Let Sbeanonempty1-sortedstructure.Onecanverifythatthe1-sorted structureof Sisnonempty. Weno
- 格式:pdf
- 大小:74.92 KB
- 文档页数:5
耶茨算法析因设计耶茨(Yates)算法,又称为焦炭算法或随机重排算法,是一种用于随机打乱或重排一个数组的算法。
它的设计思想是通过迭代遍历数组,每次取出一个元素与剩余未遍历的元素中的随机一个元素进行交换,从而构成一个随机排列的数组。
这样可以确保每个元素随机的概率是相等的。
耶茨算法的设计思想比较简单,但实现起来需要注意一些细节。
下面将详细解析耶茨算法的步骤和实现。
步骤一:遍历整个数组,从最后一个元素开始(i=n-1),依次向前遍历到第一个元素(i=1)。
步骤二:针对每个元素,生成一个随机的索引值r,取值范围是[0,i],包括i。
步骤三:将当前元素与索引值r对应的元素进行交换。
步骤四:重复步骤二和步骤三,直到遍历完整个数组。
步骤五:返回打乱后的数组。
实现耶茨算法的关键是生成一个随机整数。
一种常用的实现方式是使用伪随机数生成器(PRNG),例如使用随机数种子和取余操作来生成一个随机的索引。
另外,需要注意的是,耶茨算法中使用的随机索引是包括当前遍历的元素的,这样可以保证每个元素随机被交换的概率是相等的。
以下是用Python实现耶茨算法的代码示例:```pythonimport randomdef yates_shuffle(arr):n = len(arr)for i in range(n-1, 0, -1):#生成随机索引r = random.randint(0, i)#交换当前元素和随机索引对应的元素arr[i], arr[r] = arr[r], arr[i]return arr```以上的代码实现了一个通用的耶茨算法打乱数组的函数,可以接受一个任意长度的数组作为输入,并返回打乱后的数组。
可以将该函数作为一个工具函数,用于在需要的时候对数组进行打乱操作。
耶茨算法是一种简单且高效的随机打乱数组的算法。
由于遍历整个数组并交换元素的操作,它的时间复杂度为O(n),其中n是数组的长度。
通过使用耶茨算法,我们可以在保证每个元素随机的概率相等的情况下,快速地生成一个随机排列的数组。
SFINAE(Substitution Failure Is Not An Error)是C++中的一种编译时策略,它允许在模板实例化的过程中选择一个合适的重载版本,而不是导致编译错误。
SFINAE 的核心思想是,如果在实例化模板时发生了某种类型的错误(通常是类型推导失败),编译器并不应该报错,而是应该尝试选择下一个重载版本。
SFINAE 主要应用在模板元编程和泛型编程中,它允许根据类型是否具有某种性质来选择不同的模板实例。
常见的应用场景包括类型检查、函数重载、模板特化等。
以下是一些常见的 SFINAE 规则:
1.使用enable_if进行条件编译:
2.使用std::void_t进行类型过滤:
3.使用std::enable_if进行模板特化:
SFINAE 的使用可以使得模板更加灵活,并根据不同的条件选择不同的实现。
然而,由于 SFINAE 使用时需要一些模板元编程的技巧,可能使得代码变得复杂,所以
需要谨慎使用,以确保代码的可读性和维护性。
tifast原理TI-FAST(Time-Interval Fast)是一种基于时间间隔的快速排序算法,它是快速排序算法的一种优化版本。
快速排序算法是一种常用的排序算法,其基本思想是通过分治的策略将一个大问题分解为多个小问题,并通过递归的方式解决这些小问题。
而TI-FAST算法在快速排序的基础上,通过利用时间间隔的概念,进一步提高了排序效率。
TI-FAST算法的原理如下:1.选择一个主元素:首先选择一个主元素作为划分的基准点。
主元素的选择可以采用不同的策略,例如随机选择、选择中位数等。
2.划分过程:将待排序数组根据主元素进行划分,将小于主元素的元素放在主元素的左边,大于主元素的元素放在主元素的右边。
同时记录下划分的位置。
3.递归过程:对主元素左边和右边的子数组分别进行递归调用快速排序算法,直到子数组的大小小于一些阈值。
4.时间间隔计算:在划分过程中,记录下每个元素的划分次数,即该元素在排序过程中经过的比较次数。
将每个元素经过的比较次数除以其划分次数,得到该元素的时间间隔。
5.时间间隔排序:对所有元素的时间间隔进行排序,按照时间间隔从小到大的顺序重新排列元素。
6.递归调用:根据时间间隔重新排列的元素,再次进行递归调用快速排序算法。
TI-FAST算法的主要思想是通过时间间隔的概念,将划分排序的思想与插入排序的思想相结合,从而提高算法的效率。
时间间隔的计算可以有效地减少元素的比较次数,进而减少了算法的时间复杂度。
通过对时间间隔进行排序,可以将相对有序的子数组进行排序,从而提高排序的效率。
TI-FAST算法的优点是能够充分利用已经有序的子数组,减少比较次数和交换次数,提高排序的效率。
同时,由于时间间隔的计算是在划分过程中进行的,不需要额外的空间存储时间间隔信息,所以算法的空间复杂度与快速排序算法相同。
然而,TI-FAST算法也存在一些局限性。
首先,时间间隔的计算需要额外的比较操作,会增加算法的时间复杂度。
On the Enumeration of Generalized ParkingFunctionsCatherine Huafei YanDepartment of MathematicsTexas A&M UniversityE-mail:cyan@AbstractLet x=(x1,x2,...,x n)∈n.Define a x-parking function to be a sequence(a1,a2,...,a n)of positive integers whose non-decreasing re-arrangement b1≤b2≤···≤b n satisfies b i≤x1+···+x i.Let P n(x)denote the number of x-parking functions.We discuss the enumer-ations of such generalized parking functions.In particular,We givethe explicit formulas and present two proofs,one by combinatorialargument,and one by recurrence,for the number of x-parking func-tions for x=(a,n−m−1b,...,b,c,m−10,...,0)and x=(a,n−m−1b,...,b,mc,...,c).1IntroductionThe notion of parking function was introduced by Konheim and Weiss [3]in their studying of an occupancy problem in computer science.Then the subject has been