小学奥数蝴蝶定理
- 格式:docx
- 大小:31.28 KB
- 文档页数:3
五大模型——蝴蝶模型例1. 四边形ABCD的对角线AC与BD交于点O,如果三角形ABD1,且AO=2,DO=3,那么CO的长的面积等于三角形BCD的面积3度是DO的长度的倍例2. 如图,平行四边形ABCD的对角线交与点O点,△CEF、△OEF、△ODF、△BOE的面积依次是2、4、4和6 求:(1)△OCF 的面积;(2)求△GCE的面积例3.如图,边长为1的正方形ABCD中,BE=3EC,CF=FD,求三角形AEG的面积。
例4. 如图,边长为1的正方形ABCD的边长为10厘米,E为AD 中点,F为CE中点,G为BF中点,求三角形BDG的面积例5. 如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知AOB于BOC的面积分别为25平方厘米于35平方厘米,那么梯形ABCD的面积是平方厘米例6.梯形ABCD的对角线AC与BD交与点O,已知梯形上底为2,2,求三角形AOD与且三角形ABO的面积等于三角形BOC面积的3三角形BOC的面积之比。
例7. 如下图,一个长方形一些直线分成了若干个小块,已知三角形ADG的面积是11,三角形BCH的面积是23,求四边形EGFH 的面积。
例8. 右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米例9. 如图,长方形ABCD被CE、DF分成四块,已知期中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC的面积为平方厘米例10. 如图,正六边形面积为6,那么阴影部分面积为多少?蝴蝶模型习题1、如图,长方形ABCD中,BE:EC=2:3,DF:FC=1:2,三角形DFC面积为2平方厘米,求长方形ABCD的面积.2、梯形的下底是上底的1.5倍,三角形OBC的面积是9cm2,问三角形AOD的面积是多少?3、如图,长方形中,若三角形1的面积与三角形3的面积比为4:5,四边形2的面积为36,则三角形1的面积为4、如图,长方形ABCD中,阴影部分是直角三角形且面积为54,OD的长是16,OB的长是9,那么四边形OECD的面积是多少?5、如图,△ABC是等腰三角形,DEFG是正方形,线段AB与CD相较于K点,已知正方形DEFG的面积48,AK:KB=1:3,则△BKD的面积是多少?答案【例1】因为AO : OC =S∆ABD : S∆BDC= 1: 3 ,所以OC = 2⨯3 = 6 ,所以OC : OD = 6: 3 = 2:1.解法二:作AH ⊥BD于H ,CG ⊥BD 于G .因为S所以S ∆ABD=1S3=1S∆BCD,所以AH =1 CG ,3,∆AOD 3 ∆DOCAO =1CO ,3OC = 2⨯3 = 6 ,OC : OD = 6: 3 = 2:1.C【例2】⑴⑴BCD 的面积为2 + 4 + 4 + 6 =16 ,⑴BCO 和∆CDO 的面积都是16 ÷ 2 = 8 ,所以⑴OCF 的面积为8 - 4 = 4 ;⑴由于⑴BCO 的面积为8,⑴BOE 的面积为6,所以⑴OCE 的面积为8 - 6 = 2 ,根据蝴蝶定理,EG : FG =S∆COE : S∆COF= 2 : 4 = 1: 2所以S∆GCE : S∆GCF=EG : FG = 1: 2 ,S∆GCE =11+ 2S∆CEF=1⨯ 2 =2 .33【例3】A DFB EC 连接EF .因为BE = 2EC ,CF =FD ,所以S∆DEF = (1⨯1⨯1)S2 3 2ABCD=1S12ABCD.因为S∆AED =1S2ABCD,由蝴蝶定理,AG : GF =1 : 12 12= 6 :1 ,所以S∆AGD = 6S∆GDF=6S7∆ADF=6⨯1S74ABCD=3S14ABCD.所以S∆AGE =S∆AED-S∆AGD=1S2ABCD-3 S14ABCD=2S7ABCD=2,7【例4】A E DB C设BD 与CE 的交点为O ,连接BE 、DF .由蝴蝶定理EO : OC =S BED : S BCD ,而SBED =1S4ABCD,SBCD=1S2ABCD,所以EO : OC =SBED : SBCD= 1: 2 ,故EO =1EC .3F 为CE 中点,所以EF =1 EC ,2故EO: EF = 2: 3,FO : EO =1: 2 .