高中数学知识点:椭圆、双曲线、抛物线的标准方程与几何性质
- 格式:doc
- 大小:13.05 KB
- 文档页数:2
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。
2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。
3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。
二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。
2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。
3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。
三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。
2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。
3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。
四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。
2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。
3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。
五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。
第1节 椭圆【知识梳理】1.椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(12122PF PF a F F +=>),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 若1212PF PF F F +=,则动点P 的轨迹为线段12F F ;若1212PF PF F F +<,则动点P 的轨迹无图形.2.椭圆的标准方程与几何性质 3.椭圆的通径以及有关最值过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a .①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点. ②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c −.[使用点到点的距离公式证明] 4.点与椭圆的位置关系对于椭圆22221(0)x y a b a b+=>>,点00()P x y ,在椭圆内部,等价于2200221x y a b +<,点00()P x y ,在椭圆外部,等价于2200221x y a b+>.5.椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)1(0)F c −,,2(0F证明:设12,PF m PF n ==()()()()()()122222221222cos 2121cos 1sin 32F PF m n a b c m n mn mn S mn θθθ+==+−−= + = ,: 1222222sin cossin 22tan 1cos 22cos 2F PF S b b b θθθθθθ⇒=⋅=⋅=+ .6.椭圆的切线(1)椭圆22221(0)x y a b a b +=>>上一点00()P x y ,处的切线方程是00221x x y y a b+=; (2)过椭圆22221(0)x y a b a b +=>>外一点00()P x y ,,所引两条切线的切点弦方程是00221x x y ya b+=; (3)椭圆 22221(0)x y a b a b+=>>与直线0Ax By C ++= 相切的条件是22222A a B b c +=.第二讲 双曲线【知识梳理】1.双曲线定义在平面内,到两个定点1F 、2F 的距离之差的绝对值等于常数2a (a 大于0且122a F F <)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲1(0)F c −,,2(0)F c ,1(0)F c −,,F 2|2(F c c a b ==+12||2(F F c c =={y y a y a 或≤−≥轴和原点对称2.双曲线的通径过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为22ba .3.点与双曲线的位置关系对于双曲线22221(0)x y a b a b −=>>,点00()P x y ,在双曲线内部,等价于2200221x y a b−>.点00()P x y ,在双曲线外部,等价于2200221x y a b −<结合线性规划的知识点来分析.4.双曲线常考性质性质一 双曲线的焦点到两条渐近线的距离为常数b ;顶点到两条渐近线的距离为常数ab c; [使用点到直线的距离公式即可证明]性质二 双曲线上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数222a b c;证明 设11()P x y ,是双曲线22221(0)x y a b a b−=>>上任意一点,该双曲线的两条渐近线方程分别是0ay bx −=和0ay bx +=,点11()P x y ,和222a b c =. 5. 双曲线焦点三角形面积为2tan 2b θ(可以这样理解,顶点越高,张角越小,分母越小,面积越大)6. 双曲线的切线点00()M x y ,在双曲线22221x y a b−=(00)a b ,>>上,过点M 作双曲线的切线方程为00221x x y y a b−=.