2018-2019学年黑龙江省肇东市第一中学高二上学期期末考试数学试题
- 格式:doc
- 大小:1.79 MB
- 文档页数:7
2020年黑龙江省绥化市肇东第一中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设椭圆(a>b>0)的左、右焦点分别是F1,F2,线段F1F2被点(,0)分成3:1的两段,则此椭圆的离心率为A. B. C. D.参考答案:C2. 从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第三象限的概率为 ( )A. B. C. D.参考答案:A略3. 已知且,则A.有最大值2 B.等于4 C.有最小值3 D.有最大值4参考答案:D略4. 若复数是纯虚数,则实数a的值为()A.1 B.2 C.1或2 D.—1参考答案:B 5. 把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A.y=sinx B.y=sin4x C.D.参考答案:A【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据三角函数图象变换的法则进行变换,并化简,可得两次变换后所得到的图象对应函数解析式.【解答】解:函数的图象向右平移个单位,得到f(x﹣)=sin[2(x﹣)+]=sin2x的图象,再将所得的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得f(x﹣)=sinx的图象.∴函数y=sinx的图象是函数的图象按题中的两步变换得到的函数的解析式.故选:A.【点评】本题给出三角函数图象的平移和伸缩变换,求得到的图象对应的函数解析式.着重考查了三角函数图象的变换公式等知识,属于中档题.6. 在椭圆内有一点,为椭圆的右焦点,在椭圆上有一点,使的值最小,则此最小值为()A.B.C.D.参考答案:A7. 定义在(—1,1)上的函数f(x)满足:;当时,有;若,,R=f(0).则P,Q ,R的大小关系为()B. C. D.不能确定参考答案:C略8. 若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g (x)=log a(x+k)的图象是()A.B.C.D.参考答案:C【考点】3O:函数的图象.【分析】由函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.【解答】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C9. 已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A. B. C.3 D.5A略10. 边长为a的正方体表面积为()A.6a2 B.4a2 C.D.参考答案:A【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】正方体的表面积由6个正方形的面积组成.所以正方体的表面积=6×正方形的面积S=6a2.【解答】解:依题意得:正方体的表面积=6×正方形的面积S=6a2.故选A.二、填空题:本大题共7小题,每小题4分,共28分11. 已知直线若与关于轴对称,则的方程为__________;若与关于轴对称,则的方程为_________;若与关于对称,则的方程为___________;参考答案:12. 若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1-z2)i的实部为________.参考答案:略13. 如图,是一程序框图,则输出结果为________.参考答案:14. 已知a ,b 都是正实数,则的最小值是.参考答案:15.一次数学测验后某班成绩均在(20,100]区间内,统计后画出的频率分布直方图如图,如分数在(60,70]分数段内有9人.则此班级的总人数为 .参考答案:60【考点】频率分布直方图. 【专题】概率与统计.【分析】根据频率分布直方图,利用频率、频数与样本容量的关系,求出样本容量即可. 【解答】解:根据频率分布直方图,得; 分数在(60,70]分数段内的频率为 0.015×10=0.15,∴样本容量是=60;∴此班级的总人数为 60. 故答案为:60.【点评】本题考查了频率分布直方图的应用问题,解题时应用频率=进行解答,是基础题.16. 要做一个母线长为30cm 的圆锥形的漏斗,要使其体积最大,则其底面半径为 cm .参考答案:10【考点】旋转体(圆柱、圆锥、圆台).【分析】设出圆锥的高,求出底面半径,推出体积的表达式,利用导数求出体积的最大值时的高即可.【解答】解:设圆锥的高为h cm , ∴V 圆锥=π×h ,∴V′(h )=π.令V′(h )=0, 得h 2=300,∴h=10(cm )当0<h <10时,V′>0;当10<h <30时,V′<0,∴当h=10,r=10cm 时,V 取最大值.故答案为10.17. 定积分的值为_____ .参考答案:三、 解答题:本大题共5小题,共72分。
黑龙江省绥化市肇东第一中学2020年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,,那么()A. B. C. D.参考答案:D2. 函数f(x)=sinx在区间[a,b]上是增函数,且f(a)=-1,f(b)=1,则sin的值为A.1 B. C.-1 D.0参考答案:D略3. 已知数列{a n},其通项公式a n=3n﹣18,则其前n项和S n取最小值时n的值为()A.4 B.5或6 C.6 D.5参考答案:B【考点】数列的函数特性.【专题】转化思想;数学模型法;等差数列与等比数列.【分析】由a n=3n﹣18≤0,解得n.即可得出.【解答】解:由a n=3n﹣18≤0,解得n≤6.∴其前n项和S n取最小值时n的值为5,或6.故选:B.【点评】本题考查了数列的单调性,考查了推理能力与计算能力,属于中档题.4. 关于函数的四个结论:①最大值为;②最小正周期为;③单调递增区间为;④图象的对称中心为.其中正确的有A.1个B.2个C.3个D.4个参考答案:A略5. 已知圆x2+y2=r2在曲线|x|+|y|=4的内部,则半径r的范围是()A .0<r<2B .0<r< C. 0<r<2 D .0<r<4参考答案:A6. 中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如下图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为()A.B.C.D.参考答案:C【考点】进行简单的合情推理.【分析】根据新定义直接判断即可【解答】解:由题意各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,则9117 用算筹可表示为,故选:C7. 已知cos2α=,则sin2α=()A.B.C.D.参考答案:D【考点】同角三角函数基本关系的运用;二倍角的余弦.【分析】直接利用二倍角的余弦函数公式,求出sin2α的值,得出选项.【解答】解:cos2α=1﹣2sin2α,∴ =1﹣2sin2α,∴sin2α=,故选D.【点评】本题是基础题,考查同角三角函数的基本关系式,二倍角的余弦,是计算题.8. 在中,内角,,所对的边分别是,,,已知,,则()A.B.C.D.参考答案:B,,,,,,选B.9. 若都是实数,且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件参考答案:B略10. 设向量,,则下列结论中正确的是()A. B.C. D.与垂直参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.参考答案:.解析:在PC上任取点M,过M引MO⊥平面PAB于O,则O为∠APB平分线上的点.连PO,∠MPO即为PC与平面PAB所成的角.过O引ON⊥PA 于N,连MN.设PM=2.在Rt△MPN中,在Rt△PNO中,在Rt△PMO中,12. 一批10件产品,其中有3件次品,7件正品,不放回抽取2次,若第一次抽到的是正品,则第二次抽到次品的概率 .参考答案:【考点】列举法计算基本事件数及事件发生的概率.【分析】第一次抽取后还剩9件产品,其中有3件次品,6件正品,由此能求出第二次抽到次品的概率.【解答】解:一批10件产品,其中有3件次品,7件正品,不放回抽取2次,第一次抽到的是正品, 则第一次抽取后还剩9件产品,其中有3件次品,6件正品, ∴第二次抽到次品的概率p=.故答案为:.13. 已知,,则.参考答案:-2 略14. 在△ABC 中,AB =,AC =,BC =,有一个点D 使得AD 平分BC 并且∠ADB 是直角,比值能写成的形式,这里m,n 是互质的正整数,则m +n =参考答案:设BC 中点为E ,AD =,由中线公式得AE =故= 所以m +n =27+38=6515. 已知某几何体的三视图如图所示,则该几何体的体积为________,表面积为_________.参考答案:8 32 【分析】由三视图还原原几何体,该几何体为三棱锥,底面为直角三角形,,,,,侧棱底面,且.然后由三棱锥体积公式与表面积公式求解.【详解】由三视图还原原几何体如图,该几何体为三棱锥,底面为直角三角形,,,,,侧棱底面,且.则;表面积为.故答案为:8;32.【点睛】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.16. 如果复数z=a 2+a ﹣2+(a 2﹣3a+2)i 为纯虚数,那么实数a 的值为 .参考答案:﹣2【考点】A2:复数的基本概念.【分析】根据题意可得复数z=a2+a﹣2+(a2﹣3a+2)i为纯虚数,所以复数的实部等于0,但是复数的虚部不等于0,进而可得答案.【解答】解:由题意可得:复数z=a2+a﹣2+(a2﹣3a+2)i为纯虚数,所以a2+a﹣2=0,a2﹣3a+2≠0,解得a=﹣2.故答案为﹣2.【点评】解决此类问题的关键是熟练掌握复数的有关概念,并且结合正确的运算,高考中一般以选择题或填空题的形式出现,属于基础题型.17. 若直线y = x + k与曲线恰有一个公共点,则k 的取值范围是▲;参考答案:略三、解答题:本大题共5小题,共72分。
肇东市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)2. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .43. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣24. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°5. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OP Q ∆的面积等于( )A .B .C .2 D .46. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.7. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .8. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )A .B .C .D .9. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43 C.53D .210.命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1 C .2 D .311.直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .12.如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.二、填空题13.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 14.已知x 、y 之间的一组数据如下:x 0 1 23 y 8 2 64则线性回归方程所表示的直线必经过点 .15.在(1+x )(x 2+)6的展开式中,x 3的系数是 .16.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .17.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .18.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是(把所有正确命题的序号都写上).三、解答题19.已知函数f(x)=ax2﹣2lnx.(Ⅰ)若f(x)在x=e处取得极值,求a的值;(Ⅱ)若x∈(0,e],求f(x)的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.20.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1∥平面D1AC;(2)求直线BC1到平面D1AC的距离.21.已知函数f(x)=+lnx﹣1(a是常数,e≈=2.71828).(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a=1时,方程f(x)=m在x∈[,e2]上有两解,求实数m的取值范围;(3)求证:n∈N*,ln(en)>1+.22.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M;(Ⅱ)求M5.23.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.24.(本题10分)解关于的不等式2(1)10ax a x -++>.肇东市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,∵a n=﹣n+p,∴{a n}是递减数列,∵b n=2n﹣5,∴{b n}是递增数列,∵c8>c n(n≠8),∴c8是c n的最大者,则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,当n=7时,27﹣5<﹣7+p,∴p>11,n=9,10,11,…时,2n﹣5>﹣n+p总成立,当n=9时,29﹣5>﹣9+p,成立,∴p<25,而c8=a8或c8=b8,若a8≤b8,即23≥p﹣8,∴p≤16,则c8=a8=p﹣8,∴p﹣8>b7=27﹣5,∴p>12,故12<p≤16,若a8>b8,即p﹣8>28﹣5,∴p>16,∴c8=b8=23,那么c8>c9=a9,即8>p﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.2.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A .【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.3. 【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣. 故选:B .4. 【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.5. 【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==.∴12122S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质. 6. 【答案】A.【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 7. 【答案】D【解析】解:设F 2为椭圆的右焦点由题意可得:圆与椭圆交于P ,并且直线PF 1(F 1为椭圆的左焦点)是该圆的切线,所以点P 是切点,所以PF 2=c 并且PF 1⊥PF 2.又因为F 1F 2=2c ,所以∠PF 1F 2=30°,所以.根据椭圆的定义可得|PF 1|+|PF 2|=2a ,所以|PF 2|=2a ﹣c .所以2a ﹣c=,所以e=.故选D .【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.8. 【答案】D 【解析】解:双曲线﹣=1(a >0,b >0)的渐近线方程为 y=±x,即x ±y=0.根据圆(x ﹣2)2+y 2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D .【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.9. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.10.【答案】C【解析】解:命题“设a 、b 、c ∈R ,若ac 2>bc 2,则c 2>0,则a >b ”为真命题; 故其逆否命题也为真命题;其逆命题为“设a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”在c=0时不成立,故为假命题 故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个 故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.11.