奥数质数合数问题解析
- 格式:docx
- 大小:12.35 KB
- 文档页数:2
本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。
质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。
质数本身的无规律性也是一个研究质数结构的难点。
在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。
分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。
1. 质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2. 质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.3. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.4. 部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;知识点拨教学目标5-5质数合数分解质因数=⨯⨯⨯.=⨯⨯⨯;10101371337=⨯⨯;20082222512007332235. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以先找一个大于且接近p的平方数2K,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽的那么p就为质数.=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.例如:149很接近1441212例题精讲模块一、质数合数的基本概念的应用【例 1】下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【例 2】两个质数之和为39,求这两个质数的乘积是多少.【例 3】(“祖冲之杯”小学数学邀请赛)九九重阳节,一批老人决定分乘若干辆至多可乘32人的大巴前去参观兵马俑.如果打算每辆车坐22个人,就会有1个人没有座位;如果少开一辆车,那么,这批老人刚好平均分乘余下的大巴.那么有多少个老人?原有多少辆大巴?【例 4】9个连续的自然数,每个数都大于80,那么其中最多有多少个质数?请列举和最小的一组【例 5】用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数.【例 6】7个连续质数从大到小排列是a、b、c、d、e、f、g已知它们的和是偶数,那么d是多少?【例 7】将60拆成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数是多少模块二、分解质因数【例 8】两个连续奇数的乘积是111555,这两个奇数之和是多少?【例 9】4个一位数的乘积是360,并且其中只有一个是合数,那么在这4个数字所组成的四位数中,最大的一个是多少?【例 10】在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?【例 11】(老师可以先引入:小明一家四兄弟,大哥叫大毛,二哥叫二毛,三哥叫三毛,那老四叫什么?)大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大2岁,他们四个人年龄的乘积是48384。
第十三讲质数和合数1、自然数按因数的个数来分:质数、合数、1、0四类.(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)1:只有1个因数。
“1”既不是质数,也不是合数。
注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、972、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。
树状图例:分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。
把36分解质因数是:36=2×2×3×35、用短除法分解质因数(一个合数写成几个质数相乘的形式)。
例:分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。
具体步骤是:6、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和87、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;教学重点:质数和合数的概念。
第21讲质数和合数——例题一、第21讲质数和合数1.四个数,一个是最小的奇质数,一个是偶质数,一个是小于30的最大质数,另一个是大于70的最小质数.求它们的和.【答案】解:最小的奇质数是3,唯一的一个偶质数是2,小于30的最大质数是29,大于70的最小质数是71.因此,它们的和为3+2+29+71=105.【解析】【分析】在解有关质数的问题时,知道一些小常识是有用的,如1既非质数又非合数,2是唯一的偶质数,也是最小的质数,3是最小的奇质数等.另外,200以内的质数共有25个,它们为:2、3、5、7、I1、13、17、19、23、29、31、37、41、43、47,53、59、61、67、71、73,791 83、89、97。