studied by numerous mathematicians.For example, Foata and Riordan[1],and Fran¸c on[2]constructed bijections from the set of parking functions to the set of acyclic functions on[n];Kreweras[4]in-vestigated the recurrence relations satisfied by the generating functions of parking functions and labeled trees;Stanley[8,9,10]and Pitman&Stan-ley[5]revealed the relations between parking functions and hyperplane arrangements,interval orders,non-crossing partitions,and polytopes.Re-cently it is also known that the parking functions has been of interests by statistician and probabilist from different approaches.A parking function of length n may be defined as a sequence(a1,a2,...,a n) of positive integers whose non-decreasing rearrangement b1≤b2≤···≤b n satisfies b i≤i.In particular,the number of parking functions of length n is(n+1)n−1,[1].1The notion of parking function can be generalized as follows[5].Let x=(x1,...,x n)∈n.Define a x-parking function to be a sequence (a1,...,a n)of positive integers whose non-decreasing rearrangement b1≤···≤b n satisfies b i≤x1+···+x i.Thus an ordinary parking function corresponds to the case x=(1,1,...,1).Let P n(x)denote the number of x-parking functions.Clearly that P n(x)=0if x1=0.In general,explicit formulas for the number of generalized parking func-tions are difficult to get.For x=(a,b,b,...,b),the number is known,(c.f. Theorem1).It can be proved by a simple combinatorial proof generalizing the proof of Pollak for the ordinary parking functions[1].A complete proof may be found,for example,in[7],Ex.5.49.Theorem1For x=(a,b,b,...,b),P n(x)=a(a+nb)n−1.In this paper we give the explicit formulas for the number of generalized parking functions P n(x),wherex=(a,n−m−1b,...,b,c,m−10,...,0),(1)andx=(a,n−m−1b,...,b,mc,...,c).(2)The formula for(1)was also obtained by Pitman and Stanley[5]by using results in the theory of empirical distributions and order statistics.In Sec. 2we give an easy combinatorial proof which can also be applied to(2). Another proof by recurrence relations is given in Sec.3.The combinatorial argument we used can be extended further to more complicated vectors x. As a corollary,we give the enumeration of x-parking functions forx=(a,n−m−1b,...,b,m−1c,...,c,d),andx=(a,n−m−1b,...,b,d,m−1c,...,c).2Combinatorial enumeration for x-parking functionsFirst we extend the notion of x-parking functions to include x=(x1,...,x n)∈n+.LetΠn(x)be the n-dimensional polytopeΠn(x):={y∈n:y i≥0and y1+···y i≤x1+···x i for all1≤i≤n}2The n-dimensional volumeV n(x):=Vol(Πn(x))is a homogeneous polynomial of degree n in the variables x1,x2,...,x n. Explicitly,Lemma1(Pitman&Stanley)For each n=1,2,···,1V n(x)=Any x -parking function α=(a 1,a 2,...,a n )satisfies the following con-ditions,1≤a i ≤a +(n −m −1)b +c,#{a i |a i ≤a +(k −1)b }≥k,for k =1,2,...,n −m.We decompose a x -parking function into two subsequences β,γby the following rule:Let t be the largest integer such that the condition#{a i |a i ≤a +(n −m −1+k )b }≥n −m +k (3)holds for all k =1,2,...,t .If no such t exists,we say that t =0.Let βbe the subsequence