随钻伽马测量数据处理方法的研究及应用
- 格式:pdf
- 大小:405.07 KB
- 文档页数:5
随钻自然伽玛的测量原理及性能参数1.测量原理:井下探管通过伽玛探测器将地层的自然伽玛射线转换成电脉冲信号,经过处理后,得到伽玛射线的计数率,通过MWD 的泥浆脉冲传输系统传输到地面,经处理后得到实时伽玛曲线。
同时,伽玛计数率被送入伽玛探管的存储器中存储,待探管从井底取出,将存储的数据处理后,得到回放的伽玛曲线。
2、性能参数:工作温度:-25~150℃电池寿命:连续测井500h测量范围:0 ~ 500API精确度: ±2 API垂直分辨率: 6"(152.4mm)内存数据获取率:每16秒一个数据TRIM 随钻电阻率的测量原理及性能参数地 层井 眼发射线圈接收线圈 感生电流大地环发射线圈电路接收线圈电路 1、测量原理:2 .性能参数•工作频率19.2kHz•工作温度范围-25 ~150°C•测量范围0.1 ohm.m ~2000 ohm.m •垂直分辨率12 ~24 " (0.305~0.610 m) •探测深度112 " (2.845m) @ 10 ohm.m84 "(2.130m) @ 1 ohm.m•泥浆类型水基,油基和饱和盐型•承受压力15,000psi (103.4 MPa) •最大工作排量750 GPM (47L/s)•电池寿命150 hours (连续测井) •数据点(内存记录)174,080 个电阻率值•记录参数视电阻率(Ra)温度(Ti)•记录速度8秒~200秒•设置延迟时间10天MWD+自然伽玛+电阻率MWD+伽玛电阻率电阻率探测短节上井前的准备1)去井队上测量好无磁钻铤长度,利用软件计算好加长杆长度,注意计算时不要忘记加一个COUPLING的长度。
2)根据清单准备仪器。
伽玛和电阻率上井清单地面系统1.伽玛接口箱DTU一台2.伽玛电缆一套3.深度传感器+配合接头二个4.悬重传感器+配合快速接头二个5.伽玛专用热敏打印机+打印纸一台6.电阻率接口箱一台7.电阻率电缆一根8.电阻率测试和内存数据回放盒一个9.电阻率串口装卸专用工具+专用尖嘴钳+卡簧+电阻率磁性开关各一个10.电阻率专用编程器一个11.电阻率专用计算机+软件井下仪器1.伽玛双D电池筒+双D电池+电池堵头+电池插销各二根2.伽玛探管+抗压筒3.电阻率专用SEA(目前为0251、0387、0496、0507一根)4.电阻率电池堵头+电池(视现场要求)5.电阻率短节+上下保护接头+电池短节(视现场要求配扣型)6.电阻率配合公母插头及根据现场无磁性钻铤长度所需的加长杆(注意必须精确获得无磁钻铤的长度和所要用的脉冲器的悬挂短节的长度,以此为依据计算电阻率加长杆的长度)7.电阻率所需的上下配合接头和拆装电阻率的连接接头以及提升接头(视现场要求配接头扣型)8.所需的各种密封圈串测试仪器,确保仪器正常工作仪器串接测试将仪器各个部分串接起来,用PC机监控仪器是否正常工作。
石油地质与工程2022年1月PETROLEUM GEOLOGY AND ENGINEERING 第36卷第1期文章编号:1673–8217(2022)01–0099–06旋转导向近钻头随钻伽马数据成像处理技术孙轶伦1,潘磊2,李海滨2,王来智3,周建新1(1.南京工业大学机械动力工程学院,江苏南京211816;2.盘锦市辽河油田天意石油装备有限公司,辽宁盘锦124010;3.宝鸡石油机械有限责任公司,陕西宝鸡721002)摘要:在旋转导向钻井过程中需要根据井下实时获取的伽马成像图对钻头进行调整,但是钻井随钻测量数据的传输数量较少,单次所能传输的数据有限。
为了获得连续的伽马值,使用三次样条插值和Akima插值两种方法分别对井周方向和深度方向的测量数据进行插值处理。
使用LabVIEW软件对两种插值方法编程,绘制井深和井周方向上插值结果的曲线图和强度图。
使用辽河油田某钻井数据对所编程序进行验证,结果表明,插值后所得到曲线和强度图能够准确地反映地层的信息,可为钻井导向和地层评价工作提供信息支持。
