG =12S 平行四边形ABCD , ∴S 矩形AEFG :S 平行四边形ABCD =1:2;故答案为AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴=13,由折叠的性质得:AD=FH=13;由折叠的对称性可知:DH=NH,AH=HM,CF=FN. 易得△AEH≌CGF,所以CF=AH,所以AD=DH+AH=HN+FN=FH=13.(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=12AB=4,CF=DF=12CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴=,∴AD=BG=BM-GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=12梯形ABCD的面积,AE=BE=12AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=12CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=12(AD+BC)×8=2×25,∴AD+BC=252,∴BC=252-x,∴MC=BC-BM=252-x-3,∵MN=MC,∴3+x=252-x-3,解得:x=134,∴AD=134,BC=252-134=374;③折法3中,如图6所示,作GM⊥BC于M,则E 、G 分别为AB 、CD 的中点,则AH=AE=BE=BF=4,CG=12CD=5,正方形的边长,GM=FM=4,,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8-7=1,∴AD=5.点睛:本题是四边形综合题,考查了折叠的性质,正方形的性质、勾股定理、梯形面积的计算、解方程等知识,本题综合性强,有一定难度.。
2018-2019学年山东省临沂市兰陵县八年级(下)期中数学试卷姓名:得分:日期:一、选择题(本大题共 12 小题,共 36 分)1、(3分) 如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=ECB.AE=BEC.∠EBC=∠BACD.∠EBC=∠ABE2、(3分) 下列命题中是假命题的是()A.同旁内角互补,两直线平行B.垂线段最短C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.直线外一点到这条直线的垂线段叫做点到直线的距离3、(3分) 如图,点C是△ABE的BE边上一点,点F在AE上,D是BC的中点,且AB=AC= CE,给出下列结论:①AD⊥BC;②CF⊥AE;③∠1=∠2;④AB+BD=DE.其中正确的结论有()A.1个B.2个C.3个D.4个4、(3分) 如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6cm,则AC等于()A.6cmB.5cmC.4cmD.3cm5、(3分) 若m>n,则下列不等式正确的是()A.m-2<n-2B.m4>n4C.6m<6nD.-8m>-8n6、(3分) 如图是两个关于x的一元一次不等式的解集在同一数轴上的表示,由它们组成的不等式组的解集是()A.x>-1B.x>2C.x≥2D.-1<x≤27、(3分) 小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15-x)≥1800B.90x+210(15-x)≤1800C.210x+90(15-x)≥1.8D.90x+210(15-x)≤1.88、(3分) 如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A.B.C.D.9、(3分) 如图,△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠ACB是旋转角D.∠CAE是旋转角10、(3分) 如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(0,1)C.(-1,1)D.(2,0)11、(3分) 山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是()B.C.D.A.12、(3分) 如图,直线y=ax+b与x轴交于点A(7,0),与直线y=kx交于点B(2,4),则不等式kx≤ax+b的解集为()A.x≤2B.x≥2C.0<x≤2D.2≤x≤6二、填空题(本大题共 6 小题,共 24 分)13、(4分) 已知等腰三角形的两边长分别是4和9,则周长是______.14、(4分) 如图,在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B=______.15、(4分) 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为______cm.16、(4分) 将一个等边三角形至少绕其中心旋转______°,就能与本身重合.17、(4分) 如图,将△ABC绕点A顺时针旋转60°得到△AED,若∠EAD=30°,则∠CAE的度数为______.18、(4分) 如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=4x上一点,则点B与其对应点B′间的距离为______.5三、计算题(本大题共 2 小题,共 16 分)19、(8分) 解不等式x-2(x-1)>0,并将它的解集在数轴上表示出来.20、(8分) 放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组{x−22+3≥x +11−3(x −1)<8−x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?四、解答题(本大题共 5 小题,共 44 分)21、(8分) 如图所示,已知△ABC 的角平分线BM ,CN 相交于点P .(1)判断AP 能否平分∠BAC ?请说明理由.(2)由此题你得到的结论是______.22、(8分) 如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为:A (1,-4),B (5,-4),C (4,-1).