高中物理 2.1 电子教案 教科版选修3-5.doc
- 格式:doc
- 大小:148.50 KB
- 文档页数:2
16.1 实验:探究碰撞中的不变量★新课标要求(一)知识与技能1、明确探究碰撞中的不变量的基本思路.2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法.3、掌握实验数据处理的方法.(二)过程与方法1、学习根据实验要求,设计实验,完成某种规律的探究方法.2、学习根据实验数据进行猜测、探究、发现规律的探究方法。
(三)情感、态度与价值观1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。
2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。
3、在对实验数据的猜测过程中,提高学生合作探究能力。
4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。
★教学重点碰撞中的不变量的探究★教学难点实验数据的处理.★教学方法教师启发、引导,学生自主实验,讨论、交流学习成果。
★教学用具:投影片,多媒体辅助教学设备;完成该实验实验室提供的实验器材,如气垫导轨、滑块等★课时安排1 课时★教学过程(一)引入新课课件演示:(1)台球由于两球碰撞而改变运动状态。
(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子.师:碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化.师:两个物体的质量比例不同时,它们的速度变化也不一样.师:物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒).(二)进行新课1.实验探究的基本思路1.1 一维碰撞师:我们只研究最简单的情况—-两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动.这种碰撞叫做一维碰撞.课件:碰撞演示如图所示,A、B是悬挂起来的钢球,把小球A拉起使其悬线与竖直线夹一角度a,放开后A球运动到最低点与B球发生碰撞,碰后B球摆幅为β角.如两球的质量m A=m B,碰后A球静止,B球摆角β=α,这说明A、B两球碰后交换了速度;如果m A>m B,碰后A、B两球一起向右摆动;如果m A 〈m B ,碰后A 球反弹、B 球向右摆动. 师:以上现象可以说明什么问题?结论:以上现象说明A 、B 两球碰撞后,速度发生了变化,当A 、B 两球的质量关系发生变化时,速度变化的情况也不同.1.2 追寻不变量师:在一维碰撞的情况下与物体运动有关的量只有物体的质量和物体的速度.设两个物体的质量分别为m 1、m 2,碰撞前它们速度分别为v 1、v 2,碰撞后的速度分别为1v '、2v '. 规定某一速度方向为正.碰撞前后速度的变化和物体的质量m 的关系,我们可以做如下猜测:(1)22112211v m v m v m v m '+'=+ (2)222211222211v m v m v m v m '+'=+ (3)22112211m v m v m v m v '+'=+ 分析:①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量”. ②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量. 2.实验条件的保证、实验数据的测量2.1 实验必须保证碰撞是一维的,即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动;2.2 用天平测量物体的质量;2.3 测量两个物体在碰撞前后的速度. 师:测量物体的速度可以有哪些方法? 生:讨论。
高中物理3一5教案课题:激光教学目标:1. 了解激光的基本概念和特性;2. 掌握激光的产生原理和工作原理;3. 能够说明激光在不同领域的应用。
教学重点:1. 激光的特性;2. 激光的产生原理;3. 激光的应用。
教学难点:1. 激光的工作原理;2. 激光在不同领域的应用。
教学过程:一、导入(5分钟)1. 引导学生回顾以前学过的关于光的知识,让学生思考光有哪些特性。
2. 引出激光的概念,让学生猜想激光与普通光有何不同。
二、激光的基本概念和特性(10分钟)1. 给出激光的定义,解释激光的特性,如单色性、准直性、相干性等。
2. 通过实例讲解激光与普通光的区别。
三、激光的产生原理(15分钟)1. 分别介绍激光的产生原理,包括受激辐射和放大原理。
2. 讲解激光发射过程中能级跃迁的过程,引导学生理解激光的产生过程。
四、激光的工作原理(15分钟)1. 通过图示和实例讲解激光器的工作原理,包括激发、放大和反射过程。
2. 引导学生理解如何实现特定波长和能量的激光输出。
五、激光的应用(10分钟)1. 介绍激光在不同领域的应用,如医疗、通信、加工等。
2. 引导学生思考如何应用激光技术解决实际问题。
六、小结(5分钟)1. 总结本节课的重点内容,强化学生对激光的理解。
2. 提出问题让学生思考,鼓励他们在课后继续学习激光相关知识。
教学反思:在设计这节课的教学过程中,我尽量将抽象的概念转化为具体的实例,让学生更容易理解和接受新知识。
但是在教学难点部分,还需要进一步完善,留下更多的例子和练习,以帮助学生更好地掌握激光的工作原理和应用。
第二章原子结构一、电子的发现教学目标1、了解人类认识物质组成的一个重要历史过程——电子的发现2、知道如何确定阴极射线粒子流的电荷的性质,知道如何确定电子的电荷量和质量,知道电子质量和电荷量的大小重点难点重点:阴极射线的研究、电子发现过程蕴含的科学方法难点:汤姆孙发现电子的理论推导设计思想本节由阴极射线和电子的发现两部分内容。