若点00()M x y ,在双曲线22221x y a b −=(00)a b ,>>外,则点M 对应切点弦方程为00221x x y ya b −=第3节 抛物线【知识梳理】1.抛物线定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 22(0)y px p =>22(0)y px p =−>22(0)x py p =>22(0)x py p =−>0),0y ≥,x R ∈0y ≤,x R ∈ 所以p 的值永远大于0.另外,焦半径使用定义即可证明.3.抛物线的通径过焦点且垂直于抛物线对称轴的弦叫做抛物线的通径.对于抛物线22(0)y px p =>,由()2pA p ,,()2p B p −,,可得||2AB p =,故抛物线的通径长为2p .4.弦的中点坐标与弦所在直线的斜率的关系:0p y k =证明(点差法):设11()A x y ,,22()B x y ,为抛物线22(0)y px p =>上两点,则2112y px =,2222y px =作差得21211202y y p px x y y y −==−+,其中00()M x y ,是AB 中点.或者说,若设AB 的斜率为k ,则AB 中点纵坐标0py k=.[焦点在y 轴上的抛物线,同理]111||[||||][||||]||222MN AC BD AF BF AB =+=+=,90ANB ∠=°,故以AB 为直径的圆与准线l 相切.设E 是AF 的中点,则E 的坐标为11222p x y +(,),则点E 到y 轴的距离为12221AF p x d =+= 故以AF 为直径的圆与y 轴相切,同理以BF 为直径的圆与y 轴相切.(2)在ACN △与AFN △中,||||||||AN AN AC AF ==,;在Rt ABN △中,NAM ANM ∠=∠90CAN ANM ACN AFN AFN ACN FN AB ∠=∠∠=∠=°⊥,△≌△,因为2()D p y F −=,,1()C p y F −=,,所以212+=0DF CF p y y =,所以FC FD ⊥.(3)设直线AB 的方程为2p x ty =+与抛物线22y px =联立得:22()2py p ty =+,即2220y pty p −−=,故212y y p =−,2221212224y y p x x p p ==. (4)11211122OA y y p k y x y p===,2222212122222OD y y py py pk p p p y y y ==−=−==−,则A 、O 、C 三点共线,同理B 、O 、C 三点共线.上述证明方式并非唯一,多种方法均可证明,不再赘述.6.抛物线的切线问题点00()M x y ,在抛物线22y px =(0)p >上,过点M 作抛物线的切线方程为00()y yp x x =+.点00()M x y ,在抛物线22y px =(0)p >外,过点M 对应切点弦方程为00()y yp x x =+. 点00()M x y ,在抛物线22x py =(0)p >内,过点M 作抛物线的弦AB ,分别过A B 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线00()x xp y y =+.第4节 焦长与焦半径体系【知识梳理—椭圆篇】1.焦半径公式设椭圆22221(00)x y a b a b +=>>,的右焦点为2(0)F c ,,11()A x y ,是椭圆上任意一点,则21212222121222221221212121222)1(2)(a cx x ac c b cx x a b a ax b c cx x y c x AF +−=++−−=−++−=+−=11cax a ex a=−=−.其中e 为椭圆的离心率,焦半径公式也可由第二定义快速得到2211()a AF e x a ex c=−=−,同理可以推出其他焦半径公式.焦点在y 轴上的椭圆和双曲线的时候,同理也可推出焦半径公式.总结:在椭圆和双曲线中,11()A x y ,到焦点的距离为1AF a ex =±(焦点在x 轴上) 1AF a ey =±(焦点在y 轴上)[长短记忆法:画图看长短来判断谁加谁减.] [口诀记忆法: 左加右减,上加下减,长正短负]焦半径范围:根据公式21AF a ex =−里面坐标x 1的范围,可得2AF 的范围为2a c AF a c −≤≤+. 2.焦点弦长公式椭圆焦点弦长公式.在椭圆22221(0)x y a b a b+=>>中,结合椭圆的焦点弦公式,过右焦点F的弦长为221212 ||()()2()a aMN e x e x a e x x c c =−+−=−+.3.椭圆焦长以及焦比问题焦长公式:A 是椭圆22221(0)x y a b a b+=>>上一点,1F 、2F 是左、右焦点,12AF F ∠为α,AB过1F ,c 是椭圆半焦距,则:(1)21||cos b AF a c α=−;(2)21||cos b BF a c α=+;(3)2222222222||cos sin ab ab AB a c b c αα==−+.图1-1-1证明 (1)如图1-1-1所示,12||||2AF AF a +=;12||||2BF BF a +=,故22||||||4AB AF BF a ++=; (2)设1||AF m =,1||BF n =,2||2AF a m =-,2||2BF a n =-,由余弦定理得 222(2)(2)2(2)cos m c a m m c α+--=⋅;整理得21||cos b AF a c α=-① 同理:222(2)(2)2(2)cos(180)n c a n n c α︒+--=⋅-;整理得21||cos b BF a c α=+②①+②得,则过焦点的弦长:2222222222||cos sin ab ab AB m n a c b c αα=+==-+③焦比定理 过椭圆22221x y a b +=的左焦点1F 的弦21||cos b AF a c α=−,21||cos b BF a c α=+,令11||||AF F B λ=,即221cos cos cos 1b b e ac a c λλαααλ-=⇒=-++④,代入焦长公式①可得21(1)||2b AF aλ+=⑤.