【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A .12.【答案】B第二、填空题-13.【答案】[]1,1【解析】考点:函数的定义域.14.【答案】(,5).【解析】解:∵,=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.15.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.16.【答案】1 2考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.17.【答案】4.【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.18.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.三、解答题19.【答案】【解析】解:(Ⅰ)f′(x)=2ax﹣=由已知f′(e)=2ae﹣=0,解得a=.经检验,a=符合题意.(Ⅱ)1)当a≤0时,f′(x)<0,∴f(x)在(0,e]上是减函数.2)当a>0时,①若<e,即,则f(x)在(0,)上是减函数,在(,e]上是增函数;②若≥e,即0<a≤,则f(x)在[0,e]上是减函数.综上所述,当a≤时,f(x)的减区间是(0,e],当a>时,f(x)的减区间是,增区间是.(Ⅲ)当时,由(Ⅱ)知f(x)的最小值是f()=1+lna;易知g(x)在(0,e]上的最大值是g(e)=﹣4﹣lna;注意到(1+lna)﹣(﹣4﹣lna)=5+2lna>0,故由题设知,解得<a<e2.故a的取值范围是(,e2)20.【答案】【解析】解:(1)因为ABCD﹣A1B1C1D1为长方体,故AB∥C1D1,AB=C1D1,故ABC1D1为平行四边形,故BC1∥AD1,显然B不在平面D1AC上,故直线BC1平行于平面DA1C;(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)以△ABC为底面的三棱锥D1﹣ABC的体积V,可得而△AD1C中,,故所以以△AD1C为底面的三棱锥B﹣﹣AD1C的体积,即直线BC1到平面D1AC的距离为.【点评】本题考查了线面平行的判定定理,考查线面的距离以及数形结合思想,是一道中档题.21.【答案】【解析】解:(1).因为x=2是函数f(x)的极值点,所以a=2,则f(x)=,则f(1)=1,f'(1)=﹣1,所以切线方程为x+y﹣2=0;(2)当a=1时,,其中x∈[,e2],当x∈[,1)时,f'(x)<0;x∈(1,e2]时,f'(x)>0,∴x=1是f(x)在[,e2]上唯一的极小值点,∴[f(x)]min=f(1)=0.又,,综上,所求实数m的取值范围为{m|0<m≤e﹣2};(3)等价于,若a=1时,由(2)知f(x)=在[1,+∞)上为增函数,当n>1时,令x=,则x>1,故f(x)>f(1)=0,即,∴.故即,即.22.【答案】【解析】解:(Ⅰ)设M=则=4=,∴①又=(﹣1)=,∴②由①②可得a=1,b=2,c=3,d=2,∴M=;(Ⅱ)易知=0•+(﹣1),∴M5=(﹣1)6=.【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.23.【答案】【解析】解:(1)由|x -a |+|x +b |≥|(x -a )-(x +b )| =|a +b |得,当且仅当(x -a )(x +b )≤0,即-b ≤x ≤a 时,f (x )取得最小值, ∴当x ∈[-b ,a ]时,f (x )min =|a +b |=a +b . (2)证明:由(1)知a +b =2,(a +b )2=a +b +2ab ≤2(a +b )=4, ∴a +b ≤2,∴f (x )≥a +b =2≥a +b , 即f (x )≥a +b .24.【答案】当1a >时,),1()1,(+∞-∞∈ ax ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(ax ∈.考点:二次不等式的解法,分类讨论思想.。
2018-2019学年度上学期期末考试高二理科数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.命题“任意实数x ,都有2>x ”的否定是( )A .对任意实数x ,都有2≤xB .不存在实数x ,使2≤xC .对任意非实数x ,都有2≤xD .存在实数x ,使2≤x 2.已知复数iii i z -+-+-=2222,则z 的共轭复数的虚部为( ) A.56 B.58 C.58- D.i 58- 3.设,m n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个命题: ①若,//m n αα⊂,则//m n ; ②若m β⊥,α//m ,则αβ⊥; ③若m βαβ⊂⊥,,则m α⊥; ④若αγβγ⊥⊥,,则//αβ; 则真命题为( )A.①②B.③④C.②D.②④ 4.若)()13(*∈-N n xx n 的展开式中各项系数和为64,则其展开式中含2-x 项的系数为( )A.540B.540-C.135D.135- 5.已知复数R a iii a z ∈-+-+=,1125,若复数z 对应的点在复平面内位于第四象限,则实数a 的取值范围是( )A.0<aB.1>aC.10<<aD.1<a 6.哈尔滨市冰雪节期间,5名游客到三个不同景点游览,每个景点至少有一人,至多两人,则不同的游览方法共有( )种.A .90B .60C .150D .1257.如图,在三棱锥111ABC A B C -中,底面为正三角形,侧棱垂直于底面,14,6AB AA ==.若E 是棱1BB 上的点,且E B BE 1=,则异面直线E A 1与1AC 所成角的余弦值为( ) A.1313 B .13132 C .13135 D .131388.执行如图所示的程序框图,若输入6=n ,则输出的S 值为( ) A.201 B.165 C.516 D.839.甲、乙、丙、丁四个孩子踢球打碎了玻璃。
肇东市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定2. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x3. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要4. 已知,,那么夹角的余弦值()A .B .C .﹣2D .﹣5. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A .B .C .D .6. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣7. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.i>4?B.i>5?C.i>6?D.i>7?8.设为虚数单位,则()A. B. C. D.9.设函数f(x)=,f(﹣2)+f(log210)=()A.11B.8C.5D.210.下面各组函数中为相同函数的是()A.f(x)=,g(x)=x﹣1B.f(x)=,g(x)=C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=11.函数的最小正周期不大于2,则正整数k的最小值应该是()A.10B.11C.12D.1312.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250二、填空题13.已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则△MNF 的重心到准线距离为 .14.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是 .15.在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线;⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝.其中真命题是 (写出所有真命题的序号)16.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .17.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 . 18.若与共线,则y= .三、解答题19.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?20.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.21.已知复数z=.(1)求z 的共轭复数;(2)若az+b=1﹣i ,求实数a ,b 的值.22.(本题满分15分)如图,已知长方形中,,,为的中点,将沿折起,使得平面ABCD 2AB =1AD =M DC ADM ∆AM 平面.⊥ADM ABCM (1)求证:;BM AD ⊥(2)若,当二面角大小为时,求的值.)10(<<=λλDB DE D AM E --3πλ【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.23.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.(Ⅰ)求B;(Ⅱ)若△ABC的面积为,b=2求a,c的值.24.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.肇东市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.2.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选A故选A.3.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,当m=1时,满足﹣3<m<5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m<5”的充分不必要条件.故选:C.【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.4.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.5.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.6.【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),则由图象知A,B两点在直线两侧和在直线上即可,即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,即(3t+4)(2t+4)≤0,解得﹣2≤t≤﹣,即实数t的取值范围为是[﹣2,﹣],故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.7.【答案】C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的①可以是i>6?故选:C.【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.8.【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C9.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.10.【答案】D【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;故选:D.【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题. 11.【答案】D【解析】解:∵函数y=cos(x+)的最小正周期不大于2,∴T=≤2,即|k|≥4π,则正整数k的最小值为13.故选D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.12.【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.二、填空题13.【答案】 .【解析】解:∵F是抛物线y2=4x的焦点,∴F(1,0),准线方程x=﹣1,设M(x1,y1),N(x2,y2),∴|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,∴△MNF的重心的横坐标为,∴△MNF的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.14.【答案】 .【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.15.【答案】 ①②④ 【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.16.【答案】1 2考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.17.【答案】 4 .【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.18.【答案】 ﹣6 .【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.三、解答题19.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.20.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力21.【答案】【解析】解:(1).∴=1﹣i.(2)a(1+i)+b=1﹣i,即a+b+ai=1﹣i,∴,解得a=﹣1,b=2.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.22.【答案】(1)详见解析;(2).3λ=-【解析】(1)由于,,则, 2AB =AM BM ==AM BM ⊥又∵平面平面,平面平面=,平面,⊥ADM ABCM ADM ABCM AM ⊂BM ABCM ∴平面,…………3分⊥BM ADM 又∵平面,∴有;……………6分⊂AD ADM BM AD ⊥23.【答案】【解析】解:(Ⅰ)已知等式2bcosC=2a ﹣c ,利用正弦定理化简得:2sinBcosC=2sinA ﹣sinC=2sin (B+C )﹣sinC=2sinBcosC+2cosBsinC ﹣sinC ,整理得:2cosBsinC ﹣sinC=0,∵sinC ≠0,∴cosB=,则B=60°;(Ⅱ)∵△ABC的面积为=acsinB=ac,解得:ac=4,①又∵b=2,由余弦定理可得:22=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,∴解得:a+c=4,②∴联立①②解得:a=c=2.24.【答案】【解析】解:(1)由题意,n=10,=x i=8,=y i=2,∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).。
肇东市第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.2. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( ) A .1 B .0C .﹣1D .0或﹣13. 求值: =( )A .tan 38°B .C .D .﹣4. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .5. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.6. (2011辽宁)设sin (+θ)=,则sin2θ=( )A .﹣B .﹣C .D .7. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()8. 棱长都是1的三棱锥的表面积为( )A .B .C .D .9. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3D .﹣1或﹣310.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( )A .m ∥α,n ∥β且α∥β,则m ∥nB .m ⊥α,n ⊥β且α⊥β,则m ⊥nC .m ⊥α,n ⊂β,m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β11.下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台12.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >二、填空题13.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .14.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k+1)”;其中所有正确结论的序号是 .15.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .16.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点. ③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点.17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.18.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .三、解答题19.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。