重点是电子的发现过程蕴含的科学方法。
首先通过实验说明阴极射线的存在,然后介绍英国物理学家J.J汤姆孙的两个实验来确定射线的带电性质,最后通过比荷的测定确认电子是原子的组成部分,原子并不是组成物质的最小微粒。
设计时注重物理史实的介绍和研究,突出前人研究的思路和方法。
但由于条件的限制,几乎不可能在课堂上还原相关的实验。
但教师应当通过适当的方式帮助学生理解实验的原理和方法,训练学生科学的思维品质。
教学资源多媒体课件教学设计【课堂引入】很早以来,人们一直认为构成物质的最小粒子是原子,原子是一种不可再分割的粒子。
这种认识一直统治了人类思想近两千年。
直到19世纪末,科学家对实验中的阴极射线深入研究时,发现了电子,使人类对微观世界有了新的认识。
电子的发现是19世纪末、20世纪初物理学三大发现之一。
【课堂学习】学习活动一:阴极射线的研究问题一:射线从何而来的?气体分子在高压电场下可以发生电离,使本来不带电的空气分子变成具有等量正、负电荷的带电粒子,使不导电的空气变成导体。
史料:1858年德国物理学家普吕克尔较早发现了气体导电时的辉光放电现象。
德国物理学家戈德斯坦研究辉光放电现象时认为这是从阴极发出的某种射线引起的。
所以他把这种未知射线称之为阴极射线。
问题二:射线是粒子还是电磁波?带电吗?对于阴极射线的本质,有大量的科学家作出大量的科学研究,主要形成了两种观点。
(1)电磁波说:代表人物,赫兹。
认为这种射线的本质是一种电磁波的传播过程。
(2)粒子说:代表人物,汤姆孙。
认为这种射线的本质是一种高速粒子流。
学案3 动量守恒定律[目标定位] 1.理解系统、内力、外力的概念.2.知道动量守恒定律的内容及表达式,理解其守恒的条件.3.了解动量守恒定律的普遍意义.一、动量守恒定律 [问题设计]在第一节“探究碰撞前后物体动能的变化”得到了如下数据,请接着完成下表.答案 计算结果:①0.1027 ②0.1012 ③0.065 ④0.0644结论:在试验误差允许的范围内,两滑块碰撞前后的总动量保持不变. [要点提炼]1.假如一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变,这就是动量守恒定律.2.动量守恒定律成立的条件:(1)系统不受外力或者所受外力的合力为零.(2)系统外力远小于内力时,外力的作用可以忽视,系统的动量守恒. (3)系统在某个方向上的合外力为零时,系统在该方向上动量守恒. 3.动量守恒定律的表达式:(1)m 1v 1+m 2v 2=m 1v 1′+m 2v 2′(作用前后动量相等). (2)Δp =0(系统动量的增量为零).(3)Δp 1=-Δp 2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反). 二、动量守恒定律的理解和简洁应用 1.动量守恒定律的“五性”(1)系统性:留意推断是哪几个物体构成的系统的动量守恒. (2)矢量性:是矢量式,解题时要规定正方向.(3)相对性:系统中各物体在相互作用前后的速度必需相对于同一惯性系,通常为相对于地面的速度.(4)同时性:初动量必需是各物体在作用前同一时刻的动量;末动量必需是各物体在作用后同一时刻的动量. (5)普适性:不仅适用于两个物体或多个物体组成的系统,也适用于宏观低速物体以及微观高速粒子组成的系统.2.应用动量守恒定律解题的基本思路 (1)明确争辩对象合理选择系统. (2)推断系统动量是否守恒.(3)规定正方向及初、末状态. (4)运用动量守恒定律列方程求解.一、动量守恒的条件推断例1 如图1所示,甲木块的质量为m 1,以v 的速度沿光滑水平地面对前运动,正前方有一静止的、质量为m 2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )图1A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒 答案 C 针对训练如图2所示,光滑水平面上A 、B 两小车间有一弹簧,用手抓住小车并将弹簧压缩后使两小车均处于静止状态.将两小车及弹簧看做一个系统,下列说法正确的是( )图2A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不肯定为零 答案 ACD解析 A 项,在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力)作用,故动量守恒,即系统的总动量始终为零.B 项,先放开左手,再放开右手后,两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的.C 项,先放开左手,系统在右手作用下,产生向左的冲量,故有向左的动量,再放开右手后,系统的动量仍守恒,即此后的总动量向左.D 项,无论何时放开手,只要是两手都放开就满足动量守恒的条件,即系统的总动量保持不变.若两手同时放开,那么放开后系统的总动量就等于放手前的总动量,即为零;若两手先后放开,那么两手都放开后的总动量也是守恒的,但不为零. 二、动量守恒定律的应用例2 质量为3 kg 的小球A 在光滑水平面上以6 m /s 的速度向右运动,恰遇上质量为5 kg 、以4 m/s 的速度向左运动的小球B ,碰撞后B 球恰好静止,求碰撞后A 球的速度.解析 两球在光滑水平面上运动,碰撞过程中系统所受合外力为零,系统动量守恒.取A 球初速度方向为正方向初状态:v A =6 m /s ,v B =-4 m/s 末状态:v B ′=0,v A ′=?