推论 根据公式1cos 1e λαλ-=+,利用tan k α=把角度替换掉可以得到e =注意:1.整个焦长体系只需要记住上面~①⑤的公式,其他要熟悉推导,涉及到的面积问题记住是焦长当底即可;当直线过右焦点,或者上焦点、下焦点时,要熟悉此时的公式会如何变化,详见后面记忆方法处.2.学习焦长焦比体系要非常熟悉推导过程[定义+余弦定理+abc 的平方关系],在处理解答题的时候,若用本模块公式到必须给出必要证明.3.公式1cos 1e λαλ-=+和21(1)||2b AF a λ+=这两个公式属于结论公式,一般用上能很快解题,所以在解小题的时候要优先考虑这两个公式.和角度相关优先想第一个,只和长度相关优先想第二个.4.焦长公式利用极坐标或第二定义都能更快证明,这个问题大家可以自己去掌握,解答题中的证明建议以余弦定理的方式为主;其他证法本文不在阐述,读者可以自己去掌握.[长短记忆法: 画图,看长短来记忆.当焦点在x 轴上的时候,焦长为2cos b a c α±,其中α为焦长所在直线的倾斜角或者其补角,为方便判断,一般选用锐角记为α.例如上图,如果记12AF F ∠为α,那么根据草图1||AF 为长边,则分母小即可得到21||cos b AF a c α=-,不管交于左右都是如此,交于y 轴的话需要把cos α换成sin α.焦比公式,如果1cos 1e λαλ-=+,λ为两个焦长之比,可以选=λ长短也可以=λ短长,但是公式里面要正负对齐,如果α选的是锐角,那么左侧是正的,右侧也要为正的,此时=λ长短;反之α选钝角,右侧=λ短长最后一个公式一样的,2(1)2b a λ+,代入的=λ长短算出来的就是长边,如果代入的=λ短长,算出来就是短边]1.双曲线焦长以及焦比问题周长问题:双曲线22221x y a b-=(00)a b ,>>,的两个焦点为1F 、2F ,弦AB 过左焦点1F (A 、B 都在左支上),||AB l =,则2ABF △的周长为42a l +(如图)图1-2-1 图1-2-2 图1-2-3 设A 是双曲线22221x y a b-=(00)a b ,>>上一点,设12AF F ∠为α,直线AB 过点1F .(1)直线和渐近线平行时,此时1cos e α=. (2)当AB 交双曲线于一支时,则21cos b AF a c α=+;21cos b BF a c α=−.2222222222||cos sin ab ab AB a c b c αα==−+,22222||cos ab AB a c α=-,2221cos 01cos a c e αα->⇒<< 令11||||BF F A λ=,即221cos cos cos 1b b e a c a c λλαααλ-=⇒=-++,代入弦长公式可得21(1)||2b AF aλ+=. 当AB 交双曲线于两支时,21cos b AF a c α=+;21cos b BF a c α=−;22222||cos ab AB c a α=-,2221cos 0cos a c e αα-<⇒>(图1-2-3),令11||||BF F A λ=,221cos (1)cos cos 1b b e c a a c λλαλααλ+=⇒=>-+-,代入弦长公式可得21(1)||2b BF aλ-=.=λ长(其中)短 [总结:焦点在x 轴上的时候,直线和双曲线交于单支的时候,公式形式和椭圆完全一样; 直线和双曲线交于双支的时候,公式形式有所变化,具体参考上面书写] 因为双曲线的部分考题会涉及渐近线,不过焦点的时候要注意,注意鉴别.1.||||1cos 1cos p pAF BF αα==−+;. 2.1222||sin p AB x x p α=++=. 3.22sin AOBp S △α=. 4.设||||AF BF λ=,则11cos ;||12AF p λλαλ−+==+. 5.设AB 交准线于点P ,则||cos ||AF PA α=;||cos ||BF PB α=. 证明1.||||||||||||cos 1cos AC AF p AF p FD AC AF θθ= ⇒===−−,同理||1cos pBF α=+. 2.22||||||1cos 1cos sin p p pAB AF BF ααα=+=+=-+. 3.设O 到AB 的距离为d ,则 sin 2pd α=,故22112||sin 22sin 22sin AOB p p p S AB d ααα===△. 4.||1cos 1cos ||1cos 1AF BF αλλλααλ+−=⇒=⇒=−+,1||1cos 2p AF p λα+==−. 5.||2A p AF x =+,||2B p BF x =+,||cos ||AF PA α=,||cos ||BF PB α=. 关于抛物线22x py =的焦长公式及定理(A 为直线与抛物线右交点,B 为左交点,90 α<为AB 倾斜角)1.||1sin p AF α=−;||1sin pBF α=+.2.1222||cos pAB y y p α=++=. 3.22cos AOBp S α=△.4.设||||AF BF λ=,则1sin 1λαλ−=+;1||2AF p λ+=.5.设AB 交准线于点P ,||||sin ;sin ||||AF BF PA PB αα==. [总结:抛物线焦点在x 轴的时候的,焦长为1cos p α±,1cos 1λαλ−=+,焦长为12p λ+,记忆方法参考椭圆模块;当焦点在y 轴上的时候cos 换成sin]。
圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。