(1)将△ABC 经过平移得到△A 1B 1C 1,若点C 的应点C 1的坐标为(2,5),则点A ,B 的对应点A 1,B 1的坐标分别为______ ;(2)在如图的坐标系中画出△A 1B 1C 1,并画出与△A 1B 1C 1关于原点O 成中心对称的△A 2B 2C 2.23、(8分) 如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.24、(10分) 某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.25、(10分) 如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.2018-2019学年山东省临沂市兰陵县八年级(下)期中数学试卷【第 1 题】【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.【第 2 题】【答案】D【解析】解:A、同旁内角互补,两直线平行,所以A选项为真命题;B、直线外一点与直线上所有点的连线段中,垂线段最短,所以B选项为真命题;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,所以C选项为真命题;D、直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以D选项为假命题.故选:D.根据平行线的判定对A进行判断;根据垂线段公理对B进行判断;根据过一点有且只有一条直线与原直线垂直对C进行判断;根据点到直线的距离的定义对D进行判断.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.【第 3 题】【答案】B【解析】解:①∵D是BC的中点,AB=AC,∴AD⊥BC,故①正确;②∵F在AE上,不一定是AE的中点,AC=CE,∴无法证明CF ⊥AE ,故②错误;③无法证明∠1=∠2,故③错误;④∵D 是BC 的中点,∴BD =DC ,∵AB =CE ,∴AB +BD =CE +DC =DE ,故④正确.故其中正确的结论有①④,共两个.故选:B .①根据等腰三角形三线合一的性质即可作出判断;②由于F 在AE 上,不一定是AE 的中点,故无法作出判断;③无法证明∠1=∠2;④根据等量关系即可作出判断.此题考查了等腰三角形三线合一的性质,以及三角形的中线的概念.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【 第 4 题 】【 答 案 】D【 解析 】解:∵在△ABC 中,∠ACB =90°,∠B =15°,∴∠BAC =90°-15°=75°,∵DE 垂直平分AB ,交BC 于点E ,BE =6cm ,∴BE =AE =6cm ,∴∠EAB =∠B =15°,∴∠EAC =75°-15°=60°,∵∠C =90°,∴∠AEC =30°,∴AC =12AE =12×6cm =3cm ,故选:D .根据三角形内角和定理求出∠BAC ,根据线段垂直平分性质求出BE =AE =6cm ,求出∠EAB =∠B =15°,求出∠EAC ,求出∠AEC ,根据含30°角的直角三角形性质求出即可.本题考查了线段垂直平分线性质,含30°角的直角三角形性质,等腰三角形的性质,三角形内角和定理的应用,能求出∠AEC 的度数和AF =BF 是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.【第 5 题】【答案】B【解析】解:A、将m>n两边都减2得:m-2>n-2,此选项错误;B、将m>n两边都除以4得:m4>n4,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以-8,得:-8m<-8n,此选项错误;故选:B.将原不等式两边分别都减2、都除以4、都乘以6、都乘以-8,根据不等式得基本性质逐一判断即可得.本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【第 6 题】【答案】C【解析】解:根据数轴得:不等式组的解集为x≥2,故选:C.找出两个不等式解集的方法部分确定出不等式组的解集即可.此题考查了在数轴表示不等式的解集,弄清不等式组取解集的方法是解本题的关键.【第 7 题】【答案】A【解析】解:由题意可得210x+90(15-x)≥1800,根据题意可以列出相应的不等式,从而可以解答本题.本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.【第 8 题】【答案】D【解析】解:通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故选:D.根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【第 9 题】【答案】D【解析】解:由旋转的性质得:DE=BC=4,故A不正确;AE=AC=3,故B不正确;旋转角是∠CAE,故D正确;∠ACB不是旋转角,故C不正确;故选:D.由旋转的意义可得,将△ABC绕点A逆时针旋转一个角度后得到△ADE,此时对应边为;AC=AE,AB=AD,CB=ED,旋转角为∠CAE或∠BAD,以此逐个进行判断,得出答案.考查旋转的性质,对应边相等、对应角相等,理解旋转角的意义等知识,掌握这些知识是前提和基础.【第 10 题】【答案】B解:作线段AD、BE、FC的垂直平分线,它们相交于点P(0,1),如图,所以△DEF是由△ABC绕着点P逆时针旋转90°得到的.故选:B.利用旋转的性质,旋转中心在各对应点的连线段的垂直平分线上,则作线段AD、BE、FC的垂直平分线,它们相点P(0,1)即为旋转中心.本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是利用旋转的性质确定旋转中心.【第 11 题】【答案】B【解析】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【第 12 题】A【解析】解:∵直线y=ax+b与直线y=kx交于点B(2,4),∴不等式kx≤ax+b的解集为x≤2.故选:A.写出直线y=kx在直线y=ax+b下方部分的x的取值范围即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.【第 13 题】【答案】22【解析】解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.