(待求) 依据动量守恒定律,有m A v A +m B v B =m A v A ′,得v A ′=m A v A +m B v Bm A ≈-0.67 m/s其中负号表示A 球向左运动 答案 0.67 m/s ,方向向左例3 质量M =100 kg 的小船静止在水面上,船首站着质量m 甲=40 kg 的游泳者甲,船尾站着质量m 乙=60 kg 的游泳者乙,船首指向左方,若甲、乙两游泳者在同一水平线上,甲朝左、乙朝右以3 m/s 的速率跃入水中,则( )A.小船向左运动,速率为1 m/sB.小船向左运动,速率为0.6 m/sC.小船向右运动,速率大于1 m/sD.小船仍静止解析 设水平向右为正方向,两游泳者同时跳离小船后小船的速度为v ,依据甲、乙两游泳者和小船组成的系统动量守恒有-m 甲v 甲+m 乙v 乙+M v =0,代入数据,可得v =-0.6 m/s ,其中负号表示小船向左运动,所以选项B 正确. 答案 B动量,守恒,定律⎩⎪⎨⎪⎧动量守恒的条件动量守恒的表达式⎩⎪⎨⎪⎧ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′Δp =0Δp 1=-Δp 21.(动量守恒的条件推断)把一支枪水平固定在小车上,小车放在光滑的水平面上,枪放射出一颗子弹时,关于枪、子弹和车,下列说法中正确的是( ) A.枪和子弹组成的系统动量守恒 B.枪和小车组成的系统动量守恒C.三者组成的系统由于枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可忽视不计,故系统动量近似守恒D.三者组成的系统动量守恒,由于系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零 答案 D解析 由于枪水平放置,故三者组成的系统除受重力和支持力(两外力平衡)外,无其他外力,动量守恒.子弹和枪筒之间的力应为系统的内力,对系统的总动量没有影响.故选项C 错误.分开枪和小车,则枪和子弹组成的系统受到小车对其的外力作用,小车和枪组成的系统受到子弹对其外力作用,动量都不守恒,正确答案为选项D.2.(动量守恒的条件推断)图3如图3所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为争辩对象(系统),则此系统在从子弹开头射入木块到弹簧压缩至最短的整个过程中( ) A.动量守恒、机械能守恒 B.动量不守恒、机械能不守恒 C.动量守恒、机械能不守恒。
第1节碰__撞( 对应学生用书页码P1 )一、碰撞现象1、碰撞做相对运动的两个( 或几个)物体相遇而发生相互作用,运动状态发生改变的过程。
2、碰撞特点( 1 )时间特点:在碰撞过程中,相互作用时间很短。
( 2 )相互作用力特点:在碰撞过程中,相互作用力远远大于外力。
( 3 )位移特点:在碰撞过程中,物体发生速度突变时,位移极小,可认为物体在碰撞前后仍在同一位置。
试列举几种常见的碰撞过程。
提示:棒球运动中,击球过程;子弹射中靶子的过程;重物坠地过程等。
二、用气垫导轨探究碰撞中动能的变化1、实验器材气垫导轨,数字计时器、滑块和光电门,挡光条和弹簧片等。
2、探究过程( 1 )滑块质量的测量仪器:天平。
( 2 )滑块速度的测量仪器:挡光条及光电门。
( 3 )数据记录及分析,碰撞前、后动能的计算。
三、碰撞的分类1、按碰撞过程中机械能是否损失分为:( 1 )弹性碰撞:碰撞过程中动能不变,即碰撞前后系统的总动能相等,E k1+E k2=E k1′+E k2′。
( 2 )非弹性碰撞:碰撞过程中有动能损失,即动能不守恒,碰撞后系统的总动能小于碰撞前系统的总动能。
E k1′+E k2′<E k1+E k2。
( 3 )完全非弹性碰撞:碰撞后两物体黏合在一起,具有相同的速度,这种碰撞动能损失最大。
2、按碰撞前后,物体的运动方向是否沿同一条直线可分为: ( 1 )对心碰撞( 正碰 ):碰撞前后,物体的运动方向沿同一条直线。
( 2 )非对心碰撞( 斜碰 ):碰撞前后,物体的运动方向不在同一直线上。
( 高中阶段只研究正碰 )。
( 对应学生用书页码P1 )探究一维碰撞中的不变量1.探究方案方案一:利用气垫导轨实现一维碰撞 ( 1 )质量的测量:用天平测量。
( 2 )速度的测量:v =Δx Δt ,式中Δx 为滑块( 挡光片 )的宽度,Δt 为数字计时器显示的滑块( 挡光片 )经过光电门的时间。
( 3 )各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量。
碰撞与动量守恒复习学习目标1.进一步理解碰撞的基本概念,学会利用碰撞模型解决生活中的问题2.进一步生疏动量守恒定律,能结合能量规律求解简洁的综合题3.进一步增加问题意识,提高分析问题、解决问题的力量重点难点重点:运用动量守恒定律解决实际问题难点:临界问题设计思想通过本节课的学习,使同学对碰撞和动量守恒的规律有进一步的生疏,能综合运用牛顿运动定律、动能定理解决简洁的综合题,能够运用动量守恒定律解决新情景中的问题,更加体会到守恒的思想在物理学中的重要作用,进一步提高分析问题和解决问题的力量。
教学资源多媒体课件教学设计【课堂学习】学习活动一:基本概念和基本规律问题1:系统、内力和外力的概念。
问题2:动量和动能的区分和联系。