of all the terms a i which are less than or equal to a +(n −m −1+t )b ,and γbe the subsequence of the remaining terms.The x -parking function αis uniquely determined by the subsequences β,γand their positions in the original sequence α.From the condition (3),we note that βis a parking function of length n −m +t corresponding to x ′=(a,n −m +t −1 b,...,b ).There are f n −m +t such sequences.On the other hand,γis a sequence of length m −t in which every term lies between a +(n −m −1)b +(t +1)b +1and a +(n −m −1)b +c ,which contains c −(t +1)b integers.The terms of γmay take any m −t positions in α,therefore,P n (x )=m t =0n m −t c −(t +1)b m −t f n −m +t .Substitute into j =m −t ,we haveP n (x )=m j =0n j c −(m +1−j )b j f n −j =a m j =0n j c −(m +1−j )b j a +(n −j )b n −j −1.This finishes the proof.Theorem 3For x =(a,n −m −1 b,...,b,m c,...,c ),P n (x )=a m j =0 n j (m +1−j )(c −b )· (m +1)c −(m +1−j )b j −1 a +(n −j )b n −j −1.(4)4Proof.Again let f i=a(a+bi)i−1.Without loss of generality,we assume c>b.Any x-parking functionα=(a1,a2,...,a n)satisfies the following conditions,#{a i|a i≤a+(k−1)b}≥k,for k=1,2,...,n−m, #{a i|a i≤a+(n−m−1)b+ℓc}≥n−m+ℓ,forℓ=1,2,...,m.Similar to the preceding proof,we decompose a x-parking function into two subsequencesβ,γas follows:Let t be the largest integer such that the condition#{a i|a i≤a+(n−m−1+k)b}≥n−m+k(5) holds for all k=1,2,...,t.If no such t exists,we say that t=0.Let βbe the subsequence of all the terms a i which are less than or equal to a+(n−m−1+t)b,andγbe the subsequence of the remaining terms.The x-parking functionαis uniquely determined by the subsequences β,γand their positions inα.From the condition(5),we note thatβis aparking function of length n−m+t corresponding to x′=(a,n−m+t−1 b,...,b).There are f n−m+t such sequences.On the other hand,γis a sequence of length m−t satisfying the conditions1.Every term inγis greater than a+(n−m+t)b.2.#{a i∈γ|a i≤a+(n−m−1)b+ℓc}≥ℓ−t forℓ=t+1,t+2,...,m.Let1=(m−t1,...,1).The above conditions imply thatγ−(a+(n−m+t)b)1 is a parking function of length m−t corresponding to x=((t+1)(c−b),m−t−1c,...,c).There are(t+1)(c−b)[(m+1)c−(t+1)b]m−t−1such sequences. Therefore,P n(x)=mt=0 n m−t (t+1)(c−b) (m+1)c−(t+1)b m−t−1f n−m+t=amj=0 n j (m+1−j)(c−b) (m+1)c−(m+1−j)b j−1 a+(n−j)b n−j−1.In general,the formulas in Theorem2and3as summations of m+1 terms cannot be further simplified.5The method we used in Theorem 2and 3can be applied to more com-plicated vectors x .As a corollary,we list two more enumerations of P n (x )forx =(a,n −m −1 b,...,b,m −1 c,...,c,d )and x =(a,n −m −1 b,...,b,d,m −1 c,...,c ).Corollary 1Ifx =(a,n −m −1 b,...,b,m −1 c,...,c,d ),thenP n (x )=a m j =0 n j (m +1−j )(c −b ) a +(n −j ) n −j −1· (m +1)c −(m +1−j )bj −1+j (d −c ) mc −(m +1−j )b j −2 .Corollary 2Ifx =(a,n −m −1 b,...,b,d,m −1 c,...,c ),then P n (x )=a m j =0 n j d +(m −j )c −(m +1−j )· d +mc −(m +1−j )b j −1 a +(n −j )b n −j −1.The proof of Corollary 1and 2are straightforward computations using the proofs of Theorem 2and 3.3Proof by recurrence relationsBoth Theorem 2and 3can be proved by induction and using recurrence relations.In this section we present the inductive proofs.Inductive Proof of Theorem 2.Let g m (c )=P ((a,n −m −1 b,...,b,c,m −1 0,...,0))for fixed n ,a ,and b .From The-orem 1,g 0(c )=a (a +nb )n −1.