肇东市第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)2. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+43. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( ) A .f (a+1)≥f (b+2) B .f (a+1)>f (b+2)C .f (a+1)≤f (b+2)D .f (a+1)<f (b+2)4. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 5. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β6. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .47. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 68. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12D .T 8=T 119. 若椭圆+=1的离心率e=,则m 的值为( )A .1B .或C .D .3或10.已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=( )A .﹣2B .2C .﹣D .11.设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n12.下列正方体或四面体中,P、Q、R、S分别是所在棱的中点,这四个点不共面的一个图形是()二、填空题13.数列{a n}是等差数列,a4=7,S7=.14.不等式的解为.15.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a=.16.函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为.17.长方体ABCD﹣A1B1C1D1的棱AB=AD=4cm,AA1=2cm,则点A1到平面AB1D1的距离等于cm. 的体积为2318.已知正四棱锥O ABCD则该正四棱锥的外接球的半径为_________三、解答题19. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.20.已知函数()f x =121x a +- (1)求()f x 的定义域.(2)是否存在实数a ,使()f x 是奇函数?若存在,求出a 的值;若不存在,请说明理由。
肇东市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关 2. 计算log 25log 53log 32的值为( )A .1B .2C .4D .83. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°4. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 5. 若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 6. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)7. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.8. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .9. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列10.已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.11.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A . =B .∥C .D .12.集合{}1,2,3的真子集共有( )A .个B .个C .个D .个二、填空题13.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .14.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .15.已知点E 、F 分别在正方体的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .16.在△ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=.17.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.18.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是.三、解答题19.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O为AD的中点,且CD⊥A1O(Ⅰ)求证:A1O⊥平面ABCD;(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.20.已知复数z=m (m ﹣1)+(m 2+2m ﹣3)i (m ∈R ) (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围.21.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.23.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.24.已知m∈R,函数f(x)=(x2+mx+m)e x.(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)≥x2+x3.肇东市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:根据茎叶图中的数据,得; 甲得分的众数为a=85, 乙得分的中位数是b=85; 所以a=b . 故选:C .2. 【答案】A【解析】解:log 25log 53log 32==1.故选:A .【点评】本题考查对数的运算法则的应用,考查计算能力.3. 【答案】D 【解析】解:∵,B=45° 根据正弦定理可知∴sinA==∴A=30° 故选D .【点评】本题主要考查正弦定理的应用.属基础题.4. 【答案】C 【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 5. 【答案】B【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x的交点时,函数x y 2=的图像仅有一个点P 在可行域内,由230y xx y =⎧⎨+-=⎩,得)2,1(P ,∴1≤m .6. 【答案】C【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增, 又f (﹣1)=﹣1<0,f (0)=30+0=1>0,∴f (﹣1)f (0)<0,可知:函数f (x )的零点所在的区间是(﹣1,0). 故选:C .【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.7. 【答案】D8. 【答案】C【解析】函数f (x )=sin (2x+θ)(﹣<θ<)向右平移φ个单位,得到g (x )=sin (2x+θ﹣2φ),因为两个函数都经过P (0,),所以sin θ=, 又因为﹣<θ<,42541415432所以θ=,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,所以﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,故选:C.【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,难度中档9.【答案】A【解析】解:∵,∴a n=S(n)﹣s(n﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用10.【答案】A【解析】过M作MN垂直于x轴于N,设),(yxM,则)0,(xN,在MNQRt∆中,||yMN=,MQ为圆的半径,NQ为PQ的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y==-=+--=-+又点M在抛物线上,∴22yx=,∴2200||4(21)4PQ x y=-+=,∴2||=PQ.11.【答案】D【解析】解:由图可知,,但不共线,故,故选D.【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.12.【答案】C【解析】考点:真子集的概念.二、填空题13.【答案】(2,2).【解析】解:∵log a1=0,∴当x﹣1=1,即x=2时,y=2,则函数y=log a(x﹣1)+2的图象恒过定点(2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.14.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.15.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
肇东市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在 2. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 3. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >04. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( ) A .16B .6C .4D .85. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③6. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或27. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20488. 已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)9. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=110.执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 11.已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 12.定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( ) A .﹣1 B .1C .6D .1213.已知双曲线(a >0,b >0)的一条渐近线方程为,则双曲线的离心率为( )A .B .C .D .14.设函数()log |1|a f x x =-在(,1)-∞上单调递增,则(2)f a +与(3)f 的大小关系是( ) A .(2)(3)f a f +> B .(2)(3)f a f +< C. (2)(3)f a f += D .不能确定15.已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)二、填空题16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .17.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .18.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= .19.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .三、解答题20.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.(Ⅰ)求函数f (x )的解析式;(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.21.已知命题p :方程表示焦点在x 轴上的双曲线.命题q :曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点,若p ∧q 为假命题,p ∨q 为真命题,求实数m 的取值范围.22.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.23.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.24.已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h(x2)=g(x1)成立,求实数a的值.25.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体σ.(1)求几何体σ的表面积;(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形.肇东市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.2.【答案】D3.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S△ABC=absinC==8.故选:D.5.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.6.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c )共线,∴=,解得c=1或2. 故选D .【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f (x )的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.7. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 8. 【答案】B【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值, ∴点A 的轨迹是椭圆, ∵a=6,c=4∴b 2=20,∴椭圆的方程是故选B .【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.9. 【答案】B【解析】解:已知抛物线y 2=4x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x ,则有a2+b2=c2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.10.【答案】B11.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.12.【答案】C【解析】解:由题意知当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.故选C.13.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.14.