根据腰为4或9,分类求解,注意根据三角形的三边关系进行判断.本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论.【第 14 题】【答案】22.5°【解析】解:在Rt△ABC中∵DE是AB的垂直平分线∴∠B=∠BAD∵∠CAD:∠DAB=2:1∴∠B =22.5°故答案为22.5°.由DE 是AB 的垂直平分线,利用线段的垂直平分线的性质得∠B =∠BAD ,结合∠CAD :∠DAB =2:1与直角三角形两锐角互余,可以得到答案.此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.由已知条件得出4∠B =90°是正确解答本题的关键.【 第 15 题 】【 答 案 】55【 解析 】解:设长为8x ,高为11x ,由题意,得:19x +20≤115,解得:x ≤5,故行李箱的高的最大值为:11x =55,答:行李箱的高的最大值为55厘米.故答案为:55利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.【 第 16 题 】【 答 案 】120【 解析 】解:360°÷3=120°,因此,一个正三角形至少绕其中心旋转120度,就能与本身重合,故答案为:120一个正三角形的三个顶点中,每两个相邻顶点与中心的角度是360∘3=120∘,即120°,因此,一个正三角形至少绕其中心旋转120°,就能与本身重合.本题主要是考查正三角形的特征.一个正多边形每两个相邻顶点与中心构成的角度是360°除以这个多边形的边数,绕中心每旋转这个数度或这个度数的整数倍时,就能与自身重合.【第 17 题】【答案】30°【解析】解:∵△ABC绕点A顺时针旋转60°得到△AED,∴∠DAC=60°,∴∠CAE=∠DAC-∠EAD=60°-30°=30°.故答案为30°.根据旋转的性质得∠DAC=60°,然后计算∠DAC-∠EAD即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.【第 18 题】【答案】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.x上一点,又∵点A的对应点在直线y=45x,解得x=5.∴4=45∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.【解析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.本题考查了一次函数图象上点的坐标特征、坐标与图形变化--平移.根据平移的性质得到BB′=AA′是解题的关键.【第 19 题】【答案】解:去括号得,x-2x+2>0,移项得,x-2x>-2,合并得,-x>-2,系数化为1,得x<2.解集在数轴上表示为:【解析】本题解不等式的步骤为:去括号;移项及合并;系数化为1.本题考查了解不等式的一般步骤,需注意在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.【第 20 题】【答案】解:{x−22+3≥x+1①1−3(x−1)<8−x①,由①得,x≤2;由②得,x>-2,故此不等式组的解集为:2<x≤2,∴x的正整数解为:1,2.∴今天的数学作业是1,2题.【解析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的正整数解即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【第 21 题】【答案】解:(1)AP能平分∠BAC;理由如下:如图,过点P作PQ⊥BC、PK⊥AB、PL⊥AC;∵△ABC的角平分线BM、CN相交于点P,∴PK=PQ,PL=PQ,∴PK=PL,∴AP平分∠BAC;(2)如图,作辅助线;证明PK=PL即可解决问题.结论:三角形的三条内角平分线相交于一点.故答案为:三角形的三条内角平分线相交于一点.【解析】该题主要考查了三角形的内角平分线的性质及其应用问题;作辅助线是解决该题的关键.【第 22 题】【答案】(1)(-1,2),(3,2),(2)如图所示:△A1B1C1,△A2B2C2即为所求.【解析】(1)根据平移的性质画出图形,进而得出坐标即可;(2)根据关于原点O成中心对称的性质画出图形即可.本题主要考查作图-轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.【第 23 题】【答案】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,{CE=BC①BCD=①ECFCD=CF,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.【解析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.【第 24 题】【答案】解:(1)设A、B两种型号的电风扇的销售价分别为x、y元,则:{3x+5y=18004x+10y=3100,解得:{x=250 y=210,答:A、B两种型号电风扇的销售介分别为250元和210元.(2)设采购A种型号电风扇a台,则采购B种型号的电风扇(30-a)台则200a+170(30-a)≤540,解得:a≤10,答:最多采购A种型号的电风扇10台.(3)根据题意得:(250-200)a+(210-170)(30-a)=1400,解得a=20,∵a≤10,∴在(2)条件下超市销售完这30台电风扇不能实现利润为1400元的目标.【解析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1800元,4台A 型号10台B 型号的电扇收入3100元,列方程组求解即可;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解即可得出答案;(3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标.本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.【 第 25 题 】【 答 案 】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中,∵{①D =①AEC①DBC =①ECA =90∘BC =AC∴△DBC ≌△ECA (AAS ).∴AE =CD .(2)解:∵△CDB ≌△AEC ,∴BD =CE ,∵AE 是BC 边上的中线,∴BD =EC =12BC =12AC ,且AC =12cm .∴BD =6cm .【 解析 】- 21 - (1)证两条线段相等,通常用全等,本题中的AE 和CD 分别在三角形AEC 和三角形CDB 中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD =EC =12BC =12AC ,且AC =12,即可求出BD 的长.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
