分式方程及其应用讲义
- 格式:doc
- 大小:54.00 KB
- 文档页数:2
《分式方程》讲义一、什么是分式方程在我们学习数学的过程中,方程是一个非常重要的概念。
之前我们接触过一元一次方程、二元一次方程等,今天我们要来认识一种新的方程类型——分式方程。
那到底什么是分式方程呢?分式方程是指方程里含有分式,并且分母里含有未知数或含有未知数整式的有理方程。
比如说,像这样的方程:$\frac{x}{x-1} = 2$ ,$\frac{2}{x} + 3 = 5$ ,它们都是分式方程。
因为在这些方程中,分母中都含有未知数。
二、分式方程的解法接下来,我们重点来学习一下分式方程的解法。
解分式方程的一般步骤可以总结为以下几步:1、去分母这是解分式方程最为关键的一步。
我们要找到所有分式的最简公分母,然后将方程两边同时乘以这个最简公分母,把分式方程化为整式方程。
例如,对于方程$\frac{x}{x-1} = 2$ ,最简公分母是$x 1$ ,方程两边同时乘以$x 1$ ,得到$x = 2(x 1)$。
2、解整式方程完成去分母后,我们得到了一个整式方程。
接下来,按照解整式方程的方法求解这个方程。
就以上面得到的整式方程$x = 2(x 1)$为例,展开得到$x =2x 2$ ,移项可得$2x x = 2$ ,即$x = 2$ 。
3、检验这一步非常重要,却很容易被忽略。
我们将求得的解代入原分式方程的分母中,如果分母不为零,那么这个解就是原分式方程的解;如果分母为零,那么这个解就是增根,原分式方程无解。
还是以方程$\frac{x}{x-1} = 2$ 为例,把$x = 2$ 代入分母$x 1$ ,$2 1 = 1$ ,不为零,所以$x = 2$ 是原方程的解。
三、分式方程的增根在解分式方程的过程中,增根是一个需要特别关注的概念。
增根是分式方程化为整式方程后,产生的使分式方程的分母为零的根。
为什么会产生增根呢?这是因为在去分母的过程中,我们乘以了一个含有未知数的式子,这个式子有可能为零。
而等式两边同乘以零是不符合数学规则的,所以可能会产生额外的根,也就是增根。
第06讲 分式方程目 录一、考情分析 二、知识建构考点一 解分式方程题型01 判断分式方程 题型02 分式方程的一般解法 题型03 分式方程的特殊解法 类型一 分组通分法 类型二 分离分式法 类型三 列项相消法 类型四 消元法题型04 错看或错解分式方程问题 题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数 题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题 类型一 行程问题 类型二 工程问题 类型三 和差倍分问题 类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n−1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3−xx−4⋅(x−4)+(x−4)解:原式=3−xx−4=3−x+x−4=−1题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程【例1】(2022·云南·中考真题)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该A.1.4−x=8 1.4+x=8 1.4−2x=8 1.4+2x=8题型02 利用分式方程解决实际问题类型一行程问题【例2】(2022·四川自贡·统考中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【变式2-1】(2023青岛市一模)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍:(1)求小李步行的速度和骑自行车的速度分别为多少千米每小时;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?类型二工程问题【例3】(2023重庆市模拟预测)为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线600m,甲队比乙队少用4天.(1)求甲,乙两个工程队每天各修路多少米?(2)现计划再修建长度为3000m的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?【变式3-1】(2023·重庆渝中·重庆巴蜀中学校考一模)重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两,而乙施工队单独修建这个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的43项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?类型三和差倍分问题【例4】(2022·广东深圳·深圳中学校考一模)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【变式4-1】(2022·河南·统考中考真题)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需倍,用300元在市场上要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【变式4-2】(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【变式4-3】(2022·山东烟台·统考中考真题)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?类型四销售利润问题【例5】(2023梁山县三模)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【变式5-1】(2023银川市二模)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。
学科教师辅导讲义
中含有字母,那么式子,是整式且≠0.
÷
例2、某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.
题型3:其他问题
例1、轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知轮船在静水中的速
综合题2、在“5•12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.