【答案】A 【解析】试题分析:由()()()()()log 1,,1log 1,1,a a x x f x x x -∈-∞⎧⎪=⎨-∈+∞⎪⎩且()f x 在(),1-∞上单调递增,易得01,112a a <<∴<+<.()f x ∴在()1,+∞上单调递减,()()23f a f ∴+>,故选A.考点:1、分段函数的解析式;2、对数函数的单调性. 15.【答案】A【解析】解:∵f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,∴f (x )<0的解集为(﹣b ,﹣a 2),g (x )<0的解集为(﹣,﹣),则不等式f (x )g (x )>0等价为或,即a 2<x<或﹣<x <﹣a 2,故不等式的解集为(﹣,﹣a 2)∪(a 2,),故选:A . 【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f (x )<0和g (x )<0的解集是解决本题的关键.二、填空题16.【答案】.【解析】解:在△ABC 中,∵6a=4b=3c∴b=,c=2a ,由余弦定理可得cosB===.故答案为:.【点评】本题考查余弦定理在解三角形中的应用,用a 表示b ,c 是解决问题的关键,属于基础题.17.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥ 考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.18.【答案】 .【解析】解:点An (n ,)(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,=,=,…, =,∴++…+=+…+=1﹣=,故答案为:. 【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.19.【答案】 ≤a <1或a ≥2 .【解析】解:①当a=1时,f (x )=,当x <1时,f (x )=2x﹣1为增函数,f (x )>﹣1,当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2﹣3x+2)=4(x ﹣)2﹣1,当1<x <时,函数单调递减,当x >时,函数单调递增,故当x=时,f (x )min =f ()=﹣1,②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a )若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.三、解答题20.【答案】【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),∴log a4=2,a=2,则g(x)=log2x.…∵函数y=f(x)的图象与g(X)的图象关于x轴对称,∴.…(Ⅱ)∵f(x﹣1)>f(5﹣x),∴,即,解得1<x<3,所以x的取值范围为(1,3)…【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.21.【答案】【解析】解:∵方程表示焦点在x轴上的双曲线,∴⇒m>2若p为真时:m>2,∵曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,则△=(2m﹣3)2﹣4>0⇒m>或m,若q真得:或,由复合命题真值表得:若p∧q为假命题,p∨q为真命题,p,q命题一真一假若p真q假:;若p假q真:∴实数m的取值范围为:或.【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件.22.【答案】【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),则线段A′A的中点B(,),由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,解①②做成的方程组可得:m=﹣,n=,故点A′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.23.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】24.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.25.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)由已知S=××2×sin135°=1,△ABD因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,因为在空间中有两个平面到平面ABCD的距离为1,它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.。
肇东市高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )A.2B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.2. 已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .83. 已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x4. 已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨qC .p ∧qD .p ∨q5. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .36. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对7. 已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .8. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( )A .89B .76C .77D .359. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或210.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A .11B .11.5C .12D .12.511.2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.12.若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .6二、填空题13.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 14.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .15.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .16.不等式()2110ax a x +++≥恒成立,则实数的值是__________.17.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).18.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.三、解答题19.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.(1)求数列{a n }的通项公式;(2)设,T n 是数列{b n }的前n 项和,求:使得对所有n ∈N *都成立的最大正整数m .20.已知椭圆Γ:(a >b >0)过点A (0,2),离心率为,过点A 的直线l 与椭圆交于另一点M .(I)求椭圆Γ的方程;(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆Γ的右焦点F且与直线x﹣2y﹣2=0相切?若存在,求出直线l的方程;若不存在,请说明理由.21.已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.(I)求a、b的值;(Ⅱ)当x>1时,不等式f(x)>恒成立,求实数k的取值范围.22.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km.(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?23.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]24.设{a n }是公比小于4的等比数列,S n 为数列{a n }的前n 项和.已知a 1=1,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n+1,n=12…求数列{b n }的前n 项和T n .肇东市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】设2(,)4yP y,则21||||yPFPA+=.又设214yt+=,则244y t=-,1t…,所以||||2PFPA==,当且仅当2t=,即2y=±时,等号成立,此时点(1,2)P±,PAF∆的面积为11||||22222AF y⋅=⨯⨯=,故选B.2.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.3.【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p为∀x>0,lnx≥x.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.4.【答案】D【解析】解:命题p:2≤2是真命题,方程x2+2x+2=0无实根,故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,故命题¬p,¬p∨q,p∧q是假命题,命题p∨q是真命题,故选:D5.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.6.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.7.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.8.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C.9.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2. 故选D .【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f (x )的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.10.【答案】C【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12. 故选:C .11.【答案】C12.【答案】A【解析】解:因为向量=(3,m ),=(2,﹣1),∥, 所以﹣3=2m ,解得m=﹣. 故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查.二、填空题13.【答案】43 【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b bb a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,13,33b b b b b b b b a =⇒=>⇒=43a b +=考点:指对数式运算 14.【答案】5 【解析】试题分析:'2'()323,(3)0,5f x x ax f a =++∴-=∴=. 考点:导数与极值.15.【答案】 9 .【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22, 所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18, 所以平均气温不低于25.5℃的城市个数为50×0.18=9. 故答案为:916.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2(1)0a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题.17.【答案】 ②④【解析】解:根据题意得:圆心(k ﹣1,3k ),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确; 考虑两圆的位置关系,圆k :圆心(k ﹣1,3k ),半径为k 2,圆k+1:圆心(k ﹣1+1,3(k+1)),即(k ,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R ﹣r=(k+1)2﹣k 2=2k+,任取k=1或2时,(R ﹣r >d ),C k 含于C k+1之中,选项①错误; 若k 取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k 2=2k 4,即10k 2﹣2k+1=2k 4(k ∈N*),因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点,选项④正确. 则真命题的代号是②④. 故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.18.【答案】⎛ ⎝⎭【解析】三、解答题19.【答案】【解析】解:(1)由题意知:S n=n2﹣n,当n≥2时,a n=S n﹣S n﹣1=3n﹣2,当n=1时,a1=1,适合上式,则a n=3n﹣2;(2)根据题意得:b n===﹣,T n=b1+b2+…+b n=1﹣+﹣+…+﹣=1﹣,∴{T n}在n∈N*上是增函数,∴(T n)min=T1=,要使T n>对所有n∈N*都成立,只需<,即m<15,则最大的正整数m为14.20.【答案】【解析】解:(Ⅰ)依题意得,解得,所以所求的椭圆方程为;(Ⅱ)假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x﹣2y﹣2=0相切,因为以AM为直径的圆C过点F,所以∠AFM=90°,即AF⊥AM,又=﹣1,所以直线MF的方程为y=x﹣2,由消去y,得3x2﹣8x=0,解得x=0或x=,所以M(0,﹣2)或M(,),(1)当M为(0,﹣2)时,以AM为直径的圆C为:x2+y2=4,则圆心C到直线x﹣2y﹣2=0的距离为d==≠,所以圆C与直线x﹣2y﹣2=0不相切;(2)当M为(,)时,以AM为直径的圆心C为(),半径为r===,所以圆心C到直线x﹣2y﹣2=0的距离为d==r,所以圆心C与直线x﹣2y﹣2=0相切,此时k AF=,所以直线l的方程为y=﹣+2,即x+2y﹣4=0,综上所述,存在满足条件的直线l,其方程为x+2y﹣4=0.【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在.21.【答案】【解析】解:(I)∵函数f(x)=alnx+的导数为f′(x)=﹣,且直线y=2的斜率为0,又过点(1,2),∴f(1)=2b=2,f′(1)=a﹣b=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得a=b=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II)当x>1时,不等式f(x)>,即为(x﹣1)lnx+>(x﹣k)lnx,即(k﹣1)lnx+>0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令g(x)=(k﹣1)lnx+,g′(x)=+1+=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令m(x)=x2+(k﹣1)x+1,①当≤1即k ≥﹣1时,m (x )在(1,+∞)单调递增且m (1)≥0,所以当x >1时,g ′(x )>0,g (x )在(1,+∞)单调递增,则g (x )>g (1)=0即f (x )>恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当>1即k <﹣1时,m (x )在上(1,)上单调递减,且m (1)<0,故当x ∈(1,)时,m (x )<0即g ′(x )<0,所以函数g (x )在(1,)单调递减,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣ 当x ∈(1,)时,g (x )<0与题设矛盾,综上可得k 的取值范围为[﹣1,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣22.【答案】【解析】解:(1)依题意得: 当0<x ≤4时,y=10;…(2分)当4<x ≤18时,y=10+1.5(x ﹣4)=1.5x+4…当x >18时,y=10+1.5×14+2(x ﹣18)=2x ﹣5…(8分) ∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.23.【答案】(1)最大值为,最小值为32-;(2. 【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-= ∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π= 又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC .由正弦定理得:sin sin b a B A =3sin sin 3A =,所以sin 14A =.考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角. 24.【答案】【解析】解:(1)设等比数列{a n }的公比为q <4,∵a 1+3,3a 2,a 3+4构成等差数列. ∴2×3a 2=a 1+3+a 3+4,∴6q=1+7+q 2,解得q=2.(2)由(1)可得:a n =2n ﹣1.b n =lna 3n+1=ln23n =3nln2.∴数列{b n }的前n 项和T n =3ln2×(1+2+…+n )=ln2.。