问题3:什么是碰撞?碰撞的分类?问题4:动量守恒的条件是什么?什么是动量守恒定律的矢量性?问题5:何为反冲?它满足哪些物理规律学习活动二:碰撞后速度的可能性分析例题1:质量为m的小球A,沿光滑水平面以速度v0与质量为2m的静止小球B发生正碰,碰撞后,A球的动能变为原来的1/9,那么小球B的速度可能是( )A.13v0 B.23v0 C.49v0 D.59v0分析争辩碰撞中应遵循的三个原则1.系统动量守恒的原则:两个物体碰撞前后系统的总动量保持不变,符合m1v1+m2v2=m1v1′+m2v2′,或p1+p2=p1′+p2′.2.不违反能量守恒的原则:碰撞后系统的总动能不大于碰撞前的总动能,满足1 2m1v21+12m2v22≥12m1v1′2+12m2v2′2或p212m1+p222m2≥p1′22m1+p2′22m2.3.物理情景可行性原则:碰撞问题的解要符合物理实际.(1)若为追及碰撞,碰撞前在后面运动的物体的速度肯定大于在前面运动的物体的速度(否则不能发生碰撞),且碰后在前面运动物体的速度肯定增大.(2)若碰撞后两物体同向运动,则在前面运动的物体的速度肯定不小于在后面运动的物体的速度(否则还要发生碰撞).(3)若要物体相向碰撞,则不行以消灭跨跃过另一物体连续向前运动的状况.【答案】AB学习活动三:人船模型例题2:质量为M、长为L的船静止在静水中,船头及船尾各站着质量分别为m1及m2的人,当两人互换位置后,船的位移有多大?【分析】“人船模型”的特点:两个物体均处于静止,当两个物体存在相互作用而不受外力作用时,系统动量守恒,所以本质上也是反冲模型.这类问题的特点:两物体同时运动,同时停止.绳梯等均属于“人船模型”.【解析】利用“人船模型”易求得船的位移大小为:2121)(mmMLmmS++-=.提示:若m1>m2,本题可把(m1-m2)等效为一个人,把(M+2m2)看着船,再利用人船模型进行分析求解较简便.应当留意到:此结论与人在船上行走的速度大小无关.不论是匀速行走还是变速行走,甚至来回行走,只要人最终到达船的左端,那么结论都是相同的.以上所列举的人、船模型的前提是系统初动量为零.假如发生相互作用前系统就具有肯定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0=m1v1+m2v2列式.学习活动四:完全非弹性碰撞模型例题3:如图所示,质量为M的车厢静止在光滑的水平面上,车厢内有一质量为m的滑块,以初速度v0在车厢地板上向右运动,与车厢两壁发生若干次碰撞,最终静止在车厢中,则车厢最终的速度是()A.0B.v0,方向水平向右C.mv0M+m,方向肯定水平向右D.mv0M+m,方向可能是水平向左解析:对m和M组成的系统,水平方向所受的合外力为零,动量肯定守恒,由mv0=(M+m)v可得;车厢最终的速度为mv0M+m,方向肯定水平向右,所以C选项正确.答案:C学习活动五:临界问题例题4:甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6 m/s.甲车上有质量为m=1 kg 的小球若干个,甲和他的车及所带小球的总质量为M1=50 kg,乙和他的车总质量为M2=30 kg.现为避开相撞,甲不断地将小球以相对地面16.5 m/s的水平速度抛向乙,且被乙接住.假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,此时:(1)两车的速度各为多少? (2)甲总共抛出了多少个小球?解:两车刚好不相撞的条件是某次甲抛出球后的速度与乙接住该球后的速度相等.无论是甲抛球的过程,还是乙接球的过程,或是整个过程动量均守恒.(1)甲、乙两小孩及两车组成的系统总动量守恒沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞.设共同速度为v,则M1v1-M2v1=(M1+M2)vv=M1-M2M1+M2v1=2080×6 m/s=1.5 m/s.(2)这一过程中乙小孩及车的动量变化为Δp=30×6-30×(-1.5)=225(kg·m/s)每一个小球被乙接收后,最终的动量变化为Δp 1=16.5×1-1.5×1=15(kg·m/s)故小球个数为n =Δp Δp 1=22515=15(个).【答案】 (1)v 甲=v 乙=1.5 m/s (2)15个随堂训练:【2021天津-9】如图所示,在光滑水平面的左侧固定一竖直挡板,A 球在水平面上静止放置.B 球向左运动与A 球发生正碰,B 球碰撞前、后的速率之比为3:1,A 球垂直撞向挡板,碰后原速率返回。
实验:探究碰撞中的不变量★新课标要求(一)知识与技能1、明确探究碰撞中的不变量的基本思路.2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法.3、掌握实验数据处理的方法.(二)过程与方法1、学习根据实验要求,设计实验,完成某种规律的探究方法。
2、学习根据实验数据进行猜测、探究、发现规律的探究方法。
(三)情感、态度与价值观1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。
2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。
3、在对实验数据的猜测过程中,提高学生合作探究能力。
4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。
★教学重点碰撞中的不变量的探究★教学难点实验数据的处理.★教学方法教师启发、引导,学生自主实验,讨论、交流学习成果。
★教学用具:投影片,多媒体辅助教学设备;完成该实验实验室提供的实验器材,如气垫导轨、滑块等★课时安排1 课时★教学过程(一)引入新课课件演示:(1)台球由于两球碰撞而改变运动状态。