一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。
(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。
点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。
高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。
在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。
高中数学中的圆锥曲线知识点总结圆锥曲线是高中数学中重要的几何概念之一,包括椭圆、双曲线和抛物线。
在本文中,我们将对这些圆锥曲线的基本概念、性质和相关公式进行总结。
一、椭圆1. 概念:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:椭圆的两个焦点F1和F2之间的距离为2c,椭圆的长轴为2a,短轴为2b,有关系式c^2 = a^2 - b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
椭圆的离心率小于1。
- 焦点与定点关系:椭圆上的任意一点P到两个焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
- 弦与切线性质:椭圆上任意一条弦与该点处的切线垂直。
3. 相关公式:- 椭圆标准方程:(x^2)/(a^2) + (y^2)/(b^2) = 1 或 (y^2)/(a^2) +(x^2)/(b^2) = 1(其中a > b)。
- 焦点坐标公式:F1(-c,0),F2(c,0)。
- 离心率公式:e = c/a。
- 曲率半径:任意一点P在椭圆上的曲率半径为a^2/b。
二、双曲线1. 概念:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:双曲线的两个焦点F1和F2之间的距离为2c,双曲线的长轴为2a,短轴为2b,有关系式c^2 = a^2 + b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
双曲线的离心率大于1。
- 焦点与定点关系:双曲线上的任意一点P到两个焦点F1和F2的距离之差等于常数2a,即|PF1 - PF2| = 2a。
- 弦与切线性质:双曲线上任意一条弦与该点处的切线垂直。
3. 相关公式:- 双曲线标准方程:(x^2)/(a^2) - (y^2)/(b^2) = 1 或 (y^2)/(a^2) -(x^2)/(b^2) = 1(其中a > b)。
椭圆知识点总结(精选4篇)椭圆形面积公式篇一圆锥曲线的定义(1)你知道椭圆、双曲线、抛物线的第一定义吗?作答:______________________(2)椭圆、双曲线、抛物线的第二定义你掌握了吗?作答:______________________(1)平面内与两个定点f1,f2的距离之和等于常数(大于f1f2)的点的轨迹叫做椭圆;与两个定点f1,f2的距离之差的绝对值等于常数(小于f1f2)的点的轨迹叫做双曲线;与一个定点f和一条定直线l(l不经过点f)距离相等的点的轨迹叫做抛物线。
(2)已知点f是平面上的一个定点,l是平面上不过点f的一条定直线,动点p到点f 的距离和它到直线l的距离之比是一个常数e.当01时,动点p的轨迹是双曲线;当e=1时,动点p的轨迹是抛物线.椭圆的几何性质(1)你知道椭圆的焦半径公式吗?焦点弦公式还记得吗?作答:______________________(2)如何计算椭圆的焦点三角形的面积?作答:______________________(3)你知道如何求解椭圆的切线方程吗?作答:______________________以方程■+■=1(ab0)为例.(1)①设p(x0,y0),f1,f2分别为其左、右焦点,则pf1=a+ex0,pf2=a-ex0;②过点f1(-c,0)的弦ab长为ab=2a+e(xa+xb),过点f2(c,0)的弦ab长为ab=2a-e (xa+xb),其中xa,xb分别为a,b两点的横坐标.(2)设p点是椭圆上一点,f1,f2分别为其左、右焦点,则s■=b2tan■(θ为pf1,pf2的夹角).特别地,若pf1pf2,此三角形面积为b2.(3)过椭圆■+■=1上一点p(x0,y0)处的切线方程是■+■=1;过椭圆■+■=1外一点p (x0,y0)所引两条切线的切点弦方程是■+■=1.双曲线的几何性质(1)双曲线的焦半径公式还会用吗?作答:______________________(2)如何计算双曲线的焦点三角形的面积?作答:______________________(3)与已知双曲线有同一条渐近线的双曲线方程如何表示?作答:______________________(4)你知道如何求解双曲线的切线方程吗?作答:______________________以方程■-■=1(a0,b0)为例.(1)设p(x0,y0),f1,f2分别为其左、右焦点。
高一上册数学知识点全面总结及详细解析2024版引言高一上册数学是高中数学学习的基础阶段,涵盖了代数、几何、函数等多个方面的知识点。
本文将对这些知识点进行详细总结,帮助学生更好地掌握和应用这些知识。
第一章:集合与函数1. 集合的概念集合的定义与表示方法:集合是指某些确定的、不同的对象的全体。
常用大写字母表示集合,小写字母表示集合中的元素。
集合的表示方法有列举法和描述法。
集合的基本运算(并集、交集、补集):并集是指两个集合中所有元素的集合,交集是指两个集合中共有元素的集合,补集是指全集中不属于某集合的元素的集合。
子集与全集:如果集合A的所有元素都是集合B的元素,则A是B的子集。
全集是指包含所有讨论对象的集合。
2. 函数的概念函数的定义与表示方法:函数是指两个集合之间的一种对应关系,其中每个元素在第一个集合中都有唯一的元素与之对应。
