初中数学-八年级三角形几何证明
- 格式:docx
- 大小:52.94 KB
- 文档页数:3
北师大版初中数学八下第一章《三角形的证明复习课》教学设计北师大版初中数学八年级下册第一章三角形的证明复习课第一课时一、学生学情分析学生在本章学习并证明完成了全部8条基本事实,并学习了三类特殊的三角形------等腰三角形,等边三角形,直角三角形。
通过对这三类三角形性质和判定的探索与证明积累了一定的探索经验,并继续深入学习证明的方法和格式;多数学生已经了解证明的必要性,具备了证明命题是否成立的探索经验的基础.同时已经具备了一定的合作学习的经验,具备了一定的合作与交流的能力.再将文字语言与图形语言,符号语言转换方面也有了很大提升。
八年级学生已有合情推理,慢慢的侧重于演绎推理,在经历了对八条基本事实时的探究,证明过程中,积累了更多的活动经验。
在学习了本章后,无论是对证明的必要性的体会,对证明严谨性以及证明思路的多样性上都有了长足的进步。
具备自己整理知识,进行知识梳理,逐渐将学习内容纳入知识体系的能力。
二、教学任务分析教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.经过一个阶段的学习,有必要对有关知识进行回顾与思考,引导学生回顾总结本章学习的主要内容及其蕴含的数学思想,并思考这些内容获得的过程,帮助学生逐步构建知识体系,养成回顾与反思的学习习惯。
本节课的教学目标是:1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.4.重点与难点重点:1.构建本章知识内容框架,发现其中关联2.通过对典型例题的讲解和课堂练习对所学知识进行复习巩固难点:是本章知识的综合性应用对学生来讲是难点。
初二数学三角形中线定理详解初二数学:三角形中线定理详解三角形是几何学的基础,也是初中数学学习的一个重要内容。
在三角形的研究中,三角形中线定理是一个重要的定理,它与三角形中线的性质有关。
本文将详细介绍三角形中线定理的概念及其证明过程,以帮助初二学生更好地理解和掌握这个内容。
一、三角形中线定理的概念在一个三角形中,连接三条边的中点,会将三角形分成四个小三角形。
其中,连接两个边中点的线段被称为三角形的中线。
三角形中线定理是指:在一个三角形中,连接两个边中点的中线的长度等于第三条边的一半。
二、三角形中线定理的证明下面我们将对三角形中线定理进行证明。
假设有一个三角形ABC,边AB、AC的中点分别为D、E,则连接BD、CE的线段分别为三角形ABC的中线。
首先,根据平行四边形的定义可知,四边形ACED是一个平行四边形。
因此,AD=EC。
其次,根据三角形的定义可知,三角形ABC与三角形AEC全等,因为它们有相等的边和夹角。
所以,∠ACB=∠AEC,∠ABC=∠AEB。
根据等腰三角形的性质可知,∠ABC=∠ACB,所以∠AEB=∠AEC。
根据同位角的性质可知,∠BED=∠ABC。
因此,∠AEB=∠AEC=∠BED。
可得出结论,三角形ABD与三角形BEC全等,所以它们有相等的边和夹角,即BD=CE。
综上所述,我们可以得出结论:在一个三角形中,连接两个边中点的中线的长度等于第三条边的一半。
三、三角形中线定理的应用三角形中线定理是个重要的几何定理,它的应用非常广泛。
首先,三角形中线定理可以用来求解三角形中线的长度。
当我们已知三角形的两条边长时,可以利用中线定理求解第三条边的长度。
其次,三角形中线定理可以用来证明其他几何定理。
例如,利用中线定理可以证明三角形的重心与三角形的三个顶点构成的三条线段共点。
这对于推导其他关于三角形中心的性质非常有用。
另外,三角形中线定理还可以应用于解决实际问题。
例如,在建筑设计中,我们可以利用中线定理来确定一个三角形地基的边长以及其他相关信息。
证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。
而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。
在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。
一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。
例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。
在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。
∴ AF=DE(全等三角形对应边相等)。
2.证已知边的另一邻角对应相等,再用ASA证全等。
例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。
在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。
例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。