(6)6Assume c>b.For a given x-parking functionα,consider the m th largest term b m.If b m≤a+(n−m)b,thenαis a parking function correspondingto x1=(a,n−mb,...,b,c−b,m−20,...,0).There are g m−1(c−b)many such parkingfunctions.If b m>a+(n−m)b,then the largest m terms ofαare ranging from a+(n−m)b+1to a+(n−m−1)b+c,and other terms form a parkingfunction of x2=(a,n−m−1b,...,b).There are n m (c−b)m a(a+(n−m)b)n−m−1many such parking functions.Thereforeg m(c)=g m−1(c−b)+ n m (c−b)m a(a+(n−m)b)n−m−1.(7)Theorem2follows from Equations(6)and(7)by iterating on m. Inductive Proof of Theorem3.Let h be the number of terms less than or equal to a+(n−m−1)b+c and let t equal h−(n−m).Forx=(a,n−m−1b,...,b,mc,...,c),any x-parking function can be formed by twosubsequencesβandγwhereβconsists of terms less than or equal to a+(n−m−1)b+c,andγconsists of all the remaining terms.Thenβis a parkingfunction of length n−m+t corresponding to x t=(a,n−m−1b,...,b,c,t−10,...,0),andγ−(a+(n−m−1)b+c)1is a parking function of length m−tcorresponding to x′t=(tc,m−t−1c,...,c).ThereforeP n((a,n−m−1b,...,b,mc,...,c))=mt=1 n m−t P m−t((tc,m−t−1 c,...,c))P n−m+t((a,n−m−1b,...,b,c,t−10,...,0)).(8)Substituting results in Theorem1and2into(8),one hasP n(x)=mt=1 n m−t (tc)(mc)m−t−1·tk=0 n−m−t t−k [c−(k+1)b]t−k[a+(n−m+k)b]n−m+k−1=mk=0(mc)m−k−1[a+(n−m+k)b]n−m+k−1c·T,(9)7whereT=nt=k n m−t n−m+tn−m+k t(mc)−t+k[c−(k+1)b]t−k= n m−k n t=k m−k t−k t(mc)−t+k[c−(k+1)b]t−k= n m−k [k(1+p)m−k+p(m−k)(1+p)m−k−1],(10) wherep=c−(k+1)b[8]R.Stanley,Hyperplane arrangements,interval orders,and trees,Proc.Nat.Acad.Sci.93(1996),2620–2625.[9]R.Stanley,Hyperplane arrangements and tree inversions,Mathemat-ical essays in honor of Gian-Carlo Rota(Cambridge,MA,1996),359–375,Progr.Math.,161,Birkh¨a user Boston,Boston,MA,1998. [10]R.Stanley,Parking functions and noncrossing partitions,Electronic J.Combinatorics4,R20(1997).[11]C.H.Yan,Generalized tree inversions and k-parking functions.J.Combin.Theory Ser.A79(1997),No.2,268–280.9。
attribute用法 c语言在C语言中,attribute是一种用于向编译器提供额外信息的特殊修饰符,可以用于变量、函数、类型、代码段等的声明。
attribute的使用方式为在声明之前加上__attribute__((attribute_list)),其中attribute_list可以是一个或多个attribute的组合。
下面是一些常见的attribute及其用法:1. __attribute__((aligned(n))): 指定变量或类型的对齐方式为n 字节对齐。
例如,__attribute__((aligned(4)))会将变量对齐到4字节边界。
2. __attribute__((packed)): 指定结构体或联合体的对齐方式为紧凑对齐,即取消对齐填充字节。
例如,__attribute__((packed))会取消结构体的字节对齐。
3. __attribute__((noreturn)): 声明函数不会返回,用于避免编译器产生警告或优化错误。
例如,void my_func()__attribute__((noreturn)); 声明my_func函数不会返回。
4. __attribute__((format(printf, m, n))): 声明函数的参数和返回值按照printf风格格式化输出,其中m表示参数从第m个开始为格式化字符串,n表示参数从第n个开始为变量参数。
5. __attribute__((unused)): 声明变量或函数未使用,用于避免编译器产生警告。
例如,int my_var __attribute__((unused)); 声明my_var变量未使用。
6. __attribute__((section("name"))): 指定变量或函数所在的代码段或数据段的名称为name。
例如,int my_var__attribute__((section("my_section"))); 将my_var变量放入名为my_section的代码段。