关键词:随钻测井;伽马成像;LabVIEW;样条插值中图分类号:TE821文献标识码:AImaging processing technology of gamma data while drilling with rotary steering near bitSUN Yilun1, PAN Lei2, LI Haibin2, WANG Laizhi3, ZHOU Jianxin1(1. School of Mechanical and Power Engineering, Nanjing Technology University, Nanjing, Jiangsu 211816, China;2. Tianyi Petroleum Equipment Co., Ltd., Liaohe Oilfield, Panjin, Liaoling 124010, China;3. Baoji Petroleum Machinery Co., Ltd., Baoji, Shanxi 721002, China)Abstract: In the processing of rotary steering drilling, the bit needs to be adjusted according to the real-time gamma image acquired from the downhole, but the quantity of data transmission of measurement while drilling is small, and the data that can be transmitted in a single time is limited. In order to obtain continuous gamma data, cubic spline interpolation and Akima interpolation are used to interpolate the measured data in the perimeter direction and depth direction respectively.The two interpolation methods are programmed with LabVIEW software to draw the curve and intensity diagram of interpolation results in the direction of well depth and well circumference.The program is verified by a drilling data in Liaohe oilfield. The results show that the interpolated curve and strength diagram can accurately reflect the formation information, and can provide information support for drilling guidance and formation evaluation.Key words: logging while drilling (LWD); gamma imaging; LabVIEW; spline interpolation随钻伽马成像技术是近钻头地质导向系统的关键技术之一。
随钻⾃然伽马、电阻率的地质导向系统及应⽤.doc随钻⾃然伽马、电阻率的地质导向系统及应⽤程树林桂维兴摘要:地质导向钻井技术的应⽤体现了随钻测井资料的重要⼯程价值。