二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。
例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。
求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。
例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN,BM=DN。
初中数学知识归纳几何证明的常见题型数学是一门基础学科,几何证明作为数学的重要组成部分,对于学生的思维能力和逻辑思维起着重要的培养作用。
初中数学中,几何证明是一个重要的内容,它涉及到许多常见的题型。
本文将对初中数学中常见的几何证明题型进行归纳总结。
一、等腰三角形的性质证明等腰三角形是指两边长度相等的三角形。
在等腰三角形的证明中,常见的题型有:1. 等腰三角形的顶角相等;2. 等腰三角形的底角相等;3. 一条边上的高是另一条边上的高。
在证明等腰三角形的性质时,可以利用等角或等边的性质进行推导和证明。
例如,对于第一个题型,我们可以先证明两边相等,再利用两边同角或同边同角的性质推导出顶角相等。
二、全等三角形的证明全等三角形是指三角形的对应边和对应角相等。
在全等三角形的证明中,常见的题型有:1. 全等三角形的三边相等;2. 全等三角形的两角相等;3. 全等三角形的对应边和对应角相等。
对于全等三角形的证明,常用的方法有SAS、ASA、SSS等。
例如,对于第一个题型,我们可以利用SAS法则,先证明两边相等,再证明夹角相等。
三、垂直证明垂直是指两条直线或线段相交成90度的关系。
在垂直证明中,常见的题型有:1. 两条直线相互垂直;2. 直线和平面垂直;3. 线段和平面垂直。
对于垂直的证明,可以利用垂直两边、垂直性质和垂直线段的性质进行推导。
例如,对于第一个题型,我们可以利用垂直两边的性质,证明两条直线相互垂直。
四、平行证明平行是指两条直线在同一个平面上没有交点的关系。
在平行证明中,常见的题型有:1. 两条直线相互平行;2. 直线和平面平行;3. 平行线段和平面平行。
对于平行的证明,可以利用平行线内或外错和平行线夹角的性质进行推导。
例如,对于第一个题型,我们可以利用平行线内错角的性质,证明两条直线相互平行。
五、比例证明比例是指两个数或者两个量之间的大小关系。
在比例证明中,常见的题型有:1. 三角形的边比例;2. 三角形的面积比例;3. 线段的比例。
初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。
B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
2:对称半角模型说明:上图依次是45°、30°、 45+ °、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。
辅助线模型考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有 SAS、ASA、AAS、SSS 和 HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。
一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
典型例题人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
例1:如图,Δ ABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC交AC 于点D,CE 垂直于 BD,交BD 的延长线于点E。
求证:BD=2CE。
思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证 BD=2CE,可用加倍法,延长短边,又因为有 BD 平分∠ABC 的条件,可以和等腰三角形的三线合一定理结合起来。
解答过程:证明:延长BA,CE 交于点F,在ΔBEF 和ΔBEC 中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。
又∠1+∠F=∠3+∠F=90°,故∠1=∠3。