2.有7个不同的质数,它们的和是60.其中最小的是多少?【答案】解:若7个不同的质数都是奇质数,则它们的和必为奇数,不可能等于60,所以这7个不同的质数中有偶数,而我们知道2是唯一的偶质数,所以这7个质数中必有2;2又是所有质数中最小的,所以这7个质数中最小的质数就是2.【解析】【分析】本题利用了2是唯一的偶质数和最小的质数这一特性.不难得出这7个质数是2、3、5、7、11、13、19.3.若n为正整数,n+3与n+7都是质数.求n除以3所得的余数.【答案】解:我们知道n除以3所得的余数只可能为0、1、2三种;若余数为0,即n=3k(k是一个非负整数,下同),则n+3=3k+3=3(k+1),所以3|n+3.又3≠n+3,故n+3不是质数,与题设矛盾.若余数为2,即n=3k+2,则n+7=3k+2+7=3(k+3),故3|n+7;n+7不是质数,与题设矛盾.所以,n除以3所得的余数只能为1.【解析】【分析】一个整数除以m后,余数可能为0,1,…,m-1,共m种.将整数按除以m所得的余数分类,可以分成m类.如m=2时,余数只能为0与1,因此可以分为两类,一类是除以2余数为0的整数,即偶数,另一类是除以2余数为1的整数,即奇数.同样,对m=3时,就可将整数分为三类.即除以3余数分别为0、1、2这样的三类.通过余数是否相同来分类是数论中的一种重要思想方法,有着广泛的应用.4.设n1与n2是任意两个大于3的质数,N1=n12−1 , N2=n22−1 ,N1与N2的最大公约数至少为多少?【答案】解:∵n1是大于3的质数,∴n1不是3的倍数,n1 =3k+1或3k+2,在n1 =3k+1时,n1 -1=3k是3的倍数;在n1 =3k+2时,n1 +1=3k+3是3的倍数;无论哪种情况,N1=n1−1=(n1+1)(n1−1) 都是3的倍数.又∵n1是奇数,∴n1=4k+1或4k+3.在n1=4k+1时,n1+1=4k+2是2的倍数,n1-1=4k是4的倍数,所以N1是8的倍数.在n1=4k+3时,同理可得N1是8的倍数.由于3与8互质,故24|N1.同理,24|N2.另外,取n1 =5,则N1=24.综上所述,N1与N2的最大公约数至少为24.【解析】【分析】从上例中,我们可以得到两个重要结论:(1)若n不是3的倍数,则n2除以3,余数为1.(2)若n是奇数,则n2除以8,余数为1.5.有人说:“任何七个连续的整数中一定有质数”.对吗?【答案】解:不对.如90、91、92、93、94、95、96这七个连续整数全部是合数,没有质数.【解析】【分析】合数:因数除了1和它本身之外还有其他因数的数;质数:因数只有1和它本身的数.由此分析即可.6.设自然数n1>n2 ,且有n12−n22=79 ,试求n1与n2的值.【答案】解:依题可得:n12−n22=(n1+n2)(n1−n2)=79 ,∵整数n1>n2,∴n1+n2与n1−n2 都是正整数,又∵79是一个质数,由质数的性质,及n1+n2 > n1-n2得:,解得:.【解析】【分析】质数:因数只有1和它本身的数,根据质数的性质列出二元一次方程组,解之即可.7.n是不小于40的偶数.试证明:n总可以表示成两个奇合数的和.【答案】证明:因为n是偶数,所以,n的个位数字必为0、2、4、6、8中的某一个.( 1 )若n的个位数字为0,则n=15+5k(k≥5为奇数).( 2 )若n的个位数字为2,则n=27+5k(k≥3为奇数).( 3 )若n的个位数字为4,则n=9+5k(k≥7为奇数).( 4 )若n的个位数字为6,则n=21+5k(k≥5为奇数).( 5 )若n的个位数字为8,则n=33+5k(k≥3为奇数).综上所述,不小于40的任一偶数,都可以表示成两个奇合数之和.【解析】【分析】奇合数:指不能被2整除的合数;即除了偶合数之外的其余合数都是奇合数.根据偶数定义可知n的个位数字必为0、2、4、6、8中的某一个,分情况讨论,即可得证.8.证明有无穷多个n,使多项式n2+3n+7( 1 )表示合数;( 2 )是11的倍数.【答案】证明:只需证(2)当n=11k+1(k≥1)时,多项式n2+3n+7=(11k+1)2+3(11k+1)+7=11(11k2+5k+1).∴是11的倍数.∵11k2+5k+1>1,∴这时n2+3n+7是合数.【解析】【分析】令n=11k+1(k≥1),代入多项式,计算、化简得n=11(11k2+5k+1),从而可得式11的倍数,由11k2+5k+1>1,可得n是表示合数.。
质数合数奥数问题
质数合数奥数问题
一个质数的3倍和一个质数的2倍之和等于2000,那么这两个质数之和是多少?
分析:因为2000为两个奇数或偶数组成,一个数的2倍为偶数,所以另一个质数的3倍也一定为偶数,偶数×3=偶数,根据质数的.定义,质数中只有最小的质数2为偶数,2×3=6,由此即能得出另一质数是多少,进而求出两个质数之和.
解答:解:因为2000为偶数,
个质数的2倍一定为偶数,则另一个质数的3倍也一定为偶数,偶数×3=偶数,质数中只有最小的质数2为偶数,2×3=6,
2000-6=1994,1994÷2=997,
即另一质数为997,
所以,这两个质数为997+2=999.
答:这两个质数之和是999.