2018-2019 学年陕西省西安市高新一中八年级(下)期中数学试卷.选择题(共10小题)4 .在平行四边形 ABCD 中,/ A: / B: / C=1: 3: 1,则/ D 的度数是()A. 45°B, 60°C. 120°D, 135°5 .如果把分式 等中的x 、y 的值都扩大5倍,那么分式的值()B.扩大5倍 D,以上都不正确A (0, 0)、B (4, 0)、D (1, 2)为平行四边形的三个顶7.如图,在^ ABC 中,点D 是边BC 上的点(与 B, C 两点不重合)DF // AB,分别交AB, AC 于E, F 两点,下列条件能判定四边形 AEDF 是菱形的是( )2. A. 1卜面四个图形分别是绿色食品、 C. 3 D. 4节水、节能和回收标志,在这四个标志中,是中心对称D.B. (a+b) (a — b) =a 2 - b 2C. x2 —4= ( x+2) (x —2)D. (a+b) 2=a 2+b 2+2abA .不变C.缩小为原来的一倍 5 A. (2, 5) B. (4, 2) C. (5, 2)D. (6, 2),过点D 作DE // AC, 1.下列式子: —,—自一中,是分式的有( 51+xB. 2图形的是(A.x2-x- 2 = x(x- 1) - 2 6.如图,在平面直角坐标系中,点,则第四个顶点 C 的坐标是(C. 4D. 510 .如图,平行四边形 ABCD 的对角线AC, BD 相交于点O, AE 平分/ BAD,分别交BC, BD 于点 E, P,连接 OE, / ADC = 60° , AB=yBC=2,下列结论: ① /CAD =30° ; ②BD = 2\";③S 四边形ABCD =AB?AC;④OE=^AD;⑤$。
0£=^.其中正确的个数B. AD 为BC 边上的中线C. AD= BDD. AD 平分/ BAC8.某工程队准备修建一条长1200米的道路, 由于采用新的施工方式, 实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路 x 米,则根据题意可列方程为()A -=2「30_L2OO__Q(1+20%纭 乂9.如图,△ ABC 是等边三角形,点 AC,若/\ ABC 的周长为12,则D1200 LL200 oB..、 - ------ -- 2(1-20%)K xn 1200.__1200o k (1-2。
2018-2019学年八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.3.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(0,﹣1)C.C(1,﹣1)D.(1,0)4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM的一个动点,若PA=4,则PQ的最小值为()A.2B.4C.2D.5.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm6.若关于x的不等式组的整数解共有4个,则a的取值范围是()A.﹣2<a≤﹣1B.﹣2≤a<﹣1C.﹣1<a≤0D.﹣1≤a<0二、填空题(本大题共6小题,每小题3分,共18分)7.命题“直角三角形两锐角互余”的逆命题是:.8.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数为°.9.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.10.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打折.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.12.如图,在△ABC中,AB=AC=2,∠BAC=120°,点A的坐标是(1,0),点B.C在y轴上,在x轴上是否存在点P,使△PAB、△PBC、△PAC都是等腰三角形,满足条件的P点的坐标.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式:5x﹣13≥2(x﹣2)(2)如图,将△ABC绕点C顺时针方向旋转40°得到△DEC,若AC⊥DE,求∠BAC的度数.14.解不等式组,并把解集在数轴上表示出来.15.请你只用无刻度的直尺按要求作图:(1)如图①,AD、BE是△ABC的角平分线,且相交于点O,请你作出∠C的平分线.(2)如图②,AC与BD相交于O,且∠DAO=∠BAO=∠CBO=∠ABO,请你作出∠AOB的平分线.16.如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.17.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.例如:=3×6﹣4×5=﹣2,如果有>0,求x的取值范围.四、(本大题共3小题,每小题8分,共24分)18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.19.若关于x,y的二元一次方程组中,x的值为正数,y的值为负数,求m的取值范围.20.如图,在四边形ABCD中,已知AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上?为什么?五、(本大题共2小题,每小题9分,共18分)21.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?22.