专训一:三角形中的五种常见证明类型名师点金:学习了全等三角形及等腰三角形的性质和判定后,与此相关的几何证明题的类型非常丰富,常见的类型有:证明数量关系、位置关系,线段的和差关系、倍分关系、不等关系等.证明数量关系题型1证明线段相等1.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC 上的点,且AE=AF,求证:DE=DF.(第1题)题型2证明角相等2.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD 于F交BC于E.求证:∠ADB=∠CDE.(第2题)证明位置关系3.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE=CD,点G是EF的中点,求证:DG⊥EF.(第3题)4.如图,在△ABC中,AB=AC,AD,BE是△ABC的高,AD,BE相交于点H,且AE=BE,求证:AH=2BD.(第4题)5.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC.求证:AB+BD=AC.(第5题)6.如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB>AC,求证:AB-AC>PB-PC.(第6题)专训二:构造全等三角形的六种常用方法名师点金:在进行几何题的证明或计算时,需要在图形中添加一些辅助线,辅助线能使题目中的条件比较集中,能比较容易找到一些量之间的关系,使数学问题得以较轻松地解决.常见的辅助线作法有:构造法、平移法、旋转法、翻折法、加倍折半法和截长补短法,目的都是构造全等三角形.构造基本图形法1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.求证:∠ADC=∠BDF.(第1题)翻折法2.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.(第2题)旋转法3.如图,在正方形ABCD中,E为BC上的一点,F为CD上的一点,BE +DF=EF,求∠EAF的度数.(第3题)平移法4.在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC交AC于点Q,且AP与BQ相交于点O.求证:AB+BP=BQ+AQ.(第4题)加倍折半法5.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.(第5题)截长补短法6.如图所示,AB∥CD,BE、CE分别为∠ABC、∠BCD的平分线,点E 在AD上.求证:BC=AB+CD.(第6题)专训三:分类讨论思想在等腰三角形中的应用名师点金:分类讨论思想是解题的一种常用方法,在等腰三角形中,往往会遇到条件或结论不唯一的情况,此时就需要分类讨论.通过正确地分类讨论,可以使复杂的问题得到清晰、完整、严密的解答.其解题策略为:先分类,再画图,后计算.当顶角和底角不确定时,分类讨论1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为()A.40°B.100°C.40°或70°D.40°或100°2.已知等腰三角形ABC中,AD⊥BC于D,且AD=12BC,则等腰三角形ABC的底角的度数为()A.45°B.75°C.45°或75°D.65°3.若等腰三角形的一个外角为64°,则底角的度数为________.当底和腰不确定时,分类讨论4.(2015·荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.等腰三角形的两边长分别为7和9,则其周长为________.6.若实数x,y满足|x-5|+(10-y)2=0,则以x,y的值为边长的等腰三角形的周长为________.当高的位置关系不确定时,分类讨论7.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.由腰的垂直平分线引起的分类讨论8.在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求∠B的度数.由腰上的中线引起的分类讨论9.等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分.求腰长.点的位置不确定引起的分类讨论10.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()(第10题)A.7个B.6个C.5个D.4个11.如图,已知△ABC中,BC>AB>AC,∠ACB=40°,如果D,E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.(第11题)专训四:三角形中常见的热门考点名师点金:本章主要学习了互逆命题与互逆定理,全等三角形的性质与判定,等腰三角形,线段垂直平分线与角平分线等常见的轴对称图形的性质与判定.本章的考点较多,也是中考的重点考查内容.互逆命题、基本事实、互逆定理1.下列命题是真命题的是()A.无限小数是无理数B.相反数等于它本身的数是0和1C.对顶角相等D.等边三角形既是轴对称图形,又是中心对称图形2.下列命题及其逆命题是互逆定理的是()A.全等三角形的对应角相等B.若两个角都是直角,则它们相等C.同位角相等,两直线平行D.若a=b,则|a|=|b|全等三角形的性质与判定3.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.3对B.2对C.1对D.0对(第3题)(第4题)4.