本⽂总结了随钻⾃然伽马、电阻率在地质导向钻井中应⽤的3种测量⽅式特征,即近钻头测量、基于随钻估计和预测⽅法的随钻测量、随钻⽅位⾃然伽马和电阻率测量;描述了随钻⾃然伽马、电阻率的实时解释⽅法,根据不同区域的地质特点、岩性测井特征和储集层的物性特征,将随钻测井数据与事先设定的储层地质特征进⾏实时对⽐和评价,完成地层对⽐、流体性质判别和储层参数解释;说明了随钻⾃然伽马、电阻率的刻度⽅法,通过仪器的标准化刻度及量值传递,为定量解释地层提供准确的测井资料;结合实践介绍了利⽤随钻⾃然伽马、电阻率实时测井曲线,根据不同岩性和不同层位⾃然伽马、电阻率的差异特性,结合邻井资料和⽆孔隙度测井资料条件下的孔隙度解释模型,在⼯程应⽤中实现基于随钻⾃然伽马、电阻率的地质导向系统。
0 引⾔地质导向是集定向测量、导向⼯具、地层地质参数测量、随钻实时解释等⼀体化的测量控制技术。
在钻井过程中,在测量井眼轨迹⼏何参数的同时,实时测量地质参数,绘出⾃然伽马、电阻率、岩性密度、中⼦孔隙度、压⼒曲线,并以此实时解释评价钻遇未污染地层的特性、**液界⾯,从⽽准确判定储层特性,指导现场⼯程师调整轨迹,控制钻具有效穿⾏于**藏最佳位置,实现地质导向。
不同岩性的地层其⾃然伽马变化范围不同,⽽致密层、渗透层和****⽔层的电阻率也不相同。
随钻时,可充分利⽤不同岩性、不同层位的⾃然伽马、电阻率的差异特性,结合地质录井资料识别岩性,及时提供地层⾃然伽马、电阻率数据以指导现场⼯程师判断是否钻遇⽬的层。
同时由于随钻密度、中⼦孔隙度测量带有放射源,使⽤风险⾼,推⼴受到⼀定局限,在随钻测井实践中,⽤随钻⾃然伽马识别地层岩性,⽤⾃然伽马、电阻率以及结合邻井测井资料进⾏地层对⽐,建⽴⽆孔隙度测井资料条件下的孔隙度解释模型,实现随钻实时解释,从⽽实现以随钻⾃然伽马、电阻率为地层测量基础的地质导向系统。
随钻测井资料解释方法研究及应用一、本文概述本文旨在探讨随钻测井资料解释方法的研究与应用。
随钻测井技术作为现代石油勘探领域的重要技术手段,对于提高钻井效率、优化油气藏开发策略具有重要意义。
本文将首先介绍随钻测井技术的基本原理及其在石油勘探中的应用背景,阐述其相较于传统测井技术的优势。
随后,文章将重点分析随钻测井资料解释方法的现状与挑战,包括数据处理、信号提取、地层识别等方面的难点问题。
在此基础上,本文将深入探讨随钻测井资料解释方法的研究进展与创新点,包括新型算法的开发、多源信息融合技术的应用以及技术在资料解释中的潜力。
本文将通过具体案例分析,展示随钻测井资料解释方法在实际应用中的效果与价值,为相关领域的科研工作者和工程技术人员提供参考与借鉴。
二、随钻测井资料解释方法基础随钻测井(Logging While Drilling,LWD)是石油勘探领域中的一种重要技术,它通过在钻井过程中实时测量地下岩石的物理性质,为地质评价和油气藏描述提供关键数据。
随钻测井资料解释方法的基础主要建立在对测量数据的准确理解、合理的解释模型以及先进的处理技术上。
随钻测井资料解释需要深入理解各种测井信号的物理含义和影响因素。
例如,电阻率、声波速度、自然伽马等测井参数,它们分别反映了地下岩石的导电性、弹性和放射性等特性。
这些参数的变化不仅与岩石的矿物成分、孔隙度、含油饱和度等地质因素有关,还受到井眼环境、仪器性能等多种因素的影响。
因此,在解释随钻测井资料时,需要充分考虑这些因素,以确保解释的准确性和可靠性。
随钻测井资料解释需要建立合理的解释模型。
这些模型通常基于地质学、地球物理学和石油工程等领域的专业知识,用于将测井数据转化为地质参数和油气藏特征。
例如,通过电阻率测井数据可以推断地层的含油饱和度,通过声波速度测井数据可以估算地层的孔隙度等。
这些模型的建立需要充分考虑地质条件和实际情况,以确保解释的准确性和实用性。
随钻测井资料解释还需要借助先进的处理技术。
随钻测量技术的研究与认识摘要随钻测量技术的发展,是综合了石油钻井行业的多学科,甚至包含测井、录井、地震和地质等多种学科知识的现代化前沿技术。
在实施钻井的同时,可以对井下情况进行及时测量,并根据采集的信息对钻井作业给出综合分析与研究,从而简化钻井作业程序,节省钻井时间,提高钻井作业精度,降低钻井作业成本,使钻井的取向更加正确,特别是在复杂的水平井钻井中,发挥最大的技术优势。