肇东市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知函数y=x3+ax2+(a+6)x﹣1有极大值和极小值,则a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>22.某程序框图如图所示,该程序运行输出的k值是()A.4 B.5 C.6 D.73.设0<a<b且a+b=1,则下列四数中最大的是()A.a2+b2B.2ab C.a D.4.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣55.已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),φ(x)=cos(cosx)在x∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A.f(x)﹣①,g(x)﹣②,h(x)﹣③,φ(x)﹣④B.f(x)﹣①,φ(x)﹣②,g(x)﹣③,h(x)﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④6. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)7. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤8. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .109. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .204810.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为( )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.11.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10] B.(5,10)C.[3,12] D.(3,12)12.在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限二、填空题13.在下列给出的命题中,所有正确命题的序号为.①函数y=2x3+3x﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.14.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.15.如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是.16.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.17.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 18.设MP 和OM分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).三、解答题19.(本小题满分12分)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和n S .20.已知函数,.(Ⅰ)求函数的最大值; (Ⅱ)若,求函数的单调递增区间.21.(本小题满分10分)选修4-5:不等式选讲已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.22.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.23. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.24.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)肇东市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.2.【答案】C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前100 0/第一圈100﹣20 1 是第二圈100﹣20﹣21 2 是…第六圈100﹣20﹣21﹣22﹣23﹣24﹣25<0 6 是则输出的结果为7.故选C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.3.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A4.【答案】B【解析】解:∵点(1,﹣1)在曲线上,y′=3x2﹣6x,∴y′|x=1=﹣3,即切线斜率为﹣3.∴利用点斜式,切线方程为y+1=﹣3(x﹣1),即y=﹣3x+2.故选B.【点评】考查导数的几何意义,该题比较容易.5.【答案】D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),又图象②过定点(0,1),其对应函数只能是h(x),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.6.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.7.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C.【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.8. 【答案】C【解析】解:∵函数=,∴f (3)=32+2=11.故选C .9. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 10.【答案】D【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+1e =,故选D. 11.【答案】A【解析】解:令4a ﹣2b=x (a ﹣b )+y (a+b )即解得:x=3,y=1即4a ﹣2b=3(a ﹣b )+(a+b ) ∵1≤a ﹣b ≤2,2≤a+b ≤4, ∴3≤3(a ﹣b )≤6 ∴5≤(a ﹣b )+3(a+b )≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a ﹣2b=x (a ﹣b )+y (a+b ),并求出满足条件的x ,y ,是解答的关键.12.【答案】A【解析】解:复数Z=+i 2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.二、填空题13.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③14.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:15.【答案】异面.【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面.故答案为:异面.16.【答案】48【解析】17.【答案】【解析】当n =1时,a 1=S 1=k 1+2k 2,当n ≥2时,a n =S n -S n -1=(k 1+k 2·2n )-(k 1+k 2·2n -1)=k 2·2n -1, ∴k 1+2k 2=k 2·20,即k 1+k 2=0,① 又a 2,a 3,a 4-2成等差数列. ∴2a 3=a 2+a 4-2, 即8k 2=2k 2+8k 2-2.② 由①②联立得k 1=-1,k 2=1, ∴a n =2n -1. 答案:2n -1 18.【答案】②【解析】解:由MP ,OM分别为角的正弦线、余弦线,如图,∵,∴OM <0<MP . 故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.三、解答题19.【答案】(本小题满分12分) 解: (Ⅰ)由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4, (3分)∴244(1)4n a n n =+-=,由0n a >得n a = (6分)(Ⅱ)∵1112n n a a +==+, (9分)∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为11111)(1)2222n+++=. (12分) 20.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合 【试题解析】(Ⅰ)由已知当 ,即, 时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为21.【答案】(1){}11x x x ><-或;(2)(,2]-∞-.【解析】试题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;当112x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当12x <时,1211x x -+-<-,∴1x <-,从而1x <-;综上,不等式的解集为{}11x x x ><-或.(2)由121()x x a f x ->---,得121x x a x a -+->--,因为1121x x a x a x x a -+-≥-+-=--,所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.考点:1.含绝对值的不等式;2.分类讨论.22.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以())()1222221x m x xx x=--==′ ………12分当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m所以()()min 140m x m ==-<, ……………………………………14分3241-e)(1+e+2e )(=0em e -<() ,8424812(21))0e e e m e e -++-=>( 4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 23.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=AP ,)0,2,1(=AC .所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分所以36|,cos |212121==><n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分 24.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫⎪⎝⎭;试题解析:(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x=--+'()22121a x ax x --+=()()()1211*x a x x ⎡⎤---⎣⎦=令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意;③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤. 综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =min 59180y = 设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<,所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个。
肇东市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知两条直线,其中为实数,当这两条直线的夹角在内变动12:,:0L y x L ax y =-=0,12π⎛⎫⎪⎝⎭时,的取值范围是()A .B .C .D .()0,1(⎫⎪⎪⎭ (2. 已知数列为等差数列,为前项和,公差为,若,则的值为( ){}n a n S d 201717100201717S S-=d A . B . C . D .12011010203. 已知命题且是单调增函数;命题,.:()(0xp f x a a =>1)a ≠5:(,44q x ππ∀∈sin cos x x >则下列命题为真命题的是( )A .B .C. D .p q ∧p q ∨⌝p q ⌝∧⌝p q⌝∧4. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=()A .﹣1B .1C .﹣D .5. 已知函数,,若,则( )A1B2C3D-16. 设D 为△ABC 所在平面内一点,,则()A .B .C .D .7. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( )A .若 m ∥α,n ∥α,则 m ∥nB .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β8. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+ B.(1)++∞C. (1,3)D .(3,)+∞9. 若方程C :x 2+=1(a 是常数)则下列结论正确的是()A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线10.+(a ﹣4)0有意义,则a 的取值范围是()A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠411.lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的()A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件12.在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78,则此数列前12项和等于( )A .96B .108C .204D .216二、填空题13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .14.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .15.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.16.已知复数,则1+z 50+z 100= .17.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .18.设是空间中给定的个不同的点,则使成立的点的个数有_________个.三、解答题19.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置. 20.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.21.如图所示,在边长为的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.22.