如图,某船于上午11时30分在A处观察海岛B在北偏东60°,该船以10海里/小时的速度向东航行至C处,再观察海岛在北偏东30°,且船距离海岛20海里(1)求该船到达C处的时刻.(2)若该船从C处继续向东航行,何时到达B岛正南的D处?六、(本大题共12分)23.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C 开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为10cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A、图形不是中心对称图形;B、图形是中心对称图形;C、图形不是中心对称图形;D、图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后能与自身重合.2.不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法,可得答案.【解答】解:2x﹣6>0,解得x>3,故选:A.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).3.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(0,﹣1)C.C(1,﹣1)D.(1,0)【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故选:C.【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM的一个动点,若PA=4,则PQ的最小值为()A.2B.4C.2D.【分析】作PQ⊥OM于Q,根据角平分线的性质解答.【解答】解:作PQ⊥OM于Q,则此时PQ最小,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PQ=PA=4,即PQ的最小值为4,故选:B.【点评】本题考查的是角平分线的性质、垂线段最短,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选:C.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.6.若关于x的不等式组的整数解共有4个,则a的取值范围是()A.﹣2<a≤﹣1B.﹣2≤a<﹣1C.﹣1<a≤0D.﹣1≤a<0【分析】表示出不等式组的解集,由解集中的整数解共有4个,确定出a的范围即可.【解答】解:不等式组整理得:,即a<x<3,由不等式组的整数解共有4个,得到﹣2≤a<﹣1,故选:B.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.命题“直角三角形两锐角互余”的逆命题是:如果三角形有两个角互余,那么这个三角形是直角三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个角互余,那么这个三角形是直角三角形.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数为45°.【分析】根据角的和差定义计算即可;【解答】解:∵将△AOB绕点O按逆时针方向旋转60°后得到△COD,∴∠DOB=60°,∵∠AOB=15°,∴∠AOD=60°﹣15°=45°.故答案为45.【点评】本题考查旋转变换,角的和差定义等知识,解题的关键是理解题意,属于中考基础题.9.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】由图知:①当x>1时,y>0;②当x<1时,y<0;因此当y<0时,x<1;由此可得解.【解答】解:根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,﹣2);即当x<1时,函数值y的范围是y<0;因而当不等式kx+b<0时,x的取值范围是x<1.故答案为:x<1【点评】本题主要考查的是关于一次函数与一元一次不等式的题目,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.10.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打8折.【分析】设至多可打x折,根据“某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%”,列出关于x的一元一次不等式,解之即可.【解答】解:设至多可打x折,根据题意得:1575×≥1200(1+5%),解得:x≥8,即至多可打8折,故答案为:8.【点评】本题考查一元一次不等式的应用,正确找出不等量关系,列出一元一次不等式是解题的关键.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.12.如图,在△ABC中,AB=AC=2,∠BAC=120°,点A的坐标是(1,0),点B.C在y轴上,在x轴上是否存在点P,使△PAB、△PBC、△PAC都是等腰三角形,满足条件的P点的坐标(﹣1,0)(3,0).【分析】先由等腰三角形三线合一的性质得出OB=OC,∠OAB=∠OAC=60°,再取A(1,0)关于y轴的对称点P(﹣1,0),根据轴对称的性质得到PB=AB,PC=AC,∠BPA=∠BAP=60°,所以PB=AB=PC=AC,从而根据等腰三角形的定义得出△PAB、△PBC、△PAC都是等腰三角形.【解答】解:∵AB=AC=2,AO⊥BC,∠BAC=120°,∴OB=OC,∠OAB=∠OAC=∠BAC=60°,∴取A(1,0)关于y轴的对称点P(﹣1,0),则PB=AB,PC=AC,∠BPA=∠BAP=60°,∴PB=AB=PC=AC,∴△PAB、△PBC、△PAC都是等腰三角形,同理可得(3,0)也符合题意.所以在x轴上存在点P(﹣1,0)(3,0),使△PAB、△PBC、△PAC都是等腰三角形;故答案为:(﹣1,0)(3,0),【点评】本题考查了等腰三角形的判定与性质,坐标与图形性质,难度适中,由等腰三角形三线合一的性质得出OB=OC,∠OAB=∠OAC=60°是解题的关键.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式:5x﹣13≥2(x﹣2)(2)如图,将△ABC绕点C顺时针方向旋转40°得到△DEC,若AC⊥DE,求∠BAC的度数.