二、能力点评
考查分式方程与不等式、一次函数的等知识点的结合,考查学生灵活分析题意的能力,重点是。
第五讲、分式方程及其应用【知识精读】1. 解分式方程的基本思想:把分式方程转化为整式方程。
2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
下面我们来学习可化为一元一次方程的分式方程的解法及其应用。
【分类解析】例1. 解方程:xx x--+=1211例2. 解方程xxxxxxxx+++++=+++++ 12672356、例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--例4. 解方程:61244444402222y y y y y y y y +++---++-=25、中考题解:例1.若解分式方程2111x x m x x x x +-++=+产生增根,则m 的值是( ) A. --12或B. -12或C. 12或D. 12或-例2. 甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?6、题型展示:例1. 轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。
求这艘轮船在静水中的速度和水流速度例2. m为何值时,关于x的方程22432xmxx x-+-=+2会产生增根?【实战模拟】1. 甲、乙两地相距S千米,某人从甲地出发,以v千米/小时的速度步行,走了a小时后改乘汽车,又过b小时到达乙地,则汽车的速度()A.Sa b+B.S avb-C.S ava b-+D.2Sa b+2. 如果关于x的方程2313xmxm-=--有增根,则的值等于()A. -3B. -2C. -1D. 33. 解方程:()…111011212319102x x x x x x x ++++++++++=()()()()()()()2112141024x x x x x x x x -++++++=4. 求x 为何值时,代数式293132x x x x++---的值等于2?5. 甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。
分式方程及应用题知识点:1.分式方程定义:分母中含有未知数的方程叫做分式方程.2.解分式方程步骤:(1)去分母: 将 抓化为 (2) (3)3.増根:在方程变形时,产生不适合原方程的根,这种根叫做原方程的増根。
4.列方程解应用题的基本步骤:例1.解下列分式方程: (1)6272332+=++x x (2)2236111x x x +=+-- (3)163104245--+=--x x x x例2.已知关于x 的方程323-=--x mx x 的解为正数,求m 的取值范围。
例3.若关于x 的方程211333x x kx x x x ++-=--有增根,求增根和k 的值.例4.解方程:1211)10)(9(1...)1(1)1(1=++++++-x x x x x x例5.已知1=abc ,求证:1111=++++++++cac cbc b b ab a a .例6.李某承包了40亩菜地和15亩水田,根据市场信息,冬季瓜菜需求量大,他准备把水田改造为菜地,使改完后水田占菜地的10%,问应把多少水田改为菜地?例7.某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到在B 地,他又骑自行车从B 地返回A 地,结果往返所用的时间相等,求此人步行的速度.例8.今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱.某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?例9.周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一路程所用时间之比为2:3.(1)直接写出甲、乙两组行进速度之比.(2)当甲组到达山顶时,乙组行进到山腰A 处,且A 处离山顶的路程尚有1.2 km ,试求山脚到山顶的路程.例10.某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m3,5月份的燃气费是90元.求该市今年居民用气的价格.例11.某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.例12.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?例13.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?课堂练习:1.解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x-1)(x+1) C.解这个整式方程,得x=1B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6 D.原方程的解为x=12.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.设原计划行军的速度为xkm/h ,,则可列方程( )A.1%206060++=x xB.1%206060-+=x xC.1%2016060++=)(x xD.1%2016060-+=)(x x3.一件工程甲单独做a 小时完成,乙单独做b 小时完成,甲、乙二人合作完成此项工作需要的小时数是( ) A.a +b B.b a 11+ C.b a +1 D.b a ab+4.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A .8 B.7 C .6 D .55.已知122432+--=--+x Bx A x x x ,其中A 、B 为常数,则4A-B 的值为( ) A.7 B.9 C.13 D.5 6.若解分式方程21x x +-21m x x ++=1x x+产生增根,则m 的值是( ) A.-1或-2 B.-1或2 C.1或2 D.1或-27.若方程212x ax +=--的解是最小的正整数,则a 的值为_______8.若方程87178=----x x x 有增根,则增根是9.若关于x 的分式方程311x a x x --=-无解,则a =10.已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______ 11.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时. 12.解分式方程: (1)1132422x x +=-- (2)21212339x x x -=+-- (3))2)(1(311+-=--x x x x13.若方程122-=-+x ax 的解是正数,求a 的取值范围。