点评:根据数和的奇偶性进行分析是完成本题的关键.。
【小升初奥数知识点讲解】质数与合数
质数与合数
质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N= ,其中a1、a2、a3……an都是合数N的质因数,且a1<A2<A3<……<AN。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
</A2<A3<……<AN。
1。
1.掌握质数与合数的定义 2.能够用特殊的偶质数2与质数5解题 3.能够利用质数个位数的特点解题 4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.。
模块一、偶质数2 【例 1】 如果,,a b c 都是质数,并且a b c -=,则c 的最小值是_________【考点】偶质数2 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,17题【解析】 本题考察的是最小的偶质数2,所以c 最小是2.【答案】2【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,例题精讲知识点拨知识框架5-3-2.质数与合数(二)乘积为74.我们要善于抓住此类题的突破口。
质数、合数及质因数分解1、可以分解为三个质数之积的最小的三位数是几?2、用2、3、5、7四个数进行四则运算,每个数只能用一次,能够得到的最大质数是几?3、“任何不小于4的偶数都可以表示为两个质数之和”,这就是著名的哥德巴赫猜想。
例如8=3+5,但是8只有这一种表示形式,而22却有3+19和5+17两种表示成两个不同质数之和的形式。
那么,能有两种表示成不同质数之和形式的最小自然数是几?4、两个质数的和是39,求这两个质数的积。
5、有两个质数,它们的和与差也都是质数,求这两个质数。
6、A、B、C为三个质数,A+B=16,B+C=24,且A<B<C,求这三个质数。
7、A、B、C为三个小于20的质数,A+B+C=30,且A<B<C,求这三个质数。
8、除以9余2,并且与4和6的差都是质数的两位自然数有哪几个?9、两个大于10的合数的和是31,求这两个数。
10、将八个不同的合数填入下式的□中,如果要求相加的两个合数互质,那么A最小是几?A=□﹢□=□﹢□=□﹢□=□﹢□。
11、将四个不同的合数分成两组,要求每组的两个合数之和都相等,而且每组的两个合数互质。
这四个合数之和最小可以是多少?12、写出10个连续的自然数,它们个个都是合数。
13、求不能用三个不相等的合数之和来表示的最大奇数。
14、有一类多位数,各个数位上的数字都不相同,且相邻两个数位上的数字之和都是质数。
这类多位数中最大的是几?15、有一类多位数,各个数位上的数字都不相同,且相邻两个数位上的数字之和都是合数。
这类多位数中最大的是几?16、两个连续奇数的乘积是111555,这两个奇数之和是多少?17、三个自然数的乘积为84,其中两个数的和等于另一个数。
求这三个数。
18有7张卡片,上面分别写着1~7七个数字。
明明、芳芳和亮亮每人拿了2张。
明明说:“我的两张数字之和是7。
”芳芳说:“我的两张数字之差是1。
”亮亮说:“我的两张数字之积是12。
”那么,剩下的一张上面写的数字是几?19、有1、2、3、4、5、6、7、8、9九张牌,甲、乙、丙各拿了三张。
第2讲质数、合数和分解质因数一、基本概念和知识1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了1和它本身,还有别的约数,这个数叫做合数。
要特别记住:1不是质数,也不是合数。
2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例:把30分解质因数。
解:30=2×3×5。
其中2、3、5叫做30的质因数。
又如12=2×2×3=22×3,2、3都叫做12的质因数。
二、例题例1 三个连续自然数的乘积是210,求这三个数.解:∵210=2×3×5×7∴可知这三个数是5、6和7。
例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。
∵17×23=391>11×29=319>3×37=111。
∴所求的最大值是391。
答:这两个质数的最大乘积是391。
例3 自然数123456789是质数,还是合数?为什么?解:123456789是合数。
因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。
例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。
如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。
综上所述,连续九个自然数中至多有4个质数。
例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。
解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。
小学奥数教案---质数与合数与质数有关的构造问题,通过分解质因数求解的整数问题.1、有人说:“任何7个连续整数中一定有质数.”请你举一个例子,说明这句话是错的.【分析与解】例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,电就是说它们都不是质数.评注:有些同学可能会说这是怎么找出来的,翻质数表还是……,我们注意到(n+1)!+2,(n+1)!+3,(n+1)!+4,…,(n+1)!+(n+1)这n个数分别能被2、3、4、…、(n+1)整除,它们是连续的n个合数.其中n!表示从1一直乘到n的积,即1×2×3×…×n.2、从小到大写出5个质数,使后面的数都比前面的数大12.【分析与解】我们知道12是2、3的倍数,如果开始的质数是2或3,那么后一个数或与12的和一定也是2或3的倍数,将是合数,所以从5开始尝试.即23有5、17、29、41、53是满足条件的5个质数.3.9个连续的自然数,它们都大于80,那么其中质数最多有多少个?【分析与解】大于80的自然数中只要是偶数一定不是质数,于是奇数越多越好,9个连续的自然数中最多只有5个奇数,它们的个位应该为1,3,5,7,9.