(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子.师:碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化.师:两个物体的质量比例不同时,它们的速度变化也不一样.师:物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒).(二)进行新课 1.实验探究的基本思路 1.1 一维碰撞师:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动.这种碰撞叫做一维碰撞. 课件:碰撞演示如图所示,A 、B 是悬挂起来的钢球,把小球A 拉起使其悬线与竖直线夹一角度a ,放开后A 球运动到最低点与B 球发生碰撞,碰后B 球摆幅为β角.如两球的质量m A =m B ,碰后A 球静止,B 球摆角β=α,这说明A 、B 两球碰后交换了速度;如果m A >m B ,碰后A 、B 两球一起向右摆动; 如果m A <m B ,碰后A 球反弹、B 球向右摆动. 师:以上现象可以说明什么问题?结论:以上现象说明A 、B 两球碰撞后,速度发生了变化,当A 、B 两球的质量关系发生变化时,速度变化的情况也不同.1.2 追寻不变量师:在一维碰撞的情况下与物体运动有关的量只有物体的质量和物体的速度. 设两个物体的质量分别为m 1、m 2,碰撞前它们速度分别为v 1、v 2,碰撞后的速度分别为1v '、2v '. 规定某一速度方向为正.碰撞前后速度的变化和物体的质量m 的关系,我们可以做如下猜测:(1)22112211v m v m v m v m '+'=+ (2)222211222211v m v m v m v m '+'=+ (3)22112211m v m v m v m v '+'=+ 分析:①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量”. ②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量.2.实验条件的保证、实验数据的测量2.1 实验必须保证碰撞是一维的,即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动;2.2 用天平测量物体的质量;2.3 测量两个物体在碰撞前后的速度.师:测量物体的速度可以有哪些方法?生:讨论。
学案4原子核的结合能[目标定位] 1.理解原子核的结合能的概念.2.知道质量亏损的概念,了解爱因斯坦的质能方程.3.学会依据质能方程和质量亏损的概念进行核能的计算.一、结合能和比结合能[问题设计]1.设有一个质子和一个中子在核力作用下靠近碰撞并结合成一个氘核.质子和中子结合成氘核的过程是释放能量还是吸取能量?使氘核分解为质子和中子的过程呢?答案质子和中子结合成原子核的过程要释放能量;氘核分解成核子时要吸取能量.2.如图1所示,是不同原子核的比结合能随核子数变化的曲线.图1(1)从图中看出,中等质量的原子核与重核、轻核相比比结合能有什么特点?比结合能的大小反映了什么?(2)比结合能较小的原子核转化为比结合能较大的原子核时是吸取能量还是放出能量?答案(1)中等质量的原子核比结合能较大,比结合能的大小反映了原子核的稳定性,比结合能越大,原子越稳定.(2)放出能量.[要点提炼]1.结合能:核子结合成原子核时释放的能量或原子核分解为核子时吸取的能量叫做原子核的结合能.2.比结合能:原子核的结合能与核子数之比,称为原子核的比结合能.比结合能越大,核就越稳定.3.比结合能曲线由原子核的比结合能曲线可以看出:第一,比结合能越大,取出一个核子就越困难,核就越稳定,比结合能是原子核稳定程度的量度;其次,曲线中间高两头低,说明中等质量的原子核的比结合能最大,近似于一个常数,表明中等质量的核最稳定;第三,质量较大的重核和质量较小的轻核比结合能都较小,且轻核的比结合能还有些起伏.[延长思考]重核分裂为两个质量较小的原子核的过程,是吸取能量还是释放能量?两个轻核结合成质量较大的原子核时,是吸取能量还是释放能量?答案都释放能量.二、原子核结合能的计算[问题设计]1.用α粒子轰击铍(94Be)核发觉中子的核反应方程94Be+42He→12 6C+10n甲同学说:核反应过程中核子数没变,所以质量是守恒的;乙同学查找资料,各个原子核或核子的质量如下:m Be=9.012 19 u,m C=12.000 u,mα=4.002 6 u,m n=1.008 665 u.(其中1 u=1.660 566×10-27 kg),他通过计算发觉反应之后的质量削减了,于是他得出结论:核反应过程中质量消逝了.这两个同学的说法对吗?假如不对错在哪里?你对质量亏损是如何理解的?答案甲同学的说法错误.核反应过程中质量数守恒而不是质量守恒;乙同学的说法错误.质量亏损并不是质量的消逝.对质量亏损的理解(1)在核反应中仍遵守质量守恒和能量守恒,所谓的质量亏损并不是这部分质量消逝或质量转变为能量.物体的质量应包括静止质量和运动质量,质量亏损是静止质量的削减,削减的静止质量转化为和辐射能量相联系的运动质量.(2)质量亏损也不是核子个数的削减,核反应中核子个数是不变的.2.试推断上述核反应过程中是释放能量,还是吸取能量?并计算能量变化了多少?答案释放能量.反应前的总质量m1=m Be+mα=9.012 19 u+4.002 6 u=13.014 79 u反应后的总质量m2=m C+m n=12.000 u+1.008 665 u=13.008 665 u所以质量亏损Δm=m1-m2=13.014 79 u-13.008 665 u=0.006 125 u.释放的能量ΔE=Δmc2=0.006 125 u c2=0.006 125×1.660 566×10-27×(3×108)2 J≈9.15×10-13 J≈5.719 MeV.[要点提炼]1.