sorted排序规则在编程中,`sorted` 排序规则通常是指对一组数据按照升序或降序进行排列的方法。
以下是一些常见的排序算法及其排序规则:1. 冒泡排序(Bubble Sort):冒泡排序是一种简单的排序算法,通过重复遍历列表,比较相邻的两个元素并交换它们的位置,使得较大的元素逐渐从列表的前端移动到后端,直到整个列表排序完成。
排序规则为:从列表的开始位置遍历到结束位置,如果当前元素大于下一个元素,则交换它们的位置。
遍历过程中,列表的前端元素即为最大(或最小)的元素。
2. 选择排序(Selection Sort):选择排序是一种简单的排序算法,通过不断选择最小(或最大)的元素并将其移动到列表的开头,直到整个列表排序完成。
排序规则为:从列表的开始位置遍历到结束位置,找到最小(或最大)的元素并将其交换到列表的开头。
重复此过程,直到整个列表排序完成。
3. 插入排序(Insertion Sort):插入排序是一种简单的排序算法,通过将未排序的元素逐一插入已排序部分的合适位置,使得整个列表排序完成。
排序规则为:从列表的开始位置遍历到未排序部分的中间位置,将未排序部分的元素插入到已排序部分的合适位置,使得插入后的列表保持有序。
重复此过程,直到整个列表排序完成。
4. 快速排序(Quick Sort):快速排序是一种高效的排序算法,通过选择一个基准元素并将其与未排序部分的元素进行比较,将比基准元素小的元素放在其左边,大的元素放在其右边,然后递归地对左右两部分进行快速排序。
排序规则为:选择一个基准元素,将比基准元素小的元素放在其左边,大的元素放在其右边。
递归地对左右两部分进行快速排序,直到整个列表排序完成。
5. 归并排序(Merge Sort):归并排序是一种高效的排序算法,通过将列表分成两半,递归地对这两半进行排序,然后将排序好的两部分合并成一个有序列表。
排序规则为:将列表分成两半,递归地对这两半进行排序;将排序好的两部分合并成一个有序列表,重复此过程,直到整个列表排序完成。
数据结构基本英语词汇大全以下是一些常见的数据结构基本英语词汇:1. Data structure - 数据结构2. Array - 数组3. Linked list - 链表4. Stack - 栈5. Queue - 队列6. Tree - 树7. Binary tree - 二叉树8. Binary search tree - 二叉树9. AVL tree - 平衡二叉树10. Heap - 堆11. Graph - 图12. Hash table - 哈希表13. Set - 集合14. Bag/Stack - 背包/堆栈15. Priority queue - 优先队列16. Graph traversal - 图遍历17. Depth-first search (DFS) - 深度优先18. Breadth-first search (BFS) - 广度优先19. Sorting algorithm - 排序算法20. Bubble sort - 冒泡排序21. Insertion sort - 插入排序22. Selection sort - 选择排序23. Merge sort - 归并排序24. Quick sort - 快速排序25. Hashing - 哈希算法26. Search algorithm - 算法27. Linear search - 线性28. Binary search - 二分29. Graph algorithms - 图算法30. Dijkstra's algorithm - 迪杰斯特拉算法31. Prim's algorithm - 普里姆算法32. Kruskal's algorithm - 克鲁斯克尔算法33. Depth-first search (DFS) - 深度优先34. Breadth-first search (BFS) - 广度优先35. Dynamic programming - 动态规划。
sortedset用法在很多编程语言和数据存储系统中,"sorted set"(有序集合)通常是指一个集合,其中的元素是唯一的,并且按照一定的顺序进行排序。
在以下的回答中,我将以Redis为例来说明有序集合的用法。
在Redis中,Sorted Set 是一种数据结构,它允许你存储一组唯一的元素,并为每个元素分配一个分数(score)。
元素按照分数的升序排序,这使得可以非常高效地按照顺序获取元素,或者在范围内获取元素。
以下是一些在Redis中使用Sorted Set的基本用法:1. 添加元素:使用`ZADD`命令可以向有序集合中添加元素,并为每个元素指定一个分数。
```bashZADD myset 1 "one"ZADD myset 2 "two"```2. 获取范围内的元素:使用`ZRANGE`命令可以获取有序集合中指定范围内的元素。
```bashZRANGE myset 0 -1```这将返回整个有序集合。
3. 按照分数获取范围内的元素:使用`ZRANGEBYSCORE`命令可以获取有序集合中指定分数范围内的元素。
```bashZRANGEBYSCORE myset 1 2```这将返回分数在1到2之间的元素。
4. 获取元素的分数:使用`ZSCORE`命令可以获取指定元素的分数。
```bashZSCORE myset "one"```这将返回元素"one"的分数。
这只是Sorted Set的一些基本用法,Redis提供了丰富的命令和功能来处理Sorted Set。
使用Sorted Set的主要优势之一是它提供了高效的范围查询和按分数排序的能力,非常适合需要排序的场景,比如排行榜等。
nssortdescriptor的原理
NSSortDescriptor是用于指定排序规则的对象,可以对集合等进行排序时指定结果的排序规则。
其原理主要是通过比较两个对象来确定它们的顺序。
具体来说,当使用NSSortDescriptor对集合进行排序时,它会按照指定的规则对集合中的元素进行比较,并根据比较结果进行排序。
NSSortDescriptor可以对一个类的某个属性(下文中方法中的key参数)指定排序规则,也可以对一个字符串集合进行指定排序规则。
在对属性进行排序时,会根据属性的值进行比较,例如,可以对年龄、身高、体重等属性进行升序或降序排序。
另外,还可以在初始化NSSortDescriptor时指定多个排序规则,并通过参数的先后顺序来确定排序优先级。
如果需要对多个属性进行排序,可以先按照第一个属性进行排序,然后对于相同值的元素再按照第二个属性进行排序,以此类推。
总之,NSSortDescriptor的原理是通过比较对象属性值来确定顺序,从而实现集合的排序功能。
s_itr指令的原理-回复s_itr指令是一种在程序设计中常用的迭代器指令,用于遍历、访问和操作序列中的元素。
通过它,可以获取序列中的下一个元素并将位置移动到下一个元素上。
在程序设计中,序列是一组有序的元素。
常见的序列包括数组、链表、队列和栈等数据结构。
使用s_itr指令可以方便地对这些序列进行迭代操作,而无需手动编写复杂的循环代码。
s_itr指令的原理如下:1. 定义迭代器对象:在使用s_itr指令之前,需要先创建一个迭代器对象。