常用符号f(x)表示函数。
函数的性质(单调性、奇偶性、周期性):单调性指函数在某区间内是否保持递增或递减,奇偶性指函数是否关于原点对称或关于y轴对称,周期性指函数是否存在一个周期使得函数值重复出现。
反函数与复合函数:反函数是指将原函数的自变量与因变量互换得到的新函数,复合函数是指两个函数的组合。
第二章:基本初等函数1. 一次函数一次函数的定义与图像:一次函数是指形如y=ax+b的函数,其图像是一条直线。
一次函数的性质与应用:一次函数的斜率a决定了直线的倾斜程度,截距b 决定了直线与y轴的交点。
一次函数广泛应用于实际问题的建模与求解。
2. 二次函数二次函数的定义与图像:二次函数是指形如y=ax^2+bx+c的函数,其图像是一条抛物线。
二次函数的性质(顶点、对称轴、开口方向):二次函数的顶点是抛物线的最高或最低点,对称轴是通过顶点的垂直线,开口方向由系数a的正负决定。
二次函数的应用:二次函数在物理、经济等领域有广泛应用,如抛物运动、利润最大化等问题。
3. 指数函数与对数函数指数函数的定义与性质:指数函数是指形如y=a^x的函数,其图像呈指数增长或衰减。
高三数学第一轮复习:抛物线的定义、性质及标准方程【本讲主要内容】抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质【知识掌握】【知识点精析】1. 抛物线定义:平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。
它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。
2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中为抛物线上任一点。
3. 对于抛物线上的点的坐标可设为,以简化运算。
4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有,,,,,,。
说明:1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。
2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。
3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。
【解题方法指导】例1. 已知抛物线的顶点在坐标原点,对称轴为轴,且与圆相交的公共弦长等于,求此抛物线的方程。
解析:设所求抛物线的方程为或设交点(y1>0)则,∴,代入得∴点在上,在上∴或,∴故所求抛物线方程为或。
例2. 设抛物线的焦点为,经过的直线交抛物线于两点,点在抛物线的准线上,且∥轴,证明直线经过原点。
解析:证法一:由题意知抛物线的焦点故可设过焦点的直线的方程为由,消去得设,则∵∥轴,且在准线上∴点坐标为于是直线的方程为要证明经过原点,只需证明,即证注意到知上式成立,故直线经过原点。
证法二:同上得。
又∵∥轴,且在准线上,∴点坐标为。
于是,知三点共线,从而直线经过原点。
证法三:如图,设轴与抛物线准线交于点,过作,是垂足则∥∥,连结交于点,则又根据抛物线的几何性质,∴因此点是的中点,即与原点重合,∴直线经过原点。
抛物线的方程及性质知识集结知识元抛物线的定义知识讲解1.抛物线的定义【概念】抛物线是指平面内到一个定点和一条定直线l距离相等的点的轨迹.他有许多表示方法,比如参数表示,标准方程表示等等.它在几何光学和力学中有重要的用处.抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线.抛物线在合适的坐标变换下,也可看成二次函数图象.【标准方程】①y2=2px,当p>0时,为右开口的抛物线;当p<0时,为左开口抛物线;②x2=2py,当p>0时,为开口向上的抛物线,当p<0时,为开口向下的抛物线.【性质】我们以y2=2px(p>0)为例:①焦点为(,0);②准线方程为:x=﹣;③离心率为e=1.④通径为2p(过焦点并垂直于x轴的弦);⑤抛物线上的点到准线和到焦点的距离相等.【实例解析】例1:点P是抛物线y2=x上的动点,点Q的坐标为(3,0),则|PQ|的最小值为解:∵点P是抛物线y2=x上的动点,∴设P(x,),∵点Q的坐标为(3,0),∴|PQ|===,∴当x=,即P()时,|PQ|取最小值.故答案为:.这个例题其实是一个求最值的问题,一般的解题思路就是把他转化为求一个未知数的最值,需要注意的是一定要明确这个未知数的定义域,后面的工作就是求函数的最值了.例2:已知点P是抛物线y2=4x上的一个动点,点P到点(0,3)的距离与点P到该抛物线的准线的距离之和的最小值是.解:如图所示,设此抛物线的焦点为F(1,0),准线l:x=﹣1.过点P作PM⊥l,垂足为M.则|PM|=|PF|.设Q(0,3),因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值.∴(|PF|+|PQ|)min=|QF|==.即|PM|+|PQ|的最小值为.故答案为:.这是个经典的例题,解题的关键是用到了抛物线的定义:到准线的距离等于到焦点的距离,然后再根据几何里面的两点之间线段最短的特征求出p点.这个题很有参考价值,我希望看了这个例题的同学能把这个题记下了,并拓展到椭圆和双曲线上面去.【考点分析】抛物线是初中高中阶段重要的一个知识点,高中主要是增加了焦点、准线还有定义,这也提示我们这将是它的一个重点,所以在学习的时候要多多理会它的含义,并能够灵活运用.例题精讲抛物线的定义例1.'已知动圆过定点F(2,0),且与直线x=-2相切,求动圆圆心C的轨迹.'例2.'平面内哪些点到直线l:x=-2和到点P(2,0)距离之比小于1.'例3.'点M到点F(3,0)的距离等于它到直线x=-3的距离,点M运动的轨迹是什么图形?你能写出它的方程吗?能画出草图吗?'抛物线的标准方程知识讲解1.