由蝴蝶定理SBFD : SBED=FO : EO = 1: 2 ,所以SBFD =1S2BED=1S8ABCD,SBGD =1S2BFD=1S16ABCD=1⨯10⨯10 = 6.2516AOB BOC AOB DOC 梯形蝴蝶定理B① S 1 : S 3 C= a 2 : b 2② S : S : S : S = a 2 : b 2 : ab : ab ; 1 3 2 4 ③ S 的对应份数为(a + b )2【例 5】由梯形蝴蝶定理, S : S = a 2 : ab = 25 : 35 , 可得 a : b = 5: 7 ,再根据梯形蝴蝶定理, S : S = a 2 :b 2 = 52 : 72 = 25 : 49 , 所以S DOC = 49梯形 ABCD 的面积为25 + 35 + 35 + 49 =144【例 6】由蝴蝶定理, S AOB : S BOC = ab : b 2 = 2 : 3得a : b = 2: 3,S AOD : S BOC = a 2 : b 2 = 22 : 32 = 4 : 9O∆OCD ∆OCD【例 7】AF BDE C如图,连结 EF ,显然 ADEF 和 BCEF 都是梯形, 于是 EFG 的面积等于三角形 ADG 的面积三角形 BCH 的面积等于三角形 EFH 的面积所以四边形 EGFH 的面积是11+ 23 = 34.【例 8】A DB C连接 AE .由于 AD 与 BC 平行,所以 AECD 也是梯形,那么S ∆OCD = S ∆OAE .据蝴蝶定理, S ∆OCD ⨯ S ∆OAE = S ∆OCE ⨯ S ∆OAD = 2 ⨯ 8 = 16 故 S 2 = 16 ,所以S = 4另解:在平行四边形 ABED 中, S ∆ADE =1 S2 ABED = 1 ⨯(16 + 8) = 12 2 所以S ∆AOE = S ∆ADE - S ∆AOD = 12 - 8 = 4根据蝴蝶定理,阴影部分的面积为8⨯ 2 ÷ 4 = 4【例 9】A EBD连接 DE 、CF . EDCF 为梯形,所以S ∆EOD = S FOC , 又根据蝴蝶定理, S ∆EOD ⋅ S ∆FOC = S ∆EOF ⋅ S ∆COD 所以S ∆EOD = 4 , S ∆ECD = 4 + 8 = 12ABCD 面积为12⨯2 = 24S ∆EOD ⋅ S ∆FOC = S ∆EOF ⋅ S ∆COD = 2 ⨯ 8 = 16 ,四边形OFBC 的面积为24 - 5 - 2 -8 = 9 (平方厘米).【例 10】连接阴影图形的长对角线,此时六边形被平分为两半根据六边形的特殊性质,和梯形蝴蝶定理把六边形分为 18 份 阴影部分占了其中 8 份,所以阴影部分的面积 8 ⨯ 6 = 8 .183∆ AOD ∆ AOD ∆BOC123作业题答案1.AD FBEC连接 AE , FE .因为 BE : EC = 2: 3 , DF : FC =1: 2 ,所以S = (3 ⨯ 1 ⨯ 1)S = 1S. DEF 5 3 2长方形ABCD10 长方形ABCD 因为S= 1 S , A G : GF = 1 : 1= 5 :1,所以S = 5S = 10 平方厘米,所AED2 长方形ABCD 2 10AGD GDF 以 S = 12 平方厘米.因为S = 1S ,所以长方形 ABCD 的面积是72 平方 AFD厘米.2.AFDA D6 长方形ABCDBC根据梯形蝴蝶定理, a : b =1:1.5 = 2: 3 , S : S = a 2:b 2 = 22 : 32 = 4 : 9 , 所以S = 4(cm 2 ) .3.O 做辅助线如下:利用梯形模型,这样发现四边形 2 分成左右两边,其面积正好等于三角形 1 和三角形 3,所以 1 的面积就是36 ⨯44 + 5= 16 ,3 的面积就是 36 ⨯54 + 5= 20 .4.ADBEC因为连接 ED 知道⑴ABO 和⑴EDO 的面积相等即为54 ,又因为OD ⑴OB =16⑴9 ,所以 ⑴AOD 的面积为54 ÷ 9⨯16 = 96 ,根据四边形的对角线性质知道:⑴BEO 的面积为:54⨯54 ÷ 96 = 30.375 ,所以四边形OECD 的面积为: 54 + 96 - 30.375 =119.625 (平方厘米).5.BM C由于 DEFG 是正方形,所以 DA 与 BC 平行,那么四边形 ADBC 是梯形.在梯形ADBC 中,∆BDK 和∆ACK 的面积是相等的.而 AK : KB =1: 3 ,所以∆ACK 的面积是∆ABC 面积的 1 = 1 ,那么∆BDK 的面积也是∆ABC 面积的 1.1+ 3 4 4由于∆ABC 是等腰直角三角形,如果过 A 作 BC 的垂线,M 为垂足,那么 M 是BC 的中点,而且 AM = DE ,可见∆ABM 和∆ACM 的面积都等于正方形 DEFG 面积的一半,所以∆ABC 的面积与正方形 DEFG 的面积相等,为 48. 那么∆BDK 的面积为48⨯ 1= 12 .4。
模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。
如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。