但是大于80且个位为5的数一定不是质数,所以最多只有4个数.验证101,102,103,104,105,106,107,108,109这9个连续的自然数中101、103、107、109这4个数均是质数.也就是大于80的9个连续自然数,其中质数最多能有4个.4. 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【分析与解】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多组成了2、3、5、41、67、89这6个质数.5.3个质数的倒数之和是16611986,则这3个质数之和为多少?【分析与解】设这3个质数从小到大为a、b、c,它们的倒数分别为1a、1b、1c,计算它们的和时需通分,且通分后的分母为a×b×c,求和得到的分数为Fabc,如果这个分数能够约分,那么得到的分数的分母为a、b、c或它们之间的积.现在和为16611986,分母1986=2×3×331,所以一定是a=2,b=3,c=331,检验满足.所以这3个质数的和为2+3+331=336.6.已知一个两位数除1477,余数是49.求满足这样条件的所有两位数.【分析与解】有1477÷除数=商……49,那么1477-49:除数×商,所以,除数×商=1428=2×2×3×7×17.一般情况下有除数大于余数.即除数大于49且整除1428,有84、51、68满足.所以满足题意的两位数有51、68、84.7.有一种最简真分数,它们的分子与分母的乘积都是140.如果把所有这样的分数从小到大排列,那么第三个分数是多少?【分析与解】有140=2×2×5×7,因为这些分数的分子与分母的乘积均为140,当分母越大时,分子越小,所以对应的分数也越小.有分母从大到小依次为140、70、35、28、20、14、10、7、5、4、2、1;对应分子从小到大依次为1、2、4、5、7、10、14、20、28、35、70、140;对应分数从小到大依次为而1140、270、435、528、720、1014、1410、…其中第三个最简真分数为.8.某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【分析与解】这个学校最少有35+14×30=455名师生,最多有35+14×45=665名师生,并且师生总人数能整除1995.1995=3×5×133,在455~665之间的约数只有5×133=665,所以师生总数为665人,则平均每人捐款1995÷665=3元.9.在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?【分析与解】1872=2×2×2×2×3×3×13=口口×口口,其中某个口为8,一一验证只有:1872=48×39,1872=78×24满足.当为1872=48×39时,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.当为1872=78×24时,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.所以原来的积为1755或1800.10.已知两个数的和被5除余1,它们的积是2924,那么它们的差等于多少?【分析与解】2924=2×2×17×43=A×B,且有A+B被5除余l,则和的个位为1或6.有4×17+43=68+43=11l,也就是说68、43为满足题意的两个数.它们的差为68-43=25.11.在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数各是多少?【分析与解】1764=2×2×3×3×7×7,1764对应为5个小于10的自然数乘积.只能是1764=4×3×3×7×7=2×6×3×7×7=2×2×9×7×7=1×6×6×7×7=1×4×9×7×7对应的和依次为4+3+3+7+7=24,2+6+3+7+7=25,2+2+9+7+7=27,1+6+6+7+7=27,l+4+9+7+7=28.对应的和中只有24,28相差4,所以甲的5箭环数为4、3、3、7、7,乙的5箭环数为1、4、9、7、7.所以甲的总环数为24,乙的总环数为28.12.在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?【分析与解】如下图,设长、宽、高依次为a、b、c,有正面和上面的和为ac+ab=209.ac+ab=a×(c+b)=209,而209=11×19.当a=11时,c+b=19,当两个质数的和为奇数,则其中必定有一个数为偶质数2,则c+b=2+17;当a=19时,c+b=11,则c+b=2+9,b为9不是质数,所以不满足题意.所以它们的乘积为11×2×17=374.13.一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么这个长方体的表面积是多少平方厘米?【分析与解】方法一:39270=2×3×5×7×11×17,为三个连续自然数的乘积,而34最接近39270,39270的约数中接近或等于34的有35、34、33,有34×34×34即333×34×35=39270.所以33、34、35为满足题意的长、宽、高.则长方体的表面积为:2×(长×宽+宽×高+高×长)=2×(33×34+34×35+35×33)=6934(平方厘米).方法二:39270=2×3×5×7×11×17,为三个连续自然数的乘积,考虑质因数17,如果17作为长、宽或高显然不满足.当17与2结合即34作为长方体一条边的长度时有可能成立,再考虑质因数7,与34接近的数32~36中,只有35含有7,于是7与5的乘积作为长方体的一条边的长度.而39270的质因数中只剩下了3和1l,所以这个长方体的大小为33×34×35.长方体的表面积为2×(3927033+3927034+3927035)=2×(1190+1155+1122)=2×3467=6934(平方厘米).14.一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是多少厘米?【分析与解】我们知道任意个已确定个数的数的乘积一定时,它们相互越接近,和越小.如3个数的积为18,则三个数为2、3、3时和最小,为8.1998=2×3×3×3×37,37是质数,不能再分解,所以2×3×3×3对应的两个数应越接近越好.