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:(1)y2=2px,焦点在x轴上,焦点坐标为F (,0),(p可为正负)(2)x2=2py,焦点在y轴上,焦点坐标为F(0,),(p可为正负)四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y2=2px(p>0),焦点在x轴上x2=2py(p>0),焦点在y轴上图形顶点(0,0)(0,0)对称轴x轴焦点在x轴长上y轴焦点在y轴长上焦点(,0)(0,)焦距无无离心率e=1 e=1准线x=﹣y=﹣例题精讲抛物线的标准方程例1.'已知Q(1,1)是抛物线x2=2py(p>0)上一点,过抛物线焦点F作一条直线l与抛物线交于不同两点A,B.在点A处作抛物线的切线l1,在点B处作抛物线的切线l2,直线l1、l2交于P 点.(Ⅰ)求p的值及焦点F的坐标;(Ⅱ)求证PA⊥PB.'例2.'根据下列条件求抛物线的标准方程:(1)已知抛物线的焦点坐标是F(0,-2);(2)焦点在x轴负半轴上,焦点到准线的距离是5。
双曲线和抛物线的知识点双曲线和抛物线是高中数学中常见的两种曲线,它们有着丰富的几何和物理意义,被广泛应用在各个学科中。
本文将从基本概念、公式和性质,以及应用角度出发,全面探讨这两种曲线的知识点。
一、基本概念1. 双曲线双曲线是由平面上离心率大于1的两个点F1和F2,到该平面上任意一点P的距离之差等于常数2a(a>0)所确定的点集。
通常我们用双曲线的标准方程来表示,即:x^2/a^2-y^2/b^2=1 或 y^2/b^2-x^2/a^2=1其中,a表示离心率,b表示双曲线的半轴长。
2. 抛物线抛物线是由平面上一个定点F(称为焦点)和到该点的距离等于其到某一条定直线L(称为准线或对称轴)的距离d所确定的点集。
通常我们用抛物线的标准方程来表示,即:y=ax^2+bx+c其中,a、b、c分别表示抛物线的系数。
二、公式和性质1. 双曲线双曲线的标准方程可以化为下面的形式:y=b/a*sqrt(x^2-a^2) 或 y=b/a*sqrt(a^2-x^2)由此可以得到双曲线的几何性质:(1)双曲线的渐近线方程为y=±b/a*x,它们分别与x轴成正负45度的角。
(2)双曲线有两个分支,两个分支关于y轴对称。
(3)双曲线关于它的两个渐近线对称,任意一点到其中一条渐近线的距离与到另一条渐近线的距离之差等于常数2a(a>0)。
2. 抛物线抛物线的顶点坐标为(-b/2a,c-b^2/4a),正负号取决于a的符号。
抛物线的渐近线是y=±∞(当a=0时)或y=ax+b(当a≠0时),从而可以得到抛物线的几何性质:(1)抛物线关于它的准线对称。
(2)焦距等于抛物线的半轴长。
(3)抛物线的平面曲率半径在顶点处为无穷大,其他点处为y 轴的绝对值与一阶导数的比值。
(4)当抛物线的焦点在x轴上时,它是一个完美的反射面,任何入射到抛物线上的线段都会被反射到焦点(这就是开普勒使用抛物面反射望远镜原理的基础)。
高中数学圆锥曲线选知识点总结高中数学圆锥曲线是高中数学的一门重要内容,主要包括椭圆、双曲线和抛物线三种基本曲线。
以下是一份完整的高中数学圆锥曲线选知识点总结:1.定义:圆锥曲线是平面上的一条曲线,它是由一个交角不为直角的平面截一个圆锥所得到的截面图形。
2.椭圆:椭圆是一条平面曲线,它的定义是所有到两个给定点的距离之和等于定值的点所形成的轨迹。
椭圆的性质包括离心率、焦点、焦距、长轴、短轴、半焦距等。
3.双曲线:双曲线是一条平面曲线,它的定义是所有到两个给定点的距离之差等于定值的点所形成的轨迹。
双曲线的性质包括离心率、焦点、焦距、渐近线等。
4.抛物线:抛物线是一条平面曲线,它的定义是所有到一个给定点的距离等于定值的点所形成的轨迹。
抛物线的性质包括焦点、焦距、准线、对称轴、顶点等。
5.圆锥曲线的参数方程:圆锥曲线也可以用参数方程表示,例如椭圆的参数方程为x = a cos t,y = b sin t;双曲线的参数方程为x = a sec t,y = b tan t;抛物线的参数方程为x = at^2,y = 2at。
6.圆锥曲线的应用:圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用。
例如,在天文学中,行星轨道和彗星轨道就是圆锥曲线;在工程学中,喷气式飞机的外形和空气动力学研究中也常常使用圆锥曲线。
7.椭圆的方程:椭圆的标准方程为(x^2 / a^2) + (y^2 / b^2) = 1,其中a和b分别为椭圆长轴和短轴的长度。
可以通过椭圆的焦点坐标和离心率求得椭圆的方程。
8.双曲线的方程:双曲线的标准方程为(x^2 / a^2) - (y^2 / b^2) =1,其中a和b分别为双曲线的顶点到两条渐近线的距离。
同样可以通过双曲线的焦点坐标和离心率求得双曲线的方程。
9.抛物线的方程:抛物线的标准方程为y = ax^2 + bx + c,其中a、b、c为常数。
抛物线的顶点坐标为(-b / 2a, c - b^2 / 4a),焦距为1 / 4a。
高考数学复习:圆锥曲线考点一:椭圆、双曲线、抛物线知识点1椭圆1、椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a >|F 1F 2|时,M 点的轨迹为椭圆;②当2a =|F 1F 2|时,M 点的轨迹为线段F 1F 2;③当2a <|F 1F 2|时,M 点的轨迹不存在.2、椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b2=1(a >b >0)图形性质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:坐标轴;对称中心:原点顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)离心率e =ca,且e ∈(0,1)a ,b ,c 的关系c 2=a 2-b 23、椭圆中的几个常用结论(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为2b2a ,过焦点最长弦为长轴.