小学奥数-几何五大模型(蝴蝶模型)模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。
如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
ABCDOH GA BCD O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。
模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。
如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。
小学奥数---蝴蝶定理一、 基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S 1 : S 2 = a : b定理2:等分点结论( 鸟头定理)如图,三角形△AED 的面积占三角形△ABC 的面积的2034153=⨯定理3:任意四边形中的比例关系( 蝴蝶定理)1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4上、下部分的面积之积等于左、右部分的面积之积2)AO ∶OC = (S 1+S 2)∶(S 4+S 3)梯形中的比例关系( 梯形蝴蝶定理)1)S 1∶S 3 =a 2∶b 2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab4)S 的对应份数为(a+b )2定理4:相似三角形性质CBEFDA1)Hh C c B b A a ===2) S 1 ∶S 2 = a 2 ∶A 2定理5:燕尾定理S △ABG ∶ S △AGC = S △BGE ∶ S △GEC = BE ∶ECS △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FCS △AGC ∶ S △BCG = S △ADG ∶ S △DGB = AD ∶DB二、 例题分析例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米?例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,14CF CA =,求三角形DEF 的面积.例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.例4、例1 如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形ABCD分割成四个三角形。
模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =A BCDG321【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. ()任意四边形、梯形与相似模型【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。
如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。
小学奥数几何篇五大模型蝴蝶定理一、蝴蝶定理的定义与公式蝴蝶定理是小学奥数几何篇中的一个重要模型,它描述了在等腰三角形中,一条平行于底边的线段将底边平分,并且这条线段与等腰三角形的两腰相交于同一点时,该线段的中点与等腰三角形的顶点、底边的中点以及两腰上的交点形成一个等腰三角形。
蝴蝶定理的公式如下:设等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,则AG=BG=CG。
二、蝴蝶定理的应用1. 在等腰三角形中求边长:通过蝴蝶定理,可以快速求出等腰三角形中未知边的长度。
例如,已知等腰三角形ABC中,AB=AC,底边BC 的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求AG的长度。
解答:根据蝴蝶定理,AG=BG=CG,又因为AB=AC,所以AG=AB/2=a。
2. 在等腰三角形中求角度:通过蝴蝶定理,可以求出等腰三角形中未知角的度数。
例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求∠AGB的度数。
解答:由于AG=BG=CG,所以△AGB是等边三角形,∠AGB=60°。
3. 在等腰三角形中求面积:通过蝴蝶定理,可以求出等腰三角形中未知部分的面积。
例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求△AGB的面积。