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:100﹣500元600﹣1000总计20﹣391061640﹣59151934总计252550(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.23.(本题满分12分)在长方体中,,是棱上的一点,是棱1111D C B A ABCD -a AD AA ==1E CD P 1AA 上的一点.(1)求证:平面;⊥1AD D B A 11(2)求证:;11AD E B ⊥(3)若是棱的中点,是棱的中点,求证:平面.E CD P 1AA //DP AE B 124.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2.(Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t ﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;(Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n ,求证:当n ≥2,n ∈N 时 f ()+f ()+L+f ()<n •()(e 为自然对数的底数,e ≈2.71828).肇东市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C 【解析】1111]试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以1:L y x =045α=0,12π⎛⎫⎪⎝⎭直线的倾斜角的取值范围是且,所以直线的斜率为2:0L ax y -=03060α<<045α≠且或,故选C.00tan 30tan 60a<<0tan 45α≠1a <<1a <<考点:直线的倾斜角与斜率.2. 【答案】B 【解析】试题分析:若为等差数列,,则为等差数列公差为,{}n a ()()111212n n n na S d a n n n -+==+-⨯n S n⎧⎫⎨⎬⎩⎭2d ,故选B. 2017171100,2000100,201717210SS d d ∴-=⨯==考点:1、等差数列的通项公式;2、等差数列的前项和公式.3. 【答案】 D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.4. 【答案】B【解析】解:由A ,B 是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB 为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B .【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键. 5.【答案】A【解析】g(1)=a﹣1,若f[g(1)]=1,则f(a﹣1)=1,即5|a﹣1|=1,则|a﹣1|=0,解得a=16.【答案】A【解析】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为. 7.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键. 8.【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001mx y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m 的范围.9.【答案】B【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆∴∃a∈R+,使方程C不表示椭圆.故A项不正确;∵当a<0时,方程C:表示焦点在x轴上的双曲线∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确∵不论a取何值,方程C:中没有一次项∴∀a∈R,方程C不能表示抛物线,故D项不正确综上所述,可得B为正确答案故选:B10.【答案】B【解析】解:∵+(a﹣4)0有意义,∴,解得2≤a<4或a>4.故选:B.11.【答案】A【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y2=zx,∴充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A.【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.12.【答案】B【解析】解:∵在等差数列{a n}中,a1+a2+a3=﹣24,a10+a11+a12=78,∴3a2=﹣24,3a11=78,解得a2=﹣8,a11=26,∴此数列前12项和==6×18=108,故选B.【点评】本题考查了等差数列的前n项和公式,以及等差数列的性质,属于基础题.二、填空题13.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题14.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1815.【答案】 60° °.【解析】解:连结BC1、A1C1,∵在正方体ABCD﹣A1B1C1D1中,A1A平行且等于C1C,∴四边形AA1C1C为平行四边形,可得A1C1∥AC,因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,设正方体的棱长为a,则△A1B1C中A1B=BC1=C1A1=a,∴△A1B1C是等边三角形,可得∠BA1C1=60°,即异面直线A1B与AC所成的角等于60°.故答案为:60°.【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.16.【答案】 i .【解析】解:复数,所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;故答案为:i.【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.17.【答案】 (﹣4,0] .【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.18.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。
2018-2019学年黑龙江省大庆第一中学高二上学期期末考试数学(理)试题一、单选题1.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率()A.B.C.D.【答案】B【解析】记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,求得,,再利用概率的计算公式,即可求解.【详解】抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,所以,所以,故选B.【点睛】本题主要考查了概率的求法问题,其中解答中要认真审题,注意等可能事件的概率的计算公式的合理运用是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 2.总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为()78 16 65 72 08 02 63 14 07 02 43 69 69 38 7432 04 94 23 49 55 80 20 36 35 48 69 97 28 01A.05 B.09 C.07 D.20【答案】C【解析】从随机数表第1行第9列和第10列数字开始,由左到右依次选取两个数字,且小于或等于50的编号,注意重复数值要舍去,由此求出答案.【详解】根据题意,从随机数表第1行第9列和第10列数字开始,由左到右依次选取两个数字,其中小于或等于50的编号依次是,可知选出的第4个值为,故选C.【点睛】本题主要考查了简单的随机抽样中的随机数表法的应用,其中解答中熟记随机数表法的抽取方法,依次抽取是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.已知空间中三点A(0,1,0),B(2,2,0),C(-1,3,1),则()A.与是共线向量B.的单位向量是C.与夹角的余弦值是D.平面ABC的一个法向量是【答案】D【解析】分别根据两个向量的坐标运算,单位向量的定义和两向量的夹角公式,及法向量的求法,逐一判定,即可得到答案.【详解】由题意,对于A中,,所以,则与不是共线向量,所以不正确;对于B中,因为,所以的单位向量为或,所以是错误的;对于C中,向量,所以,所以是错误的;对于D中,设平面ABC的一个法向量是,因为,所以,令,所以平面ABC的一个法向量为,所以是正确的,故选D.【点睛】本题主要考查了向量的坐标运算,两个向量的夹角公式以及共线向量的定义和平面法向量的求解,其中解答中熟记向量的基本概念和向量的运算公式是解答本题的关键,着重考查了推理与运算能力,属于基础题.4.用秦九韶算法计算多项式在x=-4时的值,的值为()A.-845 B.220 C.-57 D.34【答案】D【解析】由于函数f(x)=3x4+5x3+6x2+79x–8=(((3x+5)x+6)x+79)x–8,当x=–4时,分别算出v0=3,v1=–4×3+5=–7,v2═–4×(–7)+6=34,故选D.5.在一次数学竞赛中,高一•1班30名学生的成绩茎叶图如图所示:若将学生按成绩由低到高编为1-30号,再用系统抽样的方法从中抽取6人,则其中成绩在区间[73,90]上的学生人数为()A.3 B.4 C.5 D.6【答案】A【解析】根据茎叶图的数据,结合系统抽样的方法的特征,即可求解所要抽取的人数,得到答案.【详解】根据茎叶图可得,成绩在区间[73,90]上的数据由15和,所以用系统抽样的方法从所有的30人中抽取6人,成绩在区间[73,90]上的学生人数为人故选A.【点睛】本题主要考查了系统抽样的方法,以及茎叶图的应用问题,其中解答中系统抽样的方法,以及茎叶图的数据的读取是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π【答案】B【解析】设正方形边长为a,则圆的半径为2a,正方形的面积为2a,圆的面积为24aπ.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248aaππ⋅=,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A.7.如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分别是棱DD1,D1C1的中点,则直线OM( )A.与AC,MN均垂直相交B.与AC垂直,与MN不垂直C.与MN垂直,与AC不垂直D.与AC,MN均不垂直【答案】A【解析】试题分析:因为平面,所以,又因为,所以平面,所以;易知,在中,因为,所以;故选A.【考点】1.空间中垂直关系的转化;2.勾股定理.【方法点睛】本题考查空间中线线垂直的证明,属于中档题;证明或判定线线垂直时,若证明相交直线的垂直,可考虑矩形的邻边垂直、菱形的对角线垂直、等腰三角形的三线合一、勾股定理等平面几何知识的应用,若证明异面直线的垂直,一般考虑线线垂直、线面垂直、面面垂直的相互转化关系进行证明,要注意“立体几何问题平面化”思想的运用.8.下列有关命题的说法错误的是()A.若“”为假命题,则p,q均为假命题B.“ ”是“”的充分不必要条件C.“”的必要不充分条件是“”D.若命题p:,,则命题:,【答案】C【解析】根据复合命题的之间判定的真值表,可判定A;根据充要条件的定义,可判定B、C,根据存在性命题的否定,可得判定D,得到答案.【详解】由题意,对于A中,若“”为假命题,根据复合命题的真值表,可得p,q均为假命题,所以A是正确的;对于B中,“”是“”是成立的,但当“”时,“”不一定是成立的,所以“”是“”是的充分不必要条件,所以B是正确的;对于C中,“”时,“”不一定成立,而“”时,“”是成立的,所以“”的充分不必要条件是“”是错误的;对于D中,根据存在性命题的否定可知,命题p:,,则命题:,正确的,所以D是正确的;综上可知,错误的为C,故选C.【点睛】本题主要考查了命题的真假判定及应用,复合命题的真假判定,充要条件以及含由量词的否定等知识点的应用,其中解答中熟记简易逻辑的相关知识点,合理应用是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是()A.8 B.4 C.2 D.1【答案】D【解析】设过抛物线的焦点F的直线方程为,与抛物线的方程联立,即可求解的值,得到答案.【详解】由题意,可得抛物线的焦点坐标为,设直线的方程为,联立,得,因为,所以,故选D.【点睛】本题主要考查了直线与抛物线位置关系的应用,其中解答中设出直线的方程,与抛物线的方程联立,合理应用根与系数的关系是解答的关键,着重考查了推理与运算能力,属于基础题.10.已知某算法的程序框图如图所示,则该算法的功能是()A.求首项为1,公差为2的等差数列前2017项和B.求首项为1,公差为2的等差数列前2018项和C.求首项为1,公差为4的等差数列前1009项和D.求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 11.如图,在三棱锥A-BCD中,平面ABC⊥平面BCD,△BAC与△BCD均为等腰直角三角形,且∠BAC=∠BCD=90°,BC=2,点P是线段AB上的动点,若线段CD上存在点Q,使得异面直线PQ与AC成30°的角,则线段PA长的取值范围是()A.B.C.D.【答案】B【解析】以C为原点,CD为轴,CB为轴,过C作平面BCD的垂线为轴,建立空间直角坐标系,利用向量法即可求出线段PA长的取值范围.【详解】以C为原点,CD为轴,CB为轴,过C作平面BCD的垂线为轴,建立空间直角坐标系,则,设,则,因为异面直线PQ与AC所成的角为,所以,即,所以,所以,解得,所以,即线段PA的长的取值范围是,故选B.【点睛】本题主要考查了利用向量法求解线段的取值范围问题,其中解答中认真审题,建立适当的空间直角坐标系,利用向量法求解是解答的关键,着重考查了推理与运算能力,属于中档试题.12.如图,是椭圆与双曲线的公共焦点,将的离心率分别记为,点是在第一象限的公共点,若的一条渐近线是线段的中垂线,则()A.2 B.C.D.4【答案】A【解析】由题设中的条件,设焦距为,椭圆的长轴长为,双曲线的实轴长为,根据椭圆与双曲线的性质以及勾股定理建立方程,联立可得的等式,整理即可得到结论.【详解】由题设中的条件,设焦距为,椭圆的长轴长为,双曲线的实轴长为,由双曲线的定义可知, (1)由椭圆的定义可得, (2)因为的一条渐近线是线段的中垂线,所以,所以, (3)联立(1)(2)得, (4)将(4)代入(3)得,即,故选A.【点睛】本题主要考查了椭圆与双曲线的定义的应用,以及圆锥曲线的离心率问题,其中解答中通过椭圆与双曲线的定义和焦点三角形中利用勾股定理建立三个方程求解椭圆的离心率和双曲线的离心率满足的关系式是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题13.已知某运动员每次投篮命中的概率都为50%,现采用随机模拟的方法估计该运动员四次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四个随机数为一组,代表四次投篮的结果.经随机模拟产生了20组随机数:9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989据此估计,该运动员四次投篮恰有两次命中的概率为____.【答案】0.35【解析】由题意得20组随机数中,该运动员四次投篮恰有两次命中的有7个,据此能求出该运动员四次投篮恰有两次命中的概率.【详解】由题意可得20组随机数中,该运动员四次投篮恰有两次命中的有:,共7个,据此估计,该运动员四次投篮恰有两次命中的概率为.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,利用列举法求得该运动员四次投篮恰有两次命中的此数是解答本题的关键,着重考查了推理与运算能力,属于基础题.14.已知椭圆的左右焦点为,,离心率为,若为椭圆上一点,且,则的面积等于____.【答案】4.【解析】分析:根据椭圆可得意,由离心率,可得c值,因为,结合椭圆的定义和勾股定理形成方程组可求得的值,再求面积即可.详解:由题意,,得,,,∵为椭圆上一点,且,∴,,∴,即,得,故的面积.点睛:考查椭圆的定义和基本性质,对直角的条件通常可选择勾股定理建立等式关系求解,属于中档题.15.在棱长为2的正方体△ABCD-A1B1C1D1中,M、N分别是A1B1、CD的中点,则点B到截面AMC1N的距离为_____.【答案】【解析】建立空间直角坐标系,利用香炉峰能求出点B到截面的距离,得到答案.【详解】如图所示,建立空间直角坐标系,因为棱长为2的正方体中,分别是的中点,所以,则,设平面的法向量为,则,取,得,所以点B到截面的距离为.【点睛】本题主要考查了利用空间向量求解点到平面的距离问题,其中解答中建立适当的空间直角坐标系,正确求解平面的法向量,利用向量法准确计算是解答的关键,着重考查了推理与计算能力,属于中档试题.16.