(2)过原点最长弦为长轴长2a ,最短弦为短轴长2b .(3)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共同焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(λ>-b 2).(4)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2,即点P 为短轴端点时,θ最大;②S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).知识点2双曲线1、双曲线的定义(1)平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离之差的绝对值为非零常数2a (2a <2c )的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.(2)集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a <|F 1F 2|时,M 点的轨迹是双曲线;②当2a =|F 1F 2|时,M 点的轨迹是两条射线;③当2a >|F 1F 2|时,M 点不存在.2、双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈Ry ≤-a 或y ≥a ,x ∈R对称性对称轴:坐标轴,对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞)实、虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)3、双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a ,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线PA ,PB 斜率存在且不为0,则直线PA 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则,其中θ为∠F 1PF 2.(6)等轴双曲线①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.②性质:a =b ;e =2;渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.(7)共轭双曲线①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.知识点3抛物线1、抛物线的定义:满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等;(3)定点不在定直线上.2、抛物线的标准方程与几何性质焦半径(其中P (x 0,y 0))|PF |=x 0+p 2|PF |=-x 0+p 2|PF |=y 0+p 2|PF |=-y 0+p23、抛物线中的几何常用结论(1)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦.①以弦AB 为直径的圆与准线相切.②以AF 或BF 为直径的圆与y 轴相切.③通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.(2)过x 2=2py 的准线上任意一点D 作抛物线的两条切线,切点分别为A ,B ,则直线AB 【题型1圆锥曲线的定义及应用】容易忽视圆锥曲线定义的限制条件,在椭圆的定义中,对常数加了一个条件,即常数大于12F F 。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII2椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b xa y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率)10(<<=e ace )10(<<=e ace33. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
高中数学椭圆双曲线抛物线的标准方程与几何性质知识点高中数学椭圆双曲线抛物线的标准方程与几何性质知识点知识点是知识、理论、道理、思想等的相对独立的最小单元,以下是店铺为大家整理的高中数学椭圆双曲线抛物线的标准方程与几何性质知识点,希望对你有所帮助。
椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义:1、到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2、到两定点F1,F2的距离之差的绝对值为定值2a(0|F1F2|)的点的轨迹3、与定点和直线的距离之比为定值e的点的'轨迹.(02.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.