有2×3×3×3=6×9时,即1998=6×9×37时,这三个自然数最接近.它们的和为6+9+37=52(厘米).15.如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于多少?【分析与解】4875=3×5×5×5×13,有a×b为4875的约数,且这两个数的和为64.发现39=3×13、25=5×5这两个数的和为64,所以39、25为满足题意的两个数.那么它们的差为39-25=14.评注:由上题可推知,当两个数的和一定时,这两个数越接近,积越大,所以两个和为64的数的乘积最大为32×32=1024,而积最小为1×63=63.而4875在64~1024之间的约数有65,195,325,375,975等.我们再对65,195,325,375,975等一一验证.严格的逐步计算,才不会漏掉满足题意的其他的解.而在本题中满足题意的只有39、25这组数.练习一、填空题1. 在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2. 最小的质数与最接近100的质数的乘积是_____.3.两个自然数的和与差的积是41,那么这两个自然数的积是_____.4. 在下式样□中分别填入三个质数,使等式成立.□+□+□=505. 三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6. 找出1992所有的不同质因数,它们的和是_____.7. 如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8. 9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9. 从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10. 今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11.2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12.把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13.学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14. 四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?。
学科培优数学“质数、合数、分解质因数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。
质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。
质数本身的无规律性也是一个研究质数结构的难点。
在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。
分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。
知识梳理一、质数与合数的基本概念1.质数:一个数除了1和它本身没有其他的约数,这个数就称为一个质数,也叫做素数2.合数:一个数除了1和它本身还有其他的约数,这个数就称为一个合数3.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数二、质数和合数的一些性质和常用结论1. 0和1既不是质数也不是合数,因此,我们可以说,自然数可以分成三部分,即,0和1,质数,合数。
2. 最小的质数是2,最小的合数是4。
3. 常用的100以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,8 9,97其中2是唯一的偶数,5是唯一个位上数字是5的数,其余的数字个位只为1,3,7,94. 部分特殊数的分解:=⨯1000173137=⨯=⨯⨯1111141271=⨯100171113111337=⨯⨯=⨯⨯⨯⨯200733223=⨯⨯⨯1998233337199535719=⨯⨯⨯+==⨯⨯10101371337 2008222251=⨯⨯⨯200720084015511735. 质数的判定方法判断一个数是否是质数,可以采用“连续小质数试除法”。
例如:判断251是否是质数,可以从最小的质数2开始依次除251,直到所得的商比除数小为止,可以断定251是质数。
251÷2=125...1, 251÷3=83...2, 251÷5=50...1, 251÷7=35...6, (251)17=14…13,此时除数17>商14,由此说明251是质数。
奥数质数合数问题解析
奥数质数合数问题解析
今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是().
分析:可以先求出这10个质数的和是多少,根据已知条件,把这10个质数分成两组,即可求出每组5个质数的和,然后在分析每组数各有哪几种情况,由此解答即可.
解答:这10个质数之和是598,分成两组后,每组五个数之和是598÷2=299.
(1)三个1和一个7;
(2)二个3和二个7;
(3)三个3和一个1.
31+41+101=173,220-173=47,可这十个数中没有47,情形(1)被否定.
17+67=84,220-84=136,个位数为3有23,53,83,只有
53+83=136,因此从情形(2)得到一种分组:17,53,67,79,83和23,31,41,101,103.
所以,含有101这组数中,从小到大排列第二个数是31.
[注]从题目本身的要求来说,只要找出一种分组就可以了,但从情形(3)还可以得出另一种分组.23+53+83+103=262,262-220=42,我们能否从53,83,103中找出一个数,用比它少42的.数来代替呢?
53-42=11,83-42=41,103-42=61.这十个数中没有11和61,只有41.又得到另一种分组:
23,41,53,79,103和17,31,67,83,101.
由此可见,不论哪一种分组,含101这组数中,从小到大排列,第二个数都是31.
点评:此题的解答思路要开阔,考虑要周全,分析所包含的各种情况,提高分析解决问题的能力.。