解答:由于△AGB是等边三角形,所以△AGB的面积=(a^2 √3)/ 4。
小学奥数几何篇五大模型蝴蝶定理(附答案)在小学奥数的几何部分,蝴蝶定理是一个非常有用的工具,它可以帮助我们解决一些复杂的几何问题。
蝴蝶定理主要描述了在四边形中,当两条对角线互相垂直时,四边形被分成四个小三角形,而这四个小三角形的面积之间存在一定的关系。
蝴蝶定理的内容如下:设四边形ABCD中,AC和BD是互相垂直的对角线,交于点O。
设四个小三角形的面积分别为S1、S2、S3、S4。
那么,蝴蝶定理可以表述为:S1 + S2 = S3 + S4。
这个定理听起来可能有些抽象,但实际上它的应用非常广泛。
我们可以通过蝴蝶定理来解决一些看似复杂的问题。
下面,我将通过一些例子来展示蝴蝶定理的应用。
例1:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC =8cm,BD = 6cm。
如果三角形ABC的面积是24cm²,那么三角形ADC的面积是多少?解答:根据蝴蝶定理,我们有S1 + S2 = S3 + S4。
由于三角形ABC的面积是24cm²,所以S1 = 24cm²。
又因为AC = 8cm,BD = 6cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 8cm6cm = 24cm²。
因此,三角形ADC的面积也是24cm²。
例2:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC = 10cm,BD = 5cm。
如果三角形ABC的面积是20cm²,那么三角形ADC的面积是多少?解答:同样地,根据蝴蝶定理,我们有S1 + S2 = S3 + S4。
由于三角形ABC的面积是20cm²,所以S1 = 20cm²。
又因为AC = 10cm,BD = 5cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 10cm 5cm = 25cm²。
因此,三角形ADC的面积是25cm²。
蝴蝶定理定理
蝴蝶定理是古代欧氏平面几何中最精彩的结果之一。
这个命题最早出现在1815年,由W。
G。
霍纳提出证明。
而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形像一只蝴蝶。
这个定理的证法不胜枚举,至
今仍然被数学爱好者研究,在考试中时有各种变形。
蝴蝶定理:设M为圆内弦PQ的中点,过M作弦AB和CD。
设AD 和BC各相交PQ于点X和Y,则M是XY的中点。
蝴蝶定理的证明
该定理实际上是射影几何中一个定理的特殊情况,有多种推广(详见定理推广):
1.M作为圆内弦的交点是不必要的,可以移到圆外。
2.圆可以改为任意圆锥曲线。
3.将圆变为一个筝形,M为对角线交点。
4.去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”,不为中点时满足。
蝴蝶定理和风筝定理引入1、蝴蝶定理在梯形ABCD 中,由对角线AC 与BD 分成的左右两个三角形(△ADO 和△BCO )形状有点像一对蝴蝶翅膀,把这两个三角形称为蝴蝶三角形(如图),蝴蝶三角形的面积相等。
即S △ADO =S △BCO2、风筝定理在任意四边形ABCD 中,对角线AC 、BD 分成了四个三角形(如图),这四个三角形的面积分别记为:S 1 、S 2 、S 3 、S 4。
则它们的关系是:S 1×S 4 =S 2×S 3即相对的两个三角形的面积乘积是相等的。
新授课【例1】如图,梯形的两条对角线分梯形为四个小三角形,已知△AOD 的面积是3平方厘米,△DOC 的面积是9平方厘米,梯形ABCD 的面积是多少平方厘米?练习1、如图,2BO=DO ,且阴影部分的面积是4cm 2,那么梯形ABCD 的面积是多少平方厘米?2、如图,阴影部分面积是4cm 2,OC=2AO ,求梯形的面积。
A BCD O S 1 S 2S 3 S 4【例2】如图,BD ,CF 将长方形ABCD 分成四块,红色三角形的面积是4平方厘米,黄色三角形的面积是8平方厘米,那么绿色四边形的面积是多少平方厘米?练习1、如图,BD ,CF 将长方形ABCD 分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米,则绿色四边形的面积是多少平方厘米?2、如图,平行四边形ABCD 的面积是36平方厘米,对角线AC 、BD 交于O 点,E 为CD 上一点,已知四边形EFOG 的面积是3平方厘米,则阴影部分的面积为多少平方厘米?【例3】如图,四边形ABCD 是边长为18厘米的正方形,已知CE 的长是ED 的2倍。