如图,在△ABC中,AC=5,F是高AD和BE的交点,AD=BD,则BF的长是()A.7 B.6 C.5 D.45.(2015·杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC,求证:DM=DN.(第5题)等腰三角形的判定与性质6.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F分别为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)DA平分∠EDF;(4)AD垂直平分EF.其中正确的有()A.1个B.2个C.3个D.4个(第6题)(第7题)(第8题)7.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,则BC′的长为________.8.如图所示,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=6 cm,AC=9 cm,则△AMN 的周长为________.9.(中考·淄博)如图,AD∥BC,BD平分∠ABC.求证:AB=AD.(第9题)尺规作图10.如图,已知线段a,h,作等腰三角形ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法如下:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连接AB,AC.△ABC即为所要求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是()(第10题)A.(1) B.(2) C.(3) D.(4)线段垂直平分线与角平分线11.如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线DE 交AC 于点D ,交AB 于点E ,则下列结论错误的是( )A .BD 平分∠ABCB .△BCD 的周长等于AB +BCC .AD =BD =BCD .点D 是线段AC 的中点(第11题)(第12题)12.如图,已知在△ABC 中,AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =130°,那么∠CAB 的大小是( )A .80°B .50°C .40°D .20°13.如图,已知C 是∠MAN 的平分线上一点,CE ⊥AB 于 E ,点B ,D 分别在AM ,AN 上,且AE =12(AD +AB).问:∠1和∠2有何关系?并说明理由.(第13题)思想方法a .分类讨论思想14.等腰三角形的一个外角等于110°,则这个三角形的顶角度数为________.15.(2014·安顺)已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2a -3b +5+(2a +3b -13)2=0,则此等腰三角形的周长为( )A .7或8B .6或10C .6或7D .7或10b .方程思想16.如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,求∠A 的度数.(第16题)c .转化思想17.如图,已知在△ABC 中,∠ABC =3∠C ,AD 是∠BAC 的平分线,BE ⊥AD于E ,求证:BE =12(AC -AB).(第17题)答案专训一1.证明:连接AD.∵AB =AC ,D 是BC 的中点,∴∠EAD =∠FAD.在△AED 和△AFD 中,⎩⎨⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD(S .A .S .).∴DE =DF.2.证明:过点C 作CG ⊥AC 交AE 的延长线于G ,则CG ∥AB ,∴∠BAF =∠G .又∵AF ⊥BD ,AC ⊥CG ,∴∠BAF +∠ABF =90°,∠CAG +∠G =90°.∴∠ABF =∠CAG .在△ABD 和△CAG 中,⎩⎨⎧∠ABF =∠CAG ,AB =AC ,∠BAD =∠ACG =90°,∴△ABD ≌△CAG(A .S .A .).∴AD =CG ,∠ADB =∠G .又∵D 为AC 的中点,∴AD =CD ,∴CD =CG .∵AB =AC ,∴∠ABC =∠ACB.又∵AB ∥CG ,∴∠ABC =∠GCE.∴∠ACB =∠GCE.又∵CE =CE ,∴△CDE ≌△CGE(S .A .S .).∴∠G =∠CDE.∴∠ADB =∠CDE.(第3题)3.证明:如图,连接ED ,FD.∵AB =AC ,∴∠B =∠C.在△BDE 和△CFD 中,⎩⎨⎧BD =CF ,∠B =∠C ,BE =CD ,∴△BDE ≌△CFD(S .A .S .).∴DE =DF.又∵点G 是EF 的中点,∴DG ⊥EF.4.证明:∵AD ,BE 是△ABC 的高,∴∠ADB =∠AEB =90°,又∵∠BHD =∠AHE ,∴∠EBC =∠EAH.