【分析】(1)按照去括号、移项、合并同类项、化系数为1的步骤解不等式即可;(2)设AC交DE于H.在Rt△CDH中求出∠D即可解决问题;【解答】解:(1)5x﹣13≥2(x﹣2)5x﹣13≥2x﹣4,3x≥9x≥3(2)设AC交DE于H.∵∠BCE=∠ACD=40°,AC⊥DE,∴∠CHD=90°,∴∠D=90°﹣40°=50°,∴∠A=∠D=50°.【点评】本题考查旋转变换、三角形内角和定理、解一元一次不等式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.解不等式组,并把解集在数轴上表示出来.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式2x+3>﹣5,得:x>﹣4,解不等式﹣1≥3(x﹣1),得:x≤1,则不等式组的解集为﹣4<x≤1,将不等式组的解集表示在数轴上如下:【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.请你只用无刻度的直尺按要求作图:(1)如图①,AD、BE是△ABC的角平分线,且相交于点O,请你作出∠C的平分线.(2)如图②,AC与BD相交于O,且∠DAO=∠BAO=∠CBO=∠ABO,请你作出∠AOB的平分线.【分析】(1)连接OC并延长交AB于F,则利用三角形的三条角平分线相交于一点可判断CF平分∠ACB;(2)AD和BC的延长线相交于E,连接EC并延长交AB于F,可证明△OAB和△EAB为等腰三角形,则根据等腰三角形的性质可判断OF平分∠AOB.【解答】解:(1)如图①,CF为所作;(2)如图②,OF为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).16.如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.【分析】由旋转和翻折的性质可知:AC=AF,然后再求得∠CAF=60°,从而可得出△ACF为等边三角形.【解答】解:由旋转的性质可知:∠BAC=∠DAE=15°,AC=AE,∠CAE=90°,由翻折的性质可知:∠FAD=∠EAD=15°,AF=AE.∴AC=AF,∠CAF=60°,∴△ACF为等边三角形.【点评】本题主要考查的是翻折变换、旋转变换、等边三角形的性质和判定,证得AC=AF,∠CAF =60°是解题的关键.17.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.例如:=3×6﹣4×5=﹣2,如果有>0,求x的取值范围.【分析】根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:由题意可得2x﹣3(x﹣2)>0,解得x<6.故x的取值范围是x<6.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.四、(本大题共3小题,每小题8分,共24分)18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.若关于x,y的二元一次方程组中,x的值为正数,y的值为负数,求m的取值范围.【分析】先求出方程组的解,即可得出关于m的不等式组,求出不等式组的解集即可.【解答】解:,①+②,得:2x=2m+6,x=m+3,①﹣②,得:4y=4m﹣4,y=m﹣1,∵x的值为正数,y的值为负数,∴,解得﹣3<m<1.【点评】本题考查了解二元一次方程组,解一元一次不等式组,能正确解二元一次方程组和解一元一次不等式组是解此题的关键,题目比较好,难度适中.20.如图,在四边形ABCD中,已知AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上?为什么?【分析】(1)通过求证△FEC≌△AED来证明CF=AD;(2)若点B在线段AF的垂直平分线上,则应有AB=BF∵AB=8,CF=AD=2,∴BC=BF﹣CF =8﹣2=6时有AB=BF.【解答】(1)证明:∵AD∥BC,∴∠F=∠DAE.又∵∠FEC=∠AED,∴∠ECF=∠ADE,∵E为CD中点,∴CE=DE,在△FEC与△AED中,∵,∴△FEC≌△AED,∴CF=AD;(2)当BC=6时,点B在线段AF的垂直平分线上,其理由是:∵BC=6,AD=2,AB=8,∴AB=BC+AD,又∵CF=AD,BC+CF=BF,∴AB=BF,∴△ABF是等腰三角形,∴点B在AF的垂直平分线上.【点评】此题考查全等三角形的判定和性质,关键是利用了:(1)梯形的性质,(2)全等三角形的判定和性质,(3)中垂线的性质进行分析.五、(本大题共2小题,每小题9分,共18分)21.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有10人,学生有50人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?【分析】(1)设参加活动的教师有a人,学生有b人,根据等量关系:师生共60人;若师生均购买二等座票,则共需1020元;列出方程组,求出方程组的解即可;(2)①根据购买一、二等座票全部费用=购买一等座票钱数+教师购买二等座票钱数+学生购买二等座票钱数,依此可得解析式;②根据不等关系:购买一、二等座票全部费用不多于1032元,列出方程求解即可.【解答】解:(1)设参加活动的教师有a人,学生有b人,依题意有,解得.故参加活动的教师有10人,学生有50人;(2)①依题意有:y=26x+22(10﹣x)+16×50=4x+1020.故y关于x的函数关系式是y=4x+1020(0<x<10);②依题意有4x+1020≤1032,解得x≤3.故提早前往的教师最多只能3人.故答案为:10,50.【点评】本题主要考查对一次函数,二元一次方程组,一元一次不等式等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.22.如图,某船于上午11时30分在A处观察海岛B在北偏东60°,该船以10海里/小时的速度向东航行至C处,再观察海岛在北偏东30°,且船距离海岛20海里(1)求该船到达C处的时刻.(2)若该船从C处继续向东航行,何时到达B岛正南的D处?【分析】(1)根据题意得:∠A=30°,∠BCD=60°,BC=20海里,根据三角形外角的性质,易证得∠ABC=∠A,根据等角对等边,即可求得AC=BC,又由船的速度为10海里/时,即可求得船到达C点的时间;(2)由在Rt△BCD中,∠BCD=60°,BC=20海里,即可求得CD的长,继而求得到达B岛正南的D处的时间.