求: (1)三角形CEF 的面积,(2)DF 的长度练习正方形ABCD 的边长是12厘米,已知DE 是EC 长度的2倍。
三角形DEF 的面积是多少平方厘米?CF 长多少厘米?CC【例4】正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,则图中三角形BDF 面积为多少平方厘米?练习1、如图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。
模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?A BCDG321【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)任意四边形、梯形与相似模型【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。
如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。
几何之蝴蝶定理一、 基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S 1 : S 2 = a : b定理2:等分点结论( 鸟头定理)如图,三角形△AED 的面积占三角形△ABC 的面积的2034153=⨯定理3:任意四边形中的比例关系( 蝴蝶定理)1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4上、下部分的面积之积等于左、右部分的面积之积2)AO ∶OC = (S 1+S 2)∶(S 4+S 3)梯形中的比例关系( 梯形蝴蝶定理)1)S 1∶S 3 =a 2∶b 2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab4)S 的对应份数为(a+b )2定理4:相似三角形性质CFEADBCBEFDA1)HhC c B b A a ===2) S 1 ∶S 2 = a 2 ∶A 2定理5:燕尾定理S △ABE ∶ S △AEC = S △BGE ∶ S △GEC = BE ∶ECS △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FCS △ADC ∶ S △DCB = S △ADG ∶ S △DGB = AD ∶DB二、 例题例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米?例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,14CF CA =,求三角形DEF 的面积.例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.例4如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形ABCD分割成四个三角形。
蝴蝶定理
1.如图,梯形ABCD 的上底AD 长为3厘米,下底BC 长为9厘米,而三角形ABO 的面积为12平方厘米.则梯形ABCD 的面积为___________平方厘米.
2.如图,在梯形ABCD 中,三角形ABO 的面积是6平方厘米,且BC 的长是AD 的2倍。
请问:梯形ABCD 的面积是____________平方厘米. 3.如图,是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15,18,30公顷,则图中阴影部分面积是_____________.
30
18
15
d
c b a
A D
O
C
B
4.下图中四边形ABCD 的对角线AC 和BD 交于点O ,如果三角形ABD 的面积是30平方厘米,三角形ABC 的面积是48平方厘米,三角形BCD 的面积是50平方厘米。
那么三角形BOC 的面积是___________.
5.如图,BD ,CF 将长方形ABCD 分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米.则绿色四边形面积是__________平方厘米.
绿黄6红4
E
A B C D F
C
6.如右图所示,平行四边形ABCD 面积是12,
13DE AD
,AC 与BE 的交点为F ,则图中阴影部分面积是__________.
7. 如图,长方形ABCD 中,阴影部分是直角三角形且面积为54,OD 的长是16,OB 的长是9. 那么四边形OECD 的面积是___________.
8.如图,一个边长为6分米的正方形,O 点是正方形的中心(两条对角线的交点),AB 的长是4分米,则阴影部分的面积是__________平方分米.
F A D E。