对质能方程和质量亏损的理解(1)质能方程质能方程:爱因斯坦的相对论指出,物体的能量和质量之间存在着亲密的联系,其关系是E=mc2.(2)质量亏损质量亏损,并不是质量消逝,削减的质量在核子结合成核的过程中以能量的形式辐射出去了.物体质量增加,则总能量随之增加;质量削减,总能量也随之削减,这时质能方程也写作ΔE =Δmc2.2.核能的计算(1)依据质量亏损计算①依据核反应方程,计算核反应前后的质量亏损Δm.②依据爱因斯坦质能方程ΔE=Δmc2计算核能.其中Δm的单位是千克,ΔE的单位是焦耳.(2)利用原子质量单位u 和电子伏特计算依据1原子质量单位(u)相当于931.5 MeV的能量,用核子结合成原子核时质量亏损的原子质量单位数乘以931.5 MeV,即ΔE=Δm×931.5 MeV.其中Δm的单位是u,ΔE的单位是MeV.一、结合能和比结合能例1下列关于结合能和比结合能的说法中,正确的有()A.核子结合成原子核吸取的能量或原子核分解成核子放出的能量称为结合能B.比结合能越大的原子核越稳定,因此它的结合能也肯定越大C.重核与中等质量原子核相比较,重核的结合能和比结合能都大D.中等质量原子核的结合能和比结合能均比轻核的要大解析核子结合成原子核放出能量,原子核分解成核子吸取能量,A选项错误;比结合能越大的原子核越稳定,但比结合能大的原子核,其结合能不肯定大,例如中等质量原子核的比结合能比重核大,但由于核子数比重核少,其结合能比重核反而小,B、C选项错误;中等质量原子核的比结合能比轻核的大,它的原子核内核子数又比轻核多,因此它的结合能也比轻核大,D选项正确.答案D例2使一个质子和一个中子结合成氘核时,会放出2.2 MeV的能量,则下列说法正确的是()A.用能量小于2.2 MeV的光子照射静止氘核时,氘核不能分解为一个质子和一个中子B.用能量等于2.2 MeV的光子照射静止氘核时,氘核可能分解为一个质子和一个中子,它们的动能之和为零C.用能量大于2.2 MeV的光子照射静止氘核时,氘核可能分解为一个质子和一个中子,它们的动能之和为零D.用能量大于2.2 MeV的光子照射静止氘核时,氘核可分解为一个质子和一个中子,它们的动能之和不为零解析中子和质子结合成氘核所释放的能量或氘核分解成中子和质子所吸取的能量都相等,即为此反应的结合能,只有光子能量大于或等于结合能,才能使它们分解.又由于中子和质子不行能没有速度,所以动能之和不行能为零(若动能之和为零就分不开了),所以A、D正确.答案AD二、质量亏损和核能的计算例3氘核和氚核聚变时的核反应方程为21H +31H→42He+10n,已知21H的平均结合能是1.09 MeV,31H的平均结合能是2.78 MeV,42He的平均结合能是7.03 MeV,则该核反应释放的能量为________ MeV.解析聚变反应前氘核和氚核的总结合能E1=(1.09×2+2.78×3) MeV=10.52 MeV.反应后生成的氦核的结合能E2=7.03×4 MeV=28.12 MeV.由于单个核子无结合能,所以聚变过程释放出的能量为ΔE=E2-E1=(28.12-10.52) MeV=17.6 MeV.答案17.61.(对结合能的理解)关于原子核的结合能,下列说法正确的是()A.原子核的结合能等于使其完全分解成自由核子所需的最小能量B.一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和肯定大于原来重核的结合能C.铯原子核(133 55Cs)的结合能小于铅原子核(208 82Pb)的结合能D.比结合能越大,原子核越不稳定答案ABC解析结合能是把核子分开所需的最小能量,选项A正确;一重原子核衰变成α粒子和另一原子核,存在质量亏损,核子比结合能增大,衰变产物的结合能之和肯定大于原来重核的结合能,选项B正确;核子数越多,。
第一章动量守恒研究新课标要求(1)探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞;(2)通过实验,理解动量和动量守恒定律,能用动量守恒定律定量分析一维碰撞问题,知道动量守恒定律的普遍意义;例1:火箭的发射利用了反冲现象。
例2:收集资料,了解中子是怎样发现的。
讨论动量守恒定律在其中的作用。
(3)通过物理学中的守恒定律,体会自然界的和谐与统一。
第二节动量和动量定理三维教学目标1、知识与技能:知道动量定理的适用条件和适用范围;2、过程与方法:在理解动量定理的确切含义的基础上正确区分动量改变量与冲量;3、情感、态度与价值观:培养逻辑思维能力,会应用动量定理分析计算有关问题。
教学重点:动量、冲量的概念和动量定理。
教学难点:动量的变化。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
1、动量及其变化(1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。
记为p=mv 单位:kg·m/s读作“千克米每秒”。
理解要点:①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。
大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念。
②矢量性:动量的方向与速度方向一致。
综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。
(2)动量的变化量:1、定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。
2、指出:动量变化△p是矢量。
方向与速度变化量△v相同。