以下五个关于圆锥曲线的命题中:①平面内与定点A(-3,0)和B(3,0)的距离之差等于4的点的轨迹为;②点P是抛物线上的动点,点P在y轴上的射影是M点A的坐标是A(3,6),则的最小值是6;③平面内到两定点距离之比等于常数的点的轨迹是圆;④若过点C(1,1)的直线交椭圆于不同的两点A,B,且C是AB的中点,则直线的方程是.⑤已知P为抛物线上一个动点,Q为圆上一个动点,那么点P到点Q 的距离与点P到抛物线的准线距离之和的最小值是其中真命题的序号是______.(写出所有真命题的序号)【答案】②④⑤【解析】由双曲线的定理可判定①;由抛物线的定义和三点共线取得最小值,可判定②;由时为两个定点连线的垂直平分线,可判定③;由点差法和直线的斜率公式,中点坐标公式判定④;由抛物线的定义和三点共线取得最小值,可判定⑤,得到答案.【详解】由题意,①中,平面内与定点和的距离之差等于4,根据双曲线的定义可得轨迹为双曲线的右支,且,即方程为,所以是错误的;②中,点P是抛物线上的动点,点P在y轴上的射影为M点,且,由于点A在抛物线开口之外,抛物线的焦点F坐标为,则,由点A、P、F三点共线可得取得最小值,所以是正确的;③中,平面内到两定点距离之比等于的点的轨迹不一定是圆,若,此时为两个定点的垂直平分线,所以是错误的;④中,若过点的直线角椭圆于不同的两点A、B,且C是AB的中点,可得C在椭圆的内部,设,可得,两式相减可得,由于,所以,则直线的方程为,所以是正确的;⑤已知P为抛物线上一动点,Q为圆上的一个动点,由抛物线的定义可得P到准线的距离即为P到焦点的距离,又由的最小值即为到圆心的距离减半径1,即有最小值为,则点P到点Q的距离与点P到抛物线的准线的距离之和的最小值为,所以是正确的,所以正确命题的序号为②④⑤.【点睛】本题主要考查了圆锥曲线的定义、标准方程及其简单的几何性质的应用,着重考查了转化思想和方程思想的应用,以及推理与计算能力,试题综合性较强,属于中档试题.三、解答题17.某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(Ⅰ)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(Ⅱ)在(Ⅰ)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.【答案】(I),;(II).【解析】试题分析:(Ⅰ)由频率分布直方图可分别得到男生,女生优秀的频率,再乘以总人数,即可得到男、女生优秀人数;(Ⅱ)构建有序实数对,用枚举法列举所有可能的情形和满足题意的情形,再利用古典概型的计算公式求解即可.试题解析:解:(Ⅰ)由题可得,男生优秀人数为人,女生优秀人数为人.(Ⅱ)因为样本容量与总体中的个体数的比是,所以样本中包含男生人数为人,女生人数为人.设两名男生为,,三名女生为,,.则从5人中任意选取2人构成的所有基本事件为:,,,,,,,,,共10个,每个样本被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件:“选取的2人中至少有一名男生”,则事件包含的基本事件有:,,,,,,共7个.所以,即选取的2人中至少有一名男生的概率为.18.移动公司为提升其文化品牌,特地从国外进口了某种音响设备,该设备的使用年限(年)与所支出的维修费(万元)的数据如下表:1 2 3 4 511 13 14 15 17(Ⅰ)求所支出的维修费y对使用年限的线性回归方程;(Ⅱ)当使用年限为8年时,试估计支出的维修费是多少?(附:在线性回归方程中,,;其中,为样本平均值.)【答案】(1)(2)万元【解析】(Ⅰ)根据表格中的公式,利用公式,求得,,进而求解回归直线的方程;(Ⅱ)由(1)代入,求得的值,即可作出预测.【详解】(Ⅰ)经计算,,又,故线性回归方程为.(Ⅱ)当使用年限为8年时,支出的维修费估计为万元.【点睛】本题主要考查了回归直线方程的求解及其应用,其中解答中根据表格中的数据,利用公式准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.19.已知动圆在运动过程中,其圆心M到点(0,1)与到直线y=-1的距离始终保持相等.(1)求圆心M的轨迹方程;(2)若直线与点M的轨迹交于A、B两点,且,求k的值.【答案】(1) 圆心的轨迹方程为;(2) .【解析】试题分析:(1)根据题意及抛物线的定义可得圆心的轨迹方程为.(2)将直线方程与抛物线方程联立消元后得到一二次方程,根据二次方程根据系数的关系和弦长公式可得.试题解析:(1)∵圆心到点与到直线的距离相等,∴圆心的轨迹是以点为焦点,以为准线的抛物线,设其方程为,则,解得.∴圆心的轨迹方程为.(2)由消去整理得,∵直线与抛物线交于两点,∴,解得.设,则,由题意得,解得,又,∴.20.如图,在三棱柱ABC-A1B1C1中,△ABC和△AA1C均是边长为2的等边三角形,点O为AC中点,平面AA1C1C⊥平面ABC.(1)证明:A1O⊥平面ABC;(2)求直线AB与平面A1BC1所成角的正弦值.【答案】(1)见证明;(2)【解析】(1)由AA1=A1C,且O为AC的中点,得A1O⊥AC,根据面面垂直的性质定理,即可证得A1O⊥平面ABC;(2)以O为原点,OB,OC,OA1为x,y,z轴,建立空间直角坐标系,求得平面A1BC1的一个法向量,利用向量的夹角公式,即可求解.【详解】(1)证明:∵AA1=A1C,且O为AC的中点,∴A1O⊥AC,又∵平面AA1C1C⊥平面ABC,且交线为AC,又A1O⊂平面AA1C1C,∴A1O⊥平面ABC;(2)如图,以O为原点,OB,OC,OA1为x,y,z轴,建立空间直角坐标系.由已知可得O(0,0,0)A(0,-1,0),,平面A1BC1的法向量为,则有,所以的一组解为,设直线AB与平面A1BC1所成角为,则又∵,所以直线AB与平面A1BC1所成角的正弦值:.【点睛】本题考查了立体几何中的线面平行判定和直线与平面所成的角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.21.如图所示,在四棱锥中,底面ABCD为直角梯形,,,,点E为AD的中点,,平面ABCD,且(1)求证:;(2)线段PC上是否存在一点F,使二面角的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.【答案】(1)见证明;(2)见解析【解析】(1)由题意,证得,再由线面垂直的性质,证得,利用线面垂直的判定定理,即可证得平面PEC,进而得到.(2)由(1)建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,由与共线,得,再求得平面CPD和平面CPD的一个法向量,利用向量的夹角公式即可求解.【详解】证明:(1)∵,,∴,,E为AD的中点,,≌,,,,,平面ABCD,平面ABCD,,又,且PH,平面PEC,平面PEC,又平面PEC,.解:(2)由(1)可知∽,由题意得,,,,,,,、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z 轴的坐标系,,,,,,假设线段PC上存在一点F满足题意,与共线,∴存在唯一实数,,满足,解得,设向量为平面CPD的一个法向量,且,,∴,取,得,同理得平面CPD的一个法向量,∵二面角的余弦值是,∴,由,解得【点睛】本题考查了立体几何中的线面平行判定和利用向量法求解二面角的应用问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.22.设椭圆的离心率为,左顶点到直线的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线与椭圆C相交于A、B两点,若以AB为直径的圆经过坐标原点O,试探究:点O到直线AB的距离是否为定值?若是,求出这个定值;否则,请说明理由;(Ⅲ)在(Ⅱ)的条件下,试求△AOB面积S的最小值.【答案】(1)(2)见解析;(3)【解析】(Ⅰ)由已知,根据点到直线的距离公式,求解,再由椭圆的离心率,求得,进而可求得椭圆的方程;(Ⅱ)法一:设,,①当直线l的斜率不存在时,求得点O到直线AB的距离为定值;②当直线l的斜率存在时,设其方程为联立方程组,根据根与系数的关系和题设条件,化简得,进而求得点O到直线AB的距离为定值.法二:设直线方程为,联立方程组,利用根与系数的关系和题设条件,化简得,进而得到点O到直线AB的距离为定值;(Ⅲ)法一:当直线OA、直线OB斜率存在且不为0时,设直线OA的斜率为k,联立方程组,进而求得面积的表达式,利用基本不等式,即可求解面积的最小值;法二:由(Ⅱ),①当直线l 的斜率不存在时,,②当直线l的斜率存在时,得出面积的表示,利用基本不等式求得最小值,即可得到答案.【详解】(Ⅰ)由已知,)因为故所求椭圆的方程为;(Ⅱ)法一:设,,①当直线l 的斜率不存在时,由椭圆对称性知,,因为以AB为直径的圆经过坐标原点O ,故,即又因为点在椭圆上,故,解得,此时点O到直线AB 的距离为②当直线l 的斜率存在时,设其方程为.联立得:所以,且由已知,以AB为直径的圆经过坐标原点O,则,化简得,故点O到直线AB 的距离为综上,点O到直线AB 的距离为定值法二:(若设直线方程为,也要对直线斜率为0进行讨论)设,第 21 页共 23 页①当直线l的斜率为0时,由椭圆对称性知x1=-x2,y1=y2,因为以AB为直径的圆经过坐标原点O ,故,即又因为点在椭圆上,故,解得,此时点O到直线AB 的距离为②当直线l的斜率不为0,或斜率不存在时,设其方程为.联立得:所以,故,即,所以,所以,化简得,故点O到直线AB 的距离为综上,点O到直线AB 的距离为定值(Ⅲ)法一:当直线OA、直线OB中有一条斜率不存在,另一条斜率为0时,易知S=1;当直线OA、直线OB斜率存在且不为0时,设直线OA的斜率为k,则直线OB 的斜率为,由得,同理故令,则第 22 页共 23 页故综上,△AOB面积S 的最小值为.法二:由(Ⅱ),①当直线l 的斜率不存在时,,②当直线l 的斜率存在时,,且点O到直线AB 的距离为,故,令,则,因为,故.综上,△AOB面积S 的最小值为.【点睛】本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目时,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.第 23 页共 23 页。
肇东市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( )A .﹣3<a <﹣1B .﹣3≤a ≤﹣1C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣12. 不等式≤0的解集是()A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]3. 设是虚数单位,则复数在复平面内所对应的点位于( )i 21ii-A .第一象限 B .第二象限 C .第三象限D .第四象限4. 已知f (x )=,则“f[f (a )]=1“是“a=1”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件5. 设集合,,若,则的取值范围是( ){|12}A x x =<<{|}B x x a =<A B ⊆A .B .C .D .{|2}a a ≤{|1}a a ≤{|1}a a ≥{|2}a a ≥6. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .7. 某几何体的三视图如图所示,该几何体的体积是()A .B .C .D .8. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .9. 若为等差数列,为其前项和,若,,,则成立的最大自{}n a n S 10a >0d <48S S =0n S >然数为( )A .11B .12C .13D .1410.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x11.已知集合,,若,则( )},052|{2Z x x x x M ∈<+=},0{a N =∅≠N M =a A . B .C .或D .或1-1-1-2-12.设集合,,则(){}|22A x R x =∈-≤≤{}|10B x x =-≥()R A B = ðA.B.C.D. {}|12x x <≤{}|21x x -≤<{}|21x x -≤≤{}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.二、填空题13.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .14.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .15.某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为 升.16.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ()A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.17.已知△的面积为,三内角,,的对边分别为,,.若,ABC S A B C 2224S a b c +=+则取最大值时.sin cos(4C B π-+C =18.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .三、解答题19.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.20.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.21.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.22.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.23.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD ,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.24.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.肇东市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】A【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,∴,解得:﹣3<a<﹣1.故选:A.2.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.3.【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B4.【答案】B【解析】解:当a=1,则f(a)=f(1)=0,则f(0)=0+1=1,则必要性成立,若x≤0,若f(x)=1,则2x+1=1,则x=0,若x>0,若f(x)=1,则x2﹣1=1,则x=,即若f[f(a)]=1,则f(a)=0或,若a>0,则由f(a)=0或1得a2﹣1=0或a2﹣1=,即a2=1或a2=+1,解得a=1或a=,若a≤0,则由f(a)=0或1得2a+1=0或2a+1=,即a=﹣,此时充分性不成立,即“f[f(a)]=1“是“a=1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可. 5. 【答案】D 【解析】试题分析:∵,∴.故选D .A B ⊆2a ≥考点:集合的包含关系.6. 【答案】D【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为,画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,∴△A ′B ′C ′的高为=,∴△A ′B ′C ′的面积S==.故选D .【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化. 7. 【答案】A【解析】解:几何体如图所示,则V=,故选:A .【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键. 8. 【答案】A【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.由图可得面积S==+=+2.故选:A .【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想. 9. 【答案】A 【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“,”判断前项和的符号问题是解答的关键.10a >0d <10.