1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:找等量关系分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .5.易错知识辨析:(1) 去分母时,不要漏乘没有分母的项.(2) 解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3) 如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.题型一 解分式方程(注意因式分解)【例题1】(2013南平市)分式方程x x 332=-的解是 【例题2】(2013宜宾)分式方程的解为 题型二 分式方程解的判定【例题1】(福建中考)若关于x 方程2332+-=--x m x x 无解,则m 的值是 关键:把使最简公分母为0的x 值代人化简的一元一次方程后即可求出。
【例题2】(2013牡丹江)若关于x 的分式方程的解为正数,那么字母a 的取值范围是 关键:这类题型解法是化简后求出x 值(其中x 是含字母的值),再用不等式解法求解。
初中数学基础知识讲义—分式及分式方程应用题型三 分式方程应用(找等量关系)【例题1】(2013河北省)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10C .120x -10=100x D .120x +10=100x 【例题1】(2013嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为1、(2013黄石)分式方程3121x x =-的解为( ) A.1x = B. 2x = C. 4x = D. 3x = 2、(2013襄阳)分式方程的解为( ) A.x=3 B.x=2 C.x=1 D.x=﹣13、(2013吉林省)分式方程132+=x x 的解为x = 4、(2013铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原 D10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需 +=1 +8(+)=1 D )台机器所需时间相同,现在平均每天生产 台机器7、(牡丹江)若关于x 的分式方程311x a x x--=-无解,则a = 8、(湖北襄樊)当m=_________时,关于x 的分式方程213x m x +=--无解. 9、(2013绥化)若关于x 的方程=+1无解,则a 的值是 10、(2013威海)若关于x 的方程无解,则m= 11、(2013大兴安岭)若关于x 的分式方程112=--x a x 的解为正数,那么字母a 的取值范围是 12、(2013武汉)解方程:x x 332=-13、(2013龙岩)解方程:412121x x x =+++14、(2013漳州)解方程:2112-=-x x 15、(2013宁夏)解方程:16、(2013红河)解方程 212xx x +=+17、(2013宁波)解方程:=﹣518、(2013南京)解方程 2x x -2 =1- 12-x 19、(2013珠海)解方程:20、(2013深圳)解方程:0)1x (x 2x 1x 3=-+--21、(2013泰州) 解方程:22222222x x x x x x x ++--=--22、(2013十堰)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?23、(2013泰州)某地为了打造风光带,将一段长为360 m的河道整治任务由甲乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m..求甲、乙两个工程队分别整治了多长的河道.24、(2013长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.25、(2013三明)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)。
分式方程及其应用讲义
1、解分式方程时注意去分母、检验根。
2、分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题.本课内容: 营销类应用性问题、工程类应用性问题
行程中的应用性问题、轮船顺逆水应用性问题
浓度应用性问题、货物运输应用性问题
———————————————————————————
题型一:解分式方程, 解分式方程时去分母后所得整式方程的解有可能使原分式方程的分母为0,所以解分式方程必须检验.
例1.解方程(1) 2223-=---x x x (2) 11
4112=---+x x x
题型二:关于增根:将分式方程变形为整式方程,方程两边同时乘以一个含有未知数的整式,并越去分母,有时可能产生不适合原分式方程的根,这种根通常称为增根.
例;1. 若方程x
x x --=+-34731有增根,则增根为 . 2. 若方程1
13122-=-++x k x x 有增根,则k 的值为 . 3. 若分式方程x
x k x x x k +-=----2225111有增根1-=x ,求k 的值?
题型三:分式方程无解①转化成整式方程来解,产生了增根;②转化的整式方程无解.
例题:1. 若关于x 的方程1
1+=+x m x x 无解, 则m 的值为 . 2. 当k 取何值时关于X 的方程4
162222-=--+-x k x x x x 无解? 3. 已知关于x 的方程m x m x =-+3
无解,求m 的值.
题型四:解的正负情况:先化为整式方程,求整式方程的解
①若解为正⎩⎨⎧>去掉增根正的解0x ;②若解为负⎩
⎨⎧<去掉增根负的解0x 例题:已知关于x 的方程
3
23-=--x m x x 解为正数,求m 的取值范围.
一、【营销类应用性问题】
例1:某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?
二、【工程类应用性问题】
例2:甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。
已知乙队单独做所需天数是甲队单独做所需天数的 倍,问甲乙单独做各需多少天?
例3: 某农场原计划在若干天内收割小麦960公顷,但实际每天多收割40公顷,结果提前4天完成任务,试求原计划一天的工作量及原计划的天数。
三、【行程中的应用性问题】
例4: 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?
例5 :甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.
四、【轮船顺逆水应用问题】
例6:轮船顺流、逆流各走48千米,共需5小时,如果水流速度是4千米/小时,求轮船在静水中的速度。
例7.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。
五、【浓度应用性问题】
例5 要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%.
112。