一维情况下:Δp=mΔυ= mυ2- mΔυ 1 矢量差例1:一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?2、动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化(2)公式:Ft =m'v-mv ='p-p让学生来分析此公式中各量的意义:其中F是物体所受合外力,mv是初动量,m'v是末动量,t是物体从初动量变化到末动量所需时间,也是合外力F作用的时间。
16.1 实验:探究碰撞中的不变量★新课标要求(一)知识与技能1、明确探究碰撞中的不变量的基本思路.2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法.3、掌握实验数据处理的方法.(二)过程与方法1、学习根据实验要求,设计实验,完成某种规律的探究方法。
"2、学习根据实验数据进行猜测、探究、发现规律的探究方法。
(三)情感、态度与价值观1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。
2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。
3、在对实验数据的猜测过程中,提高学生合作探究能力。
4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。
★教学重点碰撞中的不变量的探究^★教学难点实验数据的处理.★教学方法教师启发、引导,学生自主实验,讨论、交流学习成果。
★教学用具:投影片,多媒体辅助教学设备;完成该实验实验室提供的实验器材,如气垫导轨、滑块等★课时安排1 课时)★教学过程(一)引入新课课件演示:(1)台球由于两球碰撞而改变运动状态。
(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子. 师:碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化.师:两个物体的质量比例不同时,它们的速度变化也不一样.师:物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒).<(二)进行新课1.实验探究的基本思路 1.1 一维碰撞师:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动.这种碰撞叫做一维碰撞. 课件:碰撞演示如图所示,A 、B 是悬挂起来的钢球,把小球A 拉起使其悬线与竖直线夹一角度a ,放开后A 球运动到最低点与B 球发生碰撞,碰后B 球摆幅为β角.如两球的质量m A =m B ,碰后A 球静止,B 球摆角β=α,这说明A 、B 两球碰后交换了速度;如果m A >m B ,碰后A 、B 两球一起向右摆动;《如果m A <m B ,碰后A 球反弹、B 球向右摆动. 师:以上现象可以说明什么问题结论:以上现象说明A 、B 两球碰撞后,速度发生了变化,当A 、B 两球的质量关系发生变化时,速度变化的情况也不同.1.2 追寻不变量师:在一维碰撞的情况下与物体运动有关的量只有物体的质量和物体的速度. 设两个物体的质量分别为m 1、m 2,碰撞前它们速度分别为v 1、v 2,碰撞后的速度分别为1v '、2v '. 规定某一速度方向为正.碰撞前后速度的变化和物体的质量m 的关系,我们可以做如下猜测:(1)22112211v m v m v m v m '+'=+(2)222211222211v m v m v m v m '+'=+ (3)22112211m v m v m v m v '+'=+ 分析:①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量”. ②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量. 2.实验条件的保证、实验数据的测量;2.1 实验必须保证碰撞是一维的,即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动;2.2 用天平测量物体的质量; 2.3 测量两个物体在碰撞前后的速度. 师:测量物体的速度可以有哪些方法 生:讨论。
2.1 电子
三维教学目标 1、知识与技能
(1)了解阴极射线及电子发现的过程;
(2)知道汤姆孙研究阴极射线发现电子的实验及理论推导。
2、过程与方法:培养学生对问题的分析和解决能力,初步了解原子不是最小不可分割的粒子。
3、情感、态度与价值观:理解人类对原子的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程,根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说。
人类就是这样通过光的行为,经过分析和研究,逐渐认识原子的。
教学重点:阴极射线的研究。
教学难点:汤姆孙发现电子的理论推导。
教学方法:实验演示和启发式综合教学法。
教学用具:投影片,多媒体辅助教学设备。
(一)引入新课
很早以来,人们一直认为构成物质的最小粒子是原子,原子是一种不可再分割的粒子。
这种认识一直统治了人类思想近两千年。
直到19世纪末,科学家对实验中的阴极射线深入研究时,发现了电子,使人类对微观世界有了新的认识。
电子的发现是19世纪末、20世纪初物理学三大发现之一。
(二)进行新课 1、阴极射线
气体分子在高压电场下可以发生电离,使本来不带电的空气分子变成具有等量正、负电荷的带电粒子,使不导电的空气变成导体。
问题:是什么原因让空气分子变成带电粒子的?带电粒子从何而来的?