迭代器对象是一个指向序列中特定位置的指针或引用。
它可以根据需要移动到序列中的任意位置,并访问该位置上的元素。
2. 初始化迭代器对象:在使用迭代器对象之前,需要将它初始化到序列的开始位置。
这一步通常是通过将迭代器对象绑定到序列的第一个元素上实现的。
3. 迭代操作:使用s_itr指令可以执行不同的迭代操作,例如获取当前元素的值、移动到下一个元素、判断迭代是否已经结束等。
具体的操作取决于编程语言和应用场景。
4. 移动到下一个元素:通过使用s_itr指令的特定操作,可以将迭代器对象移动到序列中的下一个元素。
这样,下一次迭代操作将会在新的位置上执行。
5. 判断迭代是否结束:使用s_itr指令可以方便地判断迭代器对象是否已经移动到序列的末尾。
如果是,迭代操作将会结束,否则将继续执行。
6. 访问当前元素:通过s_itr指令提供的操作,可以直接访问迭代器对象指向的当前元素。
这样,可以对元素进行读取、修改或其他操作。
7. 完成迭代:当所有需要的迭代操作都已完成,可以通过s_itr指令将迭代器对象关闭或销毁。
这样,迭代操作将结束,并及时释放相关资源。
总的来说,s_itr指令的原理就是通过迭代器对象在序列中移动,并对序列中的元素进行访问和操作。
使用这种指令可以简化迭代过程,提高代码的可读性和可维护性。
它在各种编程语言和应用场景中都有广泛的应用,是程序设计中常用的一种技术。
FORMALIZED MATHEMATICSVolume6,Number3,1997Warsaw University-BiałystokAlgebraic Operation on Subsets of ManySorted SetsAgnieszka Julia MarasikWarsaw UniversityBiałystokMML Identifier:CLOSURE3.The terminology and notation used in this paper are introduced in the following papers:[14],[17],[13],[12],[18],[3],[4],[1],[6],[5],[15],[16],[2],[11],[9],[7], [8],and[10].1.PreliminariesLet S be a non empty1-sorted structure.One can verify that the1-sorted structure of S is non empty.We now state three propositions:(1)For every non empty set I and for all many sorted sets M,N indexedby I holds M+·N=N.(2)Let I be a set,M,N be many sorted sets indexed by I,and F be afamily of many sorted subsets indexed by M.If N∈F,then |:F:|⊆N.(3)Let S be a non void non empty many sorted signature,M1be a strictnon-empty algebra over S,and F be a family of many sorted subsets indexed by the sorts of M1.Suppose F⊆SubSorts(M1).Let B be a subset of M1.If B= |:F:|,then B is operations closed.397c 1997Warsaw University-BiałystokISSN1426–2630398agnieszka julia marasik2.Relationships between Subsets FamiliesLet I be a set,let M be a many sorted set indexed by I,let B be a family of many sorted subsets indexed by M,and let A be a family of many sorted subsets indexed by M.We say that A isfiner than B if and only if:(Def.1)For every set a such that a∈A there exists a set b such that b∈B and a⊆b.Let us observe that the predicate A isfiner than B is reflexive.We say that B is coarser than A if and only if:(Def.2)For every set b such that b∈B there exists a set a such that a∈A and a⊆b.Let us notice that the predicate B is coarser than A is reflexive.We now state two propositions:(4)Let I be a set,M be a many sorted set indexed by I,and A,B,C befamilies of many sorted subsets indexed by M.If A isfiner than B and Bisfiner than C,then A isfiner than C.(5)Let I be a set,M be a many sorted set indexed by I,and A,B,C befamilies of many sorted subsets indexed by M.If A is coarser than B andB is coarser than C,then A is coarser than C.Let I be a non empty set and let M be a many sorted set indexed by I.The functor supp(M)yielding a set is defined by:(Def.3)supp(M)={x,x ranges over elements of I:M(x)=∅}.We now state four propositions:(6)For every non empty set I and for every non-empty many sorted set Mindexed by I holds M=∅I+·M↾supp(M).(7)Let I be a non empty set and M2,M3be non-empty many sorted sets in-dexed by I.If supp(M2)=supp(M3)and M2↾supp(M2)=M3↾supp(M3),then M2=M3.