【解答】解:(1)根据题意得:∠A=30°,∠BCD=60°,BC=20海里,∴∠ABC=∠BCD﹣∠A=60°﹣30°=30°,∴∠ABC=∠A,∴AC=BC=20(海里),∵船的速度为10海里/时,∴20÷10=2(小时),∴船到达C点的时间为:13时30分;(2)在Rt△BCD中,∠BCD=60°,BC=20海里,∴CD=BC•cos60°=20×=10(海里),∵10÷10=1(小时),∴在14时30分到达B岛正南的D处.【点评】此题考查了方向角问题、等腰三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.六、(本大题共12分)23.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C 开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为10cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).【分析】(1)运用勾股定理直接求出;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【解答】解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴2AB2=BC2,∴AB==4cm;(2)过A作AF⊥BC交BC于点F,则AF=BC=4cm,∵S=10cm2△ABD∴AF×BD=20,∴BD=5cm.若D在B点右侧,则CD=3cm,t=1.5s;若D在B点左侧,则CD=13cm,t=6.5s.(3)动点E从点C沿射线CM方向运动秒或当动点E从点C沿射线CM的反向延长线方向运动8秒时,△ABD≌△ACE.理由如下:(说理过程简要说明即可)①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=8﹣2t∴t=8﹣2t,∴t=,证明:在△ABD和△ACE中∵,∴△ABD≌△ACE(SAS).②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=2t﹣8,∴t=2t﹣8,∴t=8,证明:在△ABD和△ACE中∵,∴△ABD≌△ACE(SAS).【点评】本题考查了等腰直角三角形、全等三角形的性质及面积,综合性强,题目难度适中.。
2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。
姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
2018-2019学年第二学期八年级数学期中模拟试卷(1)一.选择题(共10小题,满分30分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.02.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.63.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.15.计算结果是()A.0B.1C.﹣1D.x6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值27.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.108.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣369.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个二.填空题(共8小题,满分24分)11.若代数式有意义,则x的取值范围是.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为,△EOF的面积为.反比例函数值大于一次函数值时x的范围是.16.(3分)若关于x的分式方程无解,则m=.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为.三.解答题(共10小题,满分76分)19.解下列分式方程:(1)=(2)﹣=20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案与试题解析一.选择题(共10小题,满分3分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0故选:A.2.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.6故选:B.3.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.故选:B.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.1故选:A.5.计算结果是()A.0B.1C.﹣1D.x故选:C.6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值2【解答】解:由图可得,该函数的图象关于原点对称,是中心对称图形,故A选项结论正确;当x>0时,有三种情况:0<x<1时,y的值随x值的增大而减小,且y>2;x=1时,y =2;x>1时,y>2;故B选项结论正确;当y的值为1时,可得方程x+=1,△<0,无解,故y的值不可能为1,故D选项结论正确.所以,结论不正确的是C.故选:C.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.8.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.9.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.【解答】解:如图,连接CG.∵正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,∴△CDE≌△CBF,易得,△BGE≌△DGF,所以S△BGE=S△EGC,S△DGF=S△CGF,于是S△BGE=S△EGC=S△DGF=S△CGF,又因为S△BFC=1××=cm2,所以S△BGE=×=cm2,则空白部分的面积为4×=cm2,于是阴影部分的面积为1×1﹣=cm2.