史料:科学家在研究气体导电时发现了辉光放电现象。
1858年德国物理学家普吕克尔较早发现了气体导电时的辉光放电现象。
德国物理学家戈德斯坦研究辉光放电现象时认为这是从阴极发出的某种射线引起的。
所以他把这种未知射线称之为阴极射线。
对于阴极射线的本质,有大量的科学家作出大量的科学研究,主要形成了两种观点。
(1)电磁波说:代表人物,赫兹。
认为这种射线的本质是一种电磁波的传播过程。
(2)粒子说:代表人物,汤姆孙。
认为这种射线的本质是一种高速粒子流。
思考:你能否设计一个实验来进行阴极射线的研究,能通过实验现象来说明这种射线是一种电磁波还是一种高速粒子流。
如果出现什么样的现象就可以认为这是一种电磁波,如果出现其他什么样的现象就可以认为这是一种高速粒子流,并能否测定这是一种什么粒子。
2、汤姆孙的研究
英国物理学家汤姆孙在研究阴极射线时发现了电子。
实验装置如图所示,从高压电场的阴极发出的阴极射线,穿过C 1C 2后沿直线打在荧光屏A '上。
(1)当在平行极板上加一如图所示的电场,发现阴极射线打在荧光屏上的位置向下偏,则可
C C 1 C 2 Y
'
S + 磁场
判定,阴极射线带有负电荷。
(2)为使阴极射线不发生偏转,则请思考可在平行极板区域采取什么措施。
在平行极板区域加一磁场,且磁场方向必须垂直纸面向外。
当满足条件:qE B qv =0 时,则阴极射线不发生偏转。
则:B
E
v =
0 (3)根据带电的阴极射线在电场中的运动情况可知,其速度偏转角为:2
tan mv qEL
=
θ 又因为:)2(tan L D y +
=
θ
且B E
v =0
则:L
B L D Ey m
q 2)2
(+=
根据已知量,可求出阴极射线的比荷。
思考:利用磁场使带电的阴极射线发生偏转,能否根据磁场的特点和带电粒子在磁场中的运动规律来计算阴极射线的比荷?
汤姆孙发现,用不同材料的阴极和不同的方法做实验,所得比荷的数值是相等的。
这说明,这种粒子是构成各种物质的共有成分。
并由实验测得的阴极射线粒子的比荷是氢离子比荷的近两千倍。
若这种粒子的电荷量与氢离子的电荷量机同,则其质量约为氢离子质量的近两千分之一。
汤姆孙后续的实验粗略测出了这种粒子的电荷量确实与氢离子的电荷量差别不大,证明了汤姆孙的猜测是正确的。
汤姆生把新发现的这种粒子称之为电子。
电子的电荷量 e =1.60217733×10-19
C
第一次较为精确测量出电子电荷量的是美国物理学家密立根利用油滴实验测量出的。
密立根通过实验还发现,电荷具有量子化的特征。
即任何电荷只能是e 的整数倍。
电子的质量 m
=9.1093897×10-31
kg 课堂例题
例题1:一只阴极射线管,左侧不断有电子射出,若在管的正下方,放一通电直导线AB 时,发现射线径迹向下偏,则:( )
A .导线中的电流由A 流向B
B .导线中的电流由B 流向A
C .若要使电子束的径迹往上偏,可以通过改变AB 中的电流方向
来实现
D .电子束的径迹与AB 中的电流方向无关
例题2:有一电子(电荷量为e )经电压为U0的电场加速后,进入两块间距为d ,电压为U 的平行金属板间,若电子从两板正中间垂直电场方向射入,且正好能穿过电场,求: (1)金属板AB 的长度
(2)电子穿出电场时的动能
L
萤幕 D
S S
O 电场E A y +
- e m
y 1 y 2 + v 0 v
A
B A B 0
v 0
- - - -。