关键词随钻;测量;技术;钻井;分析1 随钻测量技术的发展早在上个世纪30年代,世界上一些钻井技术发达国家就已经提出随钻测量的想法,但由于传输技术的相对滞后,在后续的几十年内,随钻测量技术发展相对滞后。
在上个世纪50年代后期,正脉冲泥浆传输系统的研制成功并得到应用,直到上个世纪70年代,随钻技术由于人们的再认识才得到了充分关注和发展。
上个世纪80年代末,水平井钻井等一批先进的钻井技术和工艺得到跨越式发展,使随钻测量技术得到兴起。
我国从上世纪90年代开始,水平井技术不断成熟与发展,也推动了随钻测量技术的迅速发展。
2 随钻测量技术的分类随钻测量技术就是在钻井过程中利用相应的传感器及时探测钻井过程中所发现的信息,并实时传到地面反馈的有关一系列技术。
需求可分为随钻测井(LWD)、随钻测量(MWD)、地质导向(GST)等,其中MWD的测量工程参数主要包括井斜、钻井方位方向和工具角度;LWD除提供工程参数外还需要地层参数,并且具有方向性判断的功能。
根据信息传输方式的不同,钻井的配套测量技术包括有线随钻、无线随钻和其他方式。
有线随钻,信息传输率高,且可以给井下传感器供电,但给钻井施工带来不便;无线方式又可分为泥浆脉冲式、电磁波式和声波式,泥浆脉冲式最用,也最成熟,但其受泥浆特性的影响,信息延迟较大,电磁波式传输受钻井液特性的影响小,适用于欠平衡钻井,但其最大传输深度受地层电阻率影响较大,声波传输方式等目前的应用还不能形成规模。
3当前钻井技术中随钻测量技术的研究现状近年来,国内外相关企业在随钻测量技术的研究方面也做了大量的艰苦细致的工作,取得了一定的积极成果,特别是中国石油长城钻探工程有限公司作为国内最大的钻井技术施工企业,在国内外钻井市场中,采用定向探管(井斜、方位、工具面测量仪器)已达到国际先进水平。
矿用电磁波随钻方位伽马测井系统的研究与实现汪凯斌【摘要】煤矿井下定向钻进是在螺杆马达和随钻测斜仪的配合下,按照预先设计轨迹进行钻进,不能根据实际的地层情况进行实时调整钻孔轨迹.矿用随钻方位伽马测井仪可实时测量地层放射性,实时依据地层放射性的变化判断钻孔轨迹是否在目的层中,为实时调整钻孔轨迹提供依据.从矿用电磁波随钻方位伽马测井系统(安标名称为YSDGC)的基本原理、关键技术设计、研制、试验设计等几个方面论述了该系统的研究与实现.该系统在煤矿井下的实际应用显示,系统在地层分界面处具有很好的方位伽马方位特性,为煤矿井下定向钻进根据地质情况调整钻进轨迹提供了依据.【期刊名称】《煤田地质与勘探》【年(卷),期】2018(046)003【总页数】7页(P145-151)【关键词】矿用电磁波随钻测井;电磁波无线传输;随钻方位伽马;小信号检测【作者】汪凯斌【作者单位】中煤科工集团西安研究院有限公司,陕西西安710077【正文语种】中文【中图分类】TE91煤矿井下定向钻进广泛应用于煤矿井下瓦斯抽采及地质勘探,煤矿井下定向钻进主要是根据前期探勘的地质情况,设计钻孔轨迹,定向钻机在随钻测斜仪的指导下,调整钻进方向,顺着设计轨迹钻进,在实际钻进中由于地质情况复杂,在钻进过程中需要不停开分支孔以探顶、探底,不能根据实际的地质情况实时调整钻孔轨迹[1-4],目前的定向钻井随钻测量采用的中心通缆方式实现的实时测量,对钻杆要求高[5-6]。
煤矿井下钻孔直径小,仪器必须防爆,因此煤矿井下的测井仪器发展比较缓慢,文献[7-9]介绍了一次性完成钻孔轨迹、自然伽马、电阻率测量的井下仰角钻孔测井系统的研发;马庆勋等[10]研制了集全方位孔斜测量、自然伽马测井、高分辨率视频于一体的推杆式煤矿井下测井系统。
随钻方位伽马测井仪由于其测量数据具有方位特性,可实时监测钻头距离层界面的距离,在石油领域已经具有成熟的应用,但是其直径大、功耗高、不满足煤矿井下防爆要求,不能直接应用于煤矿井下随钻测井[10-13],电磁波无线数据传输在煤矿井下也受诸多因素影响,发展缓慢,煤矿井下是一个布有锚网、锚杆等设施、采煤机、传输带等多种设备共同运行的复杂受限环境,这些因素给矿用电磁波随钻方位伽马测井系统在小型化、低功耗、抗噪等方面提出了更高的要求。