故选:B.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个【解答】解:在正方形ABCD中有,AB=BC,AD=CD,∠ACB=45°,∴△ABC,△ADC是等腰三角形,∠EFC=90°﹣∠ACB=45°=∠ACB,∴EF=CE,△EFC是等腰三角形,∵AE=AB,∴△AEB是等腰三角形,∠ABE=∠AEB,∴∠FBE=90°﹣∠ABE=90°﹣∠AEB=∠BEF,∴FB=FE,∴△BEF是等腰三角形.故共有5个等腰三角形.故选:D.二.填空题(共8小题,满分9分)11.若代数式有意义,则x的取值范围是x≠4.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值﹣2.【解答】解:∵a2﹣2ab﹣b2=0,∴b2﹣a2=﹣2ab,则===﹣2,故答案为:﹣2.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.【解答】解:∵反比例函数y=﹣的k=﹣2<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣1<0,﹣0.25<0,∴点(﹣1,y1),(﹣0.25,y2)位于第二象限,∴y1>0,y2>0,∵﹣0.25>﹣1<0,∴0<y1<y2.∵3>0,∴点(3,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故答案为:y3<y1<y2.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=8.【解答】解:∵E是AC中点,且EF∥CD,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为:8.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为(1,5),△EOF的面积为12.反比例函数值大于一次函数值时x的范围是0<x<1或x>5.【解答】解:联立两函数解析式可得,解得或,∴E点坐标为(1,5),在y=﹣x+6中,令y=0可求得x=6,∴A(6,0),∴OA=6,∴S△EOF=S△AOE﹣S△AOF=×6×5﹣×6×1=15﹣3=12,∵E(1,5),F(5,1),∴当反比例函数值大于一次函数值时x的取值范围为0<x<1或x>5,故答案为:(1,5);12;0<x<1或x>5.16.(3分)若关于x的分式方程无解,则m=6,10.【解答】解:∵关于x的分式方程无解,∴x=﹣,原方程去分母得:m(x+1)﹣5=(2x+1)(m﹣3)解得:x=,m=6时,方程无解.或=﹣是方程无解,此时m=10.故答案为6,10.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解答】解:如图,作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE=2,故答案为:2.三.解答题(共10小题,满分30分)19.解下列分式方程:(1)=(2)﹣=【解答】解:(1)方程两边都乘以x(x+7),得100(x+7)=30x.解这个一元一次方程,得x=﹣10.检验:当x=﹣10,x(x+7)≠0.所以,x=﹣10是原分式方程的根.(2)方程两边都乘以(x+3)(x﹣3),得x﹣3+2(x+3)=12.解这个一元一次方程,得x=3.检验:当x=3时,(x+3)(x﹣3)=0.因此,x=3是原分式方程的增根,所以,原分式方程无解.20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.【解答】(1)解:∵正方形ABCO,B(4,4),E为BC中点,∴OA=AB=BC=OC=4,CE=BE=2,F的横坐标是4,∴E的坐标是(2,4),把E的坐标代入y=得:k=8,∴y=,∵F在双曲线上,∴把F的横坐标是4代入得:y=2,∴F(4,2),答:反比例函数的函数解析式是y=,点F的坐标是(4,2).(2)线段OE与CF的位置关系是OE⊥CF,理由是:∵E的坐标是(2,4),点F的坐标是(4,2),∴AF=4﹣2=2=CE,∵正方形OABC,∴OC=BC,∠B=∠BCO=90°,∵在△OCE和△CBF中,∴△OCE≌△CBF,∴∠COE=∠BCF,∵∠BCO=90°,∴∠COE+∠CEO=90°,∴∠BCF+∠CEO=90°,∴∠CME=180°﹣90°=90°,即OE⊥CF.(3)证明:∵OC=4,CE=2,由勾股定理得:OE=2,过M作MN⊥OC于N,∵OE⊥CF,∴∠CMO=∠OCE=90°,∵∠COE=∠COE,∴△CMO∽△ECO,∴==,即==,解得:CM=,OM=,在△CMO中,由三角形的面积公式得:×OC×MN=×CM×OM,即4MN=×,解得:MN=,在△OMN中,由勾股定理得:ON==,即M(,),∵A(4,0),∴由勾股定理得:AM=4=AO,即AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【解答】解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积不变(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.【解答】解:(1)不变,∵S△AOC=|k1|,S△BOC=|k2|,∴S△AOB=S△AOC+S△BOC=(|k1|+|k2|),∵k1,k2分别为某一确定值,∴△AOB的面积不变,故答案为:不变;(2)由题意可知:k1>0,k2<0,∴S△AOB=k1﹣k2=8,∵k1+k2=0,解得k1=8,k2=﹣8.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=2∠EAC,∠DCA=2∠FCA,∴∠EAC=∠FCA,∴AE∥CF,∵AE∥EF,∴四边形AECF是平行四边形;(2)当2AB=AC时,四边形AECF是菱形,理由如下:∵2AB=AC,∠ABC=90°,∴∠ACB=30°,∠BAC=60°,∴∠EAC=30°,∴∠EAC=∠ACB,∴AE=EC,∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。