在△BCE 和△AHE 中,⎩⎨⎧∠EBC =∠EAH ,BE =AE ,∠BEC =∠AEH =90°,∴△BCE ≌△AHE(A .S .A .).∴AH =BC.又∵AB =AC ,AD ⊥BC ,∴BC =2BD ,∴AH =2BD.5.证明:如图,延长CB 至E ,使BE =BA ,则∠BAE =∠E.∵∠ABC =2∠C =2∠E ,∴∠E =∠C ,∴AE =AC.∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠BAE =∠E ,∠E =∠C ,∴∠BAE =∠C.又∵∠EAD =∠BAE +∠BAD ,∠EDA =∠C +∠DAC ,∴∠EAD =∠EDA.∴AE =DE.∴AC =DE =BE +BD =AB +BD.(第5题)(第6题)6.证明:如图,在AB 上截取AE ,使AE =AC ,连接PE.∵AD 是∠BAC 的平分线,∴∠BAD =∠CAD.在△AEP 和△ACP 中,⎩⎨⎧AE =AC ,∠BAD =∠CAD ,AP =AP ,∴△AEP ≌△ACP(S .A .S .),∴PE =PC.在△PBE 中,BE >PB -PE ,∴AB -AC >PB -PC.专训二1.证明:如图,过点B 作BG ⊥BC 交CF 的延长线于点G .∵∠ACB =90°,∴∠2+∠ACF =90°.∵CE ⊥AD ,∴∠AEC =90°,∴∠1+∠ACF =180°-∠AEC =180°-90°=90°.∴∠1=∠2.在△ACD 和△CBG 中,⎩⎨⎧∠1=∠2,AC =CB ,∠ACD =∠CBG =90°,∴△ACD ≌△CBG(A .S .A .).∴∠ADC =∠G ,CD =BG .∵点D 为BC 的中点,∴CD =BD.∴BD =BG .又∵∠DBG =90°,∠DBF =45°,∴∠GBF =∠DBG -∠DBF =90°-45°=45°.∴∠DBF =∠GBF.在△BDF 和△BGF 中,⎩⎨⎧BD =BG ,∠DBF =∠GBF ,BF =BF ,∴△BDF ≌△BGF(S .A .S .).∴∠BDF =∠G .∴∠ADC =∠BDF.点拨:本题运用了构造基本图形法,通过作辅助线构造△CBG 、△BGF 是解题的关键.(第1题)(第2题)2.证明:如图,延长AD 交BC 于点F.(相当于将AB 边向下翻折,与BC 边重合,A 点落在F 点处,折痕为BE)∵BE 平分∠ABC ,∴∠ABE =∠CBE.∵BD ⊥AD ,∴∠ADB =∠BDF =90°.在△ABD 和△FBD 中,⎩⎨⎧∠ABD =∠FBD ,BD =BD ,∠ADB =∠FDB =90°,∴△ABD ≌△FBD(A .S .A .).∴∠2=∠DFB.又∵∠DFB =∠1+∠C ,∴∠2=∠1+∠C.(第3题)3.解:如图,延长CB 到点H ,使得BH =DF ,连接AH.∵∠ABE =90°,∠D =90°,∴∠ABH =∠D =90°.在△ABH 和△ADF 中,⎩⎨⎧AB =AD ,∠ABH =∠D =90°,BH =DF ,∴△ABH ≌△ADF.∴AH =AF ,∠BAH =∠DAF.∴∠BAH +∠BAF =∠DAF +∠BAF ,即∠HAF =∠BAD =90°.∵BE +DF =EF ,∴BE +BH =EF ,即HE =EF.在△AEH 和△AEF 中,⎩⎨⎧AH =AF ,AE =AE ,EH =EF ,∴△AEH ≌△AEF.∴∠EAH =∠EAF.∴∠EAF =12∠HAF =45°.点拨:图中所作辅助线,相当于将△ADF 绕点A 顺时针旋转90°,使AD 边与AB 边重合,得到△ABH.4.证明:过点O 作OD ∥BC 交AB 于点D ,∴∠ADO =∠ABC.∵∠BAC =60°,∠C =40°,∴∠ABC =80°.∴∠ADO =80°.∵BQ 平分∠ABC ,∴∠QBC =40°.∴∠AQB =∠C +∠QBC =80°.∴∠ADO =∠AQB.易知∠DAO =∠QAO ,OA =OA ,∴△ADO ≌△AQO.∴OD =OQ ,AD =AQ.∵OD ∥BP ,∴∠PBO =∠DOB ,又∵∠PBO =∠DBO ,∴∠DBO =∠DOB.∴BD =OD.∴BD =OQ.∵∠BAC =60°,∠ABC =80°,BQ 平分∠ABC ,AP 平分∠BAC ,∴∠BAP =30°,∠ABQ =40°,∴∠BOP =70°.∵∠BAP =30°,∠ABC =80°,∴∠APB =70°.∴∠BOP =∠APB ,∴BO =BP.∴AB +BP =AD +DB +BP =AQ +OQ +BO =BQ +AQ.5.解:在DC 上截取DE =BD ,连接AE ,∵AD ⊥BC ,BD =DE ,∴AD 是线段BE 的垂直平分线,∴AB =AE ,∠B =∠AEB.∵AB +BD =CD ,DE =BD ,∴AB +DE =CD.而CD =DE +EC ,∴AB =EC ,∴AE =EC.