(8)Let I be a non empty set,M be a many sorted set indexed by I,and xbe an element of I.If x/∈supp(M),then M(x)=∅.(9)Let I be a non empty set,M be a many sorted set indexed by I,x bean element of Bool(M),i be an element of I,and y be a set.Supposey∈x(i).Then there exists an element a of Bool(M)such that y∈a(i)and a is locally-finite and supp(a)isfinite and a⊆x.Let I be a set,let M be a many sorted set indexed by I,and let A be a family of many sorted subsets indexed by M.The functor MSUnion(A)yieldinga many sorted subset indexed by M is defined by:(Def.4)For every set i such that i∈I holds(MSUnion(A))(i)= {f(i),f ranges over elements of Bool(M):f∈A}.algebraic operation on subsets of many (399)Let I be a set,let M be a many sorted set indexed by I,and let B be a non empty family of many sorted subsets indexed by M.We see that the element ofB is a many sorted set indexed by I.Let I be a set,let M be a many sorted set indexed by I,and let A bean empty family of many sorted subsets indexed by M.One can check that MSUnion(A)is empty yielding.We now state the proposition(10)Let I be a set,M be a many sorted set indexed by I,and A be a familyof many sorted subsets indexed by M.Then MSUnion(A)= |:A:|.Let I be a set,let M be a many sorted set indexed by I,and let A,B be families of many sorted subsets indexed by M.Then A∪B is a family of many sorted subsets indexed by M.The following propositions are true:(11)Let I be a set,M be a many sorted set indexed by I,and A,B befamilies of many sorted subsets indexed by M.Then MSUnion(A∪B)=MSUnion(A)∪MSUnion(B).(12)Let I be a set,M be a many sorted set indexed by I,and A,B be familiesof many sorted subsets indexed by M.If A⊆B,then MSUnion(A)⊆MSUnion(B).Let I be a set,let M be a many sorted set indexed by I,and let A,B be families of many sorted subsets indexed by M.Then A∩B is a family of many sorted subsets indexed by M.One can prove the following propositions:(13)Let I be a set,M be a many sorted set indexed by I,and A,B befamilies of many sorted subsets indexed by M.Then MSUnion(A∩B)⊆MSUnion(A)∩MSUnion(B).(14)Let I be a set,M be a many sorted set indexed by I,and A1be aset.Suppose that for every set x such that x∈A1holds x is a familyof many sorted subsets indexed by M.Let A,B be families of manysorted subsets indexed by M.Suppose B={MSUnion(X),X ranges overfamilies of many sorted subsets indexed by M:X∈A1}and A= A1.Then MSUnion(B)=MSUnion(A).(15)Let I be a non empty set,M,N be many sorted sets indexed by I,andA be a family of many sorted subsets indexed by M.If for every manysorted set x indexed by I holds x⊆N,then MSUnion(A)⊆N.400agnieszka julia marasik3.Algebraic Operation on Subsets of Many Sorted SetsLet I be a non empty set,let M be a many sorted set indexed by I,and let S be a set operation in M.We say that S is algebraic if and only if the condition (Def.5)is satisfied.