【答案】 C【解析】解:∵抛物线C 方程为y 2=2px (p >0),∴焦点F 坐标为(,0),可得|OF|=,∵以MF 为直径的圆过点(0,2),∴设A (0,2),可得AF ⊥AM ,Rt △AOF 中,|AF|==,∴sin ∠OAF==,∵根据抛物线的定义,得直线AO 切以MF 为直径的圆于A 点,∴∠OAF=∠AMF ,可得Rt △AMF 中,sin ∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.11.【答案】D【解析】试题分析:由,集合,{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M {}a N ,0=又,或,故选D .φ≠N M 1-=∴a 2-=a 考点:交集及其运算.12.【答案】B【解析】易知,所以,故选B.{}{}|10|1B x x x x =-≥=≥()R A B = ð{}|21x x -≤<二、填空题13.【答案】 .【解析】解:∵ =2,由正弦定理可得:,即c=2a .b=2a ,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.14.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B ,∴B ⊆A ,则有a+1≤1或a ≥3,解得:a ≤0或a ≥3,故答案为:a ≤0或a ≥3. 15.【答案】 8 升.【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8.故答案是:8. 16.【答案】A 【解析】17.【答案】4π【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 及ab 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为2b 2a 正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式.111sin ,,(),2224abcab C ah a b c r R++18.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题. 三、解答题19.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.20.【答案】【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,∵m>0,∴(x﹣1)(x﹣)>0,若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档. 21.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.22.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.23.【答案】【解析】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.24.【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.。
肇东市第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为( )A .30°B .45°C .60°D .90°2. 在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为( )(A )10 ( B ) 30 (C ) 45 (D ) 1203. 从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人4. 在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于( )A .B .5C .3D .5. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92 D .4 6. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .417. 已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P的坐标满足不等式x 2+y 2≤2的概率为( )A .B .C .D .8. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q9. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为4510.设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .11.若a >0,b >0,a+b=1,则y=+的最小值是( ) A .2 B .3C .4D .512.已知f (x )=,则f (2016)等于( )A .﹣1B .0C .1D .2二、填空题13.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .14.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为 .15.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 . 16.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .17.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .18.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .三、解答题19.设不等式的解集为.(1)求集合; (2)若,∈,试比较与的大小。
肇东市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .3602. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.653. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π10 4. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>05. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一6. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 7. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1508. 设集合( )A .B .C .D .9. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .910.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )A .向左平移个单位得到B .向右平移个单位得到C .向左平移个单位得到 D .向左右平移个单位得到11.在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.12.利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .二、填空题13.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .14.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .15.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .16.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.17.已知函数,则__________;的最小值为__________.18.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .三、解答题19.已知集合A={x|x 2+2x <0},B={x|y=}(1)求(∁R A )∩B ;(2)若集合C={x|a <x <2a+1}且C ⊆A ,求a 的取值范围.20.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.21.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.22.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()ABCD23.(本小题满分10分)已知曲线22:149x yC+=,直线2,:22,x tly t=+⎧⎨=-⎩(为参数).(1)写出曲线C的参数方程,直线的普通方程;PA的最大值与最小值. (2)过曲线C上任意一点P作与夹角为30的直线,交于点A,求||24.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.肇东市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B.【点评】本题考查了分步计数原理,关键是转化,属于中档题.2.【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.3.【答案】B【解析】考点:球与几何体4.【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x∈R,x2﹣2x+3>0的否定是:∀x∈R,x2﹣2x+3≤0.故选:C.5.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C.【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.6.【答案】C7.【答案】B【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.8.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B中的解集为x>,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.9.【答案】B【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;③x=2时,y=0,1,2,∴x﹣y=2,1,0;∴B={0,﹣1,﹣2,1,2},共5个元素.故选:B.10.【答案】C【解析】解:y=sin2x+cos2x=sin(2x+),y=sin2x﹣cos2x=sin(2x﹣)=sin[2(x﹣)+)],∴由函数y=sin2x﹣cos2x的图象向左平移个单位得到y=sin(2x+),故选:C .【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.11.【答案】B12.【答案】C【解析】解:由ln (3a ﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a ,不等式ln (3a ﹣1)<0成立的概率是P=, 故选:C .二、填空题13.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a ax x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111]14.【答案】 0.3 .【解析】离散型随机变量的期望与方差. 【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500, ∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.15.【答案】+=1 .【解析】解:设动圆圆心为B ,半径为r ,圆B 与圆C 的切点为D ,∵圆C :(x+4)2+y 2=100的圆心为C (﹣4,0),半径R=10,∴由动圆B 与圆C 相内切,可得|CB|=R ﹣r=10﹣|BD|, ∵圆B 经过点A (4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10, ∵|AC|=8<10,∴点B 的轨迹是以A 、C 为焦点的椭圆,设方程为(a >b >0),可得2a=10,c=4,∴a=5,b 2=a 2﹣c 2=9,得该椭圆的方程为+=1.故答案为: +=1.16.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:117.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:18.【答案】33.【解析】解:∵1=++++++++++++,∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9,90=9×10,110=10×11,132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=, ∴m=20,n=13,∴m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.三、解答题19.【答案】【解析】解:(1)A={x|x 2+2x <0}={x|﹣2<x <0},B={x|y=}={x|x+1≥0}={x|x ≥﹣1},∴∁R A={x|x ≤﹣2或x ≥0},∴(∁R A )∩B={x|x ≥0};…(2)当a ≥2a+1时,C=∅,此时a ≤﹣1满足题意;当a <2a+1时,C ≠∅,应满足,解得﹣1<a ≤﹣;综上,a 的取值范围是.…20.【答案】(1) 2a = (2) a ≥2(3)两个零点.【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2a f x x x=-′由已知,(1)0f =′即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以())()1222221x m x x x x =--+==′ ………12分当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m所以()()min 140m x m ==-<, ……………………………………14分3241-e)(1+e+2e )(=0e m e -<() ,8424812(21))0e e e m e e -++-=>( 4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知: 函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.21.【答案】【解析】解:(1)f (x )=•=2cos 2x+sin2x=sin2x+cos2x+1=2sin (2x+)+1,令﹣+2k π≤2x+≤+2k π,解得﹣+k π≤x ≤+k π,函数y=f (x )的单调递增区间是[﹣+k π, +k π], (Ⅱ)∵f (A )=2∴2sin (2A+)+1=2,即sin (2A+)= ….又∵0<A <π,∴A=.… ∵a=,由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2﹣3bc=7 ①…∵sinB=2sinC ∴b=2c ②…由①②得c 2=.…∴S △ABC=.…22.【答案】C【解析】23.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2)5,5. 【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值.试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为|4cos 3sin 6|5d θθ=+-.则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取.当sin()1θα+=时,||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.24.【答案】【解析】解:(1)若 x >0,则﹣x <0…(1分)∵当x <0时,f (x )=()x. ∴f (﹣x )=()﹣x. ∵f (x )是定义在R 上的奇函数,f (﹣x )=﹣f (x ),∴f (x )=﹣()﹣x =﹣2x .…(4分)(2)∵(x )是定义在R 上的奇函数,∴当x=0时,f (x )=0,∴f (x )=.…(7分)函数图象如下图所示:(3)由(2)中图象可得:f (x )的减区间为(﹣∞,+∞)…(11分)(用R 表示扣1分)无增区间…(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.。