故设∠EAC =∠C =x ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠EAC +∠C =2x ,∴∠B =2x ,∠BAE =180°-2x -2x =180°-4x.∵∠BAC =120°,∴∠BAE +∠EAC =120°,即180°-4x +x =120°,解得x =20°,则∠C =20°.6.证法一:用截长法,如图①所示,在BC 上截取BF =AB ,连接EF.(第6题)因为BE 平分∠ABC ,CE 平分∠BCD ,所以∠ABE =∠FBE ,∠FCE =∠DCE.在△ABE 和△FBE 中,因为⎩⎨⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,所以△ABE ≌△FBE.所以∠A =∠EFB.因为AB ∥CD ,所以∠A +∠D =180°.因为∠BFE +∠EFC =180°,所以∠EFC =∠D.在△EFC 和△EDC 中,因为⎩⎨⎧∠FCE =∠DCE ,∠EFC =∠D ,EC =EC ,所以△EFC ≌△EDC.所以FC =DC.所以BC =BF +FC =AB +CD.证法二:用补短法,如图②所示,延长BE 交CD 的延长线于点G .因为AB ∥CD ,所以∠ABE =∠G .因为BE 平分∠ABC ,所以∠ABE =∠CBE.所以∠CBE =∠G .因为CE 平分∠BCD ,所以∠BCE =∠GCE.在△BEC 和△GEC 中,因为⎩⎨⎧∠CBE =∠G ,∠BCE =∠GCE ,CE =CE ,所以△BEC ≌△GEC.所以BC =GC ,BE =GE.在△ABE 和△DGE 中,因为⎩⎨⎧∠ABE =∠G ,∠AEB =∠DEG ,BE =GE ,所以△ABE ≌△DGE.所以AB =DG .所以BC =CG =GD +DC =AB +CD.专训三1.D 2.C 3.32°4.C 5.23或25 6.257.解:设等腰三角形ABC 中,AB =AC ,BD ⊥AC 于D.(1)当高与底边的夹角为25°时,高一定在△ABC 的内部,如图①,∵∠DBC =25°,∴∠C =90°-∠DBC =90°-25°=65°,∴∠ABC =∠C =65°,∠A =180°-2×65°=50°.(第7题)(2)当高与另一腰的夹角为25°时,如图②,高在△ABC 的内部时,∵∠ABD =25°,∴∠A =90°-∠ABD =65°,∴∠C =∠ABC =(180°-∠A)÷2=57.5°;如图③,高在△ABC 的外部时,∵∠ABD =25°,∴∠BAD =90°-∠ABD =90°-25°=65°,∴∠BAC =180°-65°=115°,∴∠ABC =∠C =(180°-115°)÷2=32.5°,故三角形各内角的度数为:65°,65°,50°或65°,57.5°,57.5°或115°,32.5°,32.5°.点拨:由于题目中的“另一边”没有指明是“腰”还是“底边”,因此必须进行分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外.8.解:此题分两种情况:(1)如图①,AB边的垂直平分线与AC边交于点D,∠ADE=40°,则∠A=50°,∵AB=AC,∴∠B=(180°-50°)÷2=65°.(2)如图②,AB边的垂直平分线与CA的延长线交于点D,∠ADE=40°,则∠DAE=50°,∴∠BAC=130°.∵AB=AC,∴∠B=(180°-130°)÷2=25°.故∠B的大小为65°或25°.(第8题)9.解:∵BD为AC边上的中线,∴AD=CD.(1)当(AB+AD)-(BC+CD)=3 cm时,则AB-BC=3 cm,∵BC=5 cm,∴AB=8 cm;(2)当(BC+CD)-(AB+AD)=3 cm时,则BC-AB=3 cm,∵BC=5 cm,∴AB=2 cm;但是当AB=2 cm时,三边长为2 cm,2 cm,5 cm,而2+2<5,不符合三角形三边关系,故舍去,故腰长为8 cm.10.B11.解:(1)当点D,E在点A的同侧,且都在BA的延长线上时,如图①,(第11题)∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,∵∠DCE=∠BEC-∠ADC,∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2=∠ACB÷2=40°÷2=20°.(2)当点D,E在点A的同侧,且点D在D′的位置,点E在E′的位置时,如图②,与(1)类似地可以求得∠D′CE′=∠ACB÷2=20°.(3)当点D,E在点A的两侧,且点E在E′的位置时,如图③,∵BE′=BC,∴∠BE′C=(180°-∠CBE′)÷2=∠ABC÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,又∵∠DCE′=180°-(∠BE′C+∠ADC),∴∠DCE′=180°-(∠ABC+∠BAC)÷2=180°-(180°-∠ACB)÷2=90°+∠ACB÷2=90°+40°÷2=110°.