(Def.5)Let x be an element of Bool(M).Suppose x=S(x).Then there exi-sts a family A of many sorted subsets indexed by M such that A={S(a),a ranges over elements of Bool(M):a is locally-finite∧supp(a)isfinite∧a⊆x}and x=MSUnion(A).Let I be a non empty set and let M be a many sorted set indexed by I.Note that there exists a set operation in M which is algebraic,reflexive,monotonic, and idempotent.Let S be a non empty1-sorted structure and let I1be a closure system of S.We say that I1is algebraic if and only if:(Def.6)ClOp(I1)is algebraic.Let S be a non void non empty many sorted signature and let M1be a non-empty algebra over S.The functor SubAlgCl(M1)yields a strict closure system structure over S and is defined by:(Def.7)The sorts of SubAlgCl(M1)=the sorts of M1and the family of SubAlgCl(M1)=SubSorts(M1).One can prove the following proposition(16)Let S be a non void non empty many sorted signature and M1be astrict non-empty algebra over S.Then SubSorts(M1)is an absolutely-multiplicative family of many sorted subsets indexed by the sorts of M1.Let S be a non void non empty many sorted signature and let M1be a strict non-empty algebra over S.Note that SubAlgCl(M1)is absolutely-multiplicative.Let S be a non void non empty many sorted signature and let M1be a strict non-empty algebra over S.Observe that SubAlgCl(M1)is algebraic.References[1]Grzegorz Bancerek and Krzysztof Hryniewiecki.Segments of natural numbers andfinitesequences.Formalized Mathematics,1(1):107–114,1990.[2]Ewa Burakowska.Subalgebras of many sorted ttice of subalgebras.FormalizedMathematics,5(1):47–54,1996.[3]Czesław Byliński.Functions and their basic properties.Formalized Mathematics,1(1):55–65,1990.[4]Czesław Byliński.Functions from a set to a set.Formalized Mathematics,1(1):153–164,1990.[5]Czesław Byliński.The modification of a function by a function and the iteration of thecomposition of a function.Formalized Mathematics,1(3):521–527,1990.[6]Agata Darmochwał.Finite sets.Formalized Mathematics,1(1):165–167,1990.[7]Artur Korniłowicz.Certain facts about families of subsets of many sorted sets.FormalizedMathematics,5(3):451–456,1996.algebraic operation on subsets of many (401)[8]Artur Korniłowicz.Definitions and basic properties of boolean&union of many sortedsets.Formalized Mathematics,5(2):279–281,1996.[9]Artur Korniłowicz.On the closure operator and the closure system of many sorted sets.Formalized Mathematics,5(4):543–551,1996.[10]Yatsuka Nakamura,Piotr Rudnicki,Andrzej Trybulec,and Pauline N.Kawamoto.Preli-minaries to circuits,I.Formalized Mathematics,5(2):167–172,1996.[11]Andrzej Nędzusiak.σ-fields and probability.Formalized Mathematics,1(2):401–407,1990.[12]Beata Padlewska.Families of sets.Formalized Mathematics,1(1):147–152,1990.[13]Alexander Yu.Shibakov and Andrzej Trybulec.The Cantor set.Formalized Mathematics,5(2):233–236,1996.[14]Andrzej Trybulec.Tarski Grothendieck set theory.Formalized Mathematics,1(1):9–11,1990.[15]Andrzej Trybulec.Many-sorted sets.Formalized Mathematics,4(1):15–22,1993.[16]Andrzej Trybulec.Many sorted algebras.Formalized Mathematics,5(1):37–42,1996.[17]Zinaida Trybulec and HalinaŚwięczkowska.Boolean properties of sets.Formalized Ma-thematics,1(1):17–23,1990.[18]Edmund Woronowicz.Relations and their basic properties.Formalized Mathematics,1(1):73–83,1990.Received June23,1997。