(4)当点D,E在点A的两侧,且点D在D′的位置时,如图④,∵AD′=AC,∴∠AD′C=(180°-∠BAC)÷2,∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∴∠D′CE=180°-(∠D′EC+∠ED′C)=180°-(∠BEC+∠AD′C)=180°-[(180°-∠ABC)÷2+(180°-∠BAC)÷2]=(∠BAC+∠ABC)÷2=(180°-∠ACB)÷2=(180°-40°)÷2=70°.综上所述,∠DCE的度数为20°或110°或70°.专训四1.C 2.C 3.A 4.C5.证明:∵AM=2MB,AN=2NC,∴AM=23AB,AN=23AC.又∵AB=AC,∴AM=AN.∵AD平分∠BAC,∴∠MAD=∠NAD.又∵AD=AD,∴△AMD≌△AND(S.A.S.).∴DM=DN.6.D7.38.15 cm9.证明:∵AD∥BC,∴∠DBC=∠ADB.又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.10.C11.D12.D(第13题)13.解:∠1与∠2互补.理由:作CF ⊥AN 于F(如图),∵AC 平分∠MAN ,∴∠3=∠4,又∵CE ⊥AM ,CF ⊥AN ,∴CF =CE ,∠CFA =∠CEA =90°,∴Rt △ACF ≌Rt △ACE ,∴AF =AE.∵AE =12(AD +AB)=12(AF -DF +AE +BE)=AE +12(BE -DF),∴BE -DF =0,∴BE =DF ,又CE =CF ,∠CEB =∠CFD ,∴△DFC ≌△BEC(S .A .S .),∴∠5=∠2,∵∠1+∠5=180°,∴∠1+∠2=180°.即∠1与∠2互补.14.70°或40° 点拨:本题运用了分类讨论思想,将已知条件外角等于110°分为底角处的外角和顶角处的外角两种情况进行讨论,解题时要防止漏解.15.A 点拨:∵2a -3b +5+(2a +3b -13)2=0,∴⎩⎨⎧2a -3b +5=0,2a +3b -13=0,解得⎩⎨⎧a =2,b =3.当a 为底边长时,三角形的三边长为2,3,3,则周长为8;当b 为底边长时,三角形的三边长为2,2,3,则周长为7.综上所述,此等腰三角形的周长为7或8.16.解:设∠ABD 的度数为x.∵AD =DE =EB ,∴∠A =∠AED =2∠ABD =2x.∵BC =BD ,∴∠C =∠BDC =∠ABD +∠A =3x.∵AB =AC ,∴∠ABC =∠C =3x.∴∠A +∠C +∠ABC =8x =180°.∴x =22.5°.∴∠A =2x =45°.17.证明:如图,延长BE 交AC 于F.∵AD 是∠BAC 的平分线,∴∠BAE =∠FAE.(第17题)在△ABE 和△AFE 中,⎩⎨⎧∠BAE =∠FAE ,AE =AE ,∠AEB =∠AEF =90°,∴△ABE ≌△AFE(A .S .A .).∴∠ABF=∠AFB,BE=FE,AB=AF.∴BE=12BF.∠ABC=∠ABF+∠FBC=∠AFB+∠FBC=∠C+∠FBC+∠FBC=∠C+2∠FBC,又∵∠ABC=3∠C,∴3∠C=∠C+2∠FBC.∴∠C=∠FBC.∴BF=CF.∴BE=12CF.∵CF=AC-AF=AC-AB,∴BE=12(AC-AB).点拨:本题运用了转化思想,通过添加辅助线构造等腰三角形,然后利用等腰三角形的性质将AC与AB的差转化为AC与AF的差是解题的关键.。
初中数学“图形与几何”内容八年级上册第十一章 三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
3、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
4、多边形知识要点梳理边形的内角和等于(n-2)×180°。
360°。
n 边形的对角线条数等于2)3( n n(1)正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形 正方形 正五边形 正六边形 正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形。
(2)多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。
要点诠释:①从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。
②n 边形共有 2)3(-n n 条对角线。
证明:过一个顶点有n -3条对角线(n ≥3的正整数),又∵共有n 个顶点,∴共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次,∴凸n 边形,共有2)3(-n n 条对角线。
初中数学-八年级下册三角形几何证明
的两个内角的和.
2. ______________________________________________________ 在△ ABC 中,若/ A :/ B :/ C=1 : 2: 3,则/ C= _______________________________________
3. _____________________________________________________________________ 在△ ABC 中,/ B=45 °,/ C=72。
,那么与/ A 相邻的一个外角等于 _________________________
4. 如图1所示,△ ABC 中,D , E 分别是 AC , BD 上的点,
且/ A=65 °,/ ABD= / DCE=30? °,则/ BEC 的度数是 _____________
5•按第4题图所示,请你直接写出/ A , / BEC ,/ EDC 之间的大小关系,用“ <?”号连 接 _____________ .
6. 如图 2所示,已知/ BDC=142 °,/ B=34 °,/ C=28 °,则/ A= _____________ .
7.
如果三角形的一个外角小于和它相邻的内角,则这个三角形是(
) A •锐角三角形; B •直角三角形;
C .钝角三角形;
D •都有可能 &若等腰三角形的一个外角为
110°,则它的底角为( ) A . 55° B . 70°
C>55 °或70° D .以上答案都不对 9. 若三角形的三个外角的度数之比为 2:
3: 4,则与之对应的三个内角的度数之比为(
) A . 4: 3: 2 B . 3: 2: 4
C . 5: 3: 1
D . 3: 1: 5 10.
满足下列条件的△ ABC 中,不是直角三角形的是(
) A . / B+ / A= / C
B . / A : / B : / C=2 : 3: 5
C ./ A=2 / B=3 / C
D .一个外角等于和它相邻的一个内角
11. 如图3所示,在△ ABC 中,/ ABC 与/ BAC 的平分线相交于点 O ,若/ BOC=120 ° , 则/ A
为()
A . 30°
B . 60°
C . 80°
D . 100 °
1三角形的一个外角等于
(1)
12. 如图所示,在锐角厶ABC中,CD和BE分别是AB和AC边上的高,且CD和BE?交
于点P,若/ A=50 °,则/ BPC的度数是()
A. 150° B . 130 C. 120° D . 100
13. 如图4所示,点 B , D , E , C 在同一条直线上,且/ 1 = / 2, BD=EC ,
求证:△ ABE? ◎△ ACD .
14. 如图所示,BC 丄ED ,垂足为 O ,/ A=27°,/ D=20 15.
如图所示,已知等腰直角三角形 ABC 中,/ ACB=90 °,直线L 经过点C , ?AD?丄L ,
BE 丄L ,垂足分别为 D , E .
(1) 证明:△ ACD CBE ;
(2) 求证:DE=AD+BE ;
(3) 当直线L 经过△ ABC 内部时,其他条件不变;(2)中的结论还成立吗?如果成立, 请给出证明;如果不成立,这时 DE , AD , BE 有什么关系?证明你的猜想.
D
E
,求/ ACB 与/ B 的度数.。