图形方程标准方程(0,b0)y2=2px参数方程(t为参数)范围─a£x£a,─b£y£b|x| 3 a,y Rx30中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0)F1(c,0), F2(─c,0)焦距2c (c=)2c (c=)离心率e=1准线x=x=渐近线y=x焦半径通径2p焦参数P数学椭圆知识点双曲线⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角圆的标准方程(x—a)2+(y—b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0抛物线标准方程y2=2pxy2=—2p_2=2pyx2=—2py直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2 圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r 锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=p_r2h乘法与因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a根与系数的关系X1+X2=—b/aX1_X2=c/a注:韦达定理判别式b2—4ac=0注:方程有两个相等的实根b2—4ac>0注:方程有两个不等的实根b2—4ac<0注:方程没有实根,有共轭复数根两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosAcos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)倍角公式tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctgacos2a=cos2a—sin2a=2cos2a—1=1—2sin2a半角公式sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))和差化积2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos (A+B)—cos(A—B)sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB【高中数学椭圆双曲线抛物线的标准方程与几何性质知识点】。
抛 物 线一、抛物线22(0)y px p =>的简单几何性质1、范围:因为0p >,由方程22y px =可知,这条抛物线上任意一点M 的坐标(),x y 满足不等式0x ≥,所以这条抛物线在y 轴的右侧;当x 的值增大时,y 也增大,这说明抛物线向上方和右下方无限延伸,它的开口向右.2、对称性:以y -代y ,方程22(0)y px p =>不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫作抛物线的轴3、顶点:抛物线和它的轴的焦点叫作抛物线的顶点.在方程22(0)y px p =>中,当0y =时,0x =,因此这条抛物线的顶点就是坐标原点.4、离心率:抛物线上的点到焦点的距离与到准线的距离的比,叫作抛物线的离心率,用e 表示.按照抛物线的定义,1e =知识剖析:抛物线的通径:过焦点且与焦点所在的轴垂直的直线与抛物线交于点12,M M ,线段12M M 叫作抛物线的通径,将02px =代入22y px =得y p =±,故抛物线22y px =的通径长为2p例1、已知点(),M x y 在抛物线28y x =上,则()22,129f x y x y x =-++的取值范围? 分析:本题的实质是将(),f x y 转化为关于x 的二次函数,求二次函数在区间[)0,+∞上的最值. ()()22,812925f x y x x x x =-++=++,又[)0,x ∈+∞,所以当0x =时,(),f x y 取得最小值9,当[)0,x ∈+∞时,()()2,25f x y x =++,无最大值.故()22,129f x y x y x =-++的取值范围为[)9,+∞答案:[)9,+∞二、抛物线的四种标准方程相应的几何性质:知识剖析:(1)通过上表可知,四种形式的抛物线的顶点相同,均为()0,0O ,离心率均为1,它们都是轴对称图形,但是对称轴不同.(2)抛物线和椭圆、双曲线的几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形,抛物线不是中心对称图形; ②顶点个数不同:椭圆有4个顶点、双曲线有2个顶点、抛物线只有1个顶点; ③焦点个数不同:椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率的取值范围不同:椭圆的离心率的取值范围是01e <<,双曲线离心率的取值范围是1e >,抛物线的离心率是1e =;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线,由于抛物线没有渐近线,因此在画抛物线时切忌将其画成双曲线例2、某抛物线的顶点是椭圆22169144x y +=的中心,而焦点为椭圆的左顶点,求此抛物线的标准方程.分析:因为该椭圆的中心在坐标原点,左顶点为()3,0-,所以可直接设抛物线的标准方程,求得p 后可得方程.答案:解:由22169144x y +=得:221169y x +=,所以椭圆的左顶点为()3,0-.由题意设所求抛物线的标准方程为()220y px p =->,由32p=,得6p =,故所求抛物线的标准方程为212y x =-.三、焦点弦问题及其应用 1、焦点弦如图,AB 是抛物线()220y px p =>过焦点F 的一条弦.设点()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y ,过,,A B M 分别向抛物线的准线作垂线,垂足分别为111,,A B M ,则根据抛物线的定义有11AF BF AA BB +=+.又1MM 是梯形11AA B B 的中位线,1112AB AA BB MM ∴=+=.综上可得以下结论: ①121212,,2222p p p p AF x BF x AB x x x x p ⎛⎫⎛⎫=+=+∴=+++=++ ⎪ ⎪⎝⎭⎝⎭,其常被称作抛物线的焦点弦长公式.②022p AB x ⎛⎫=+ ⎪⎝⎭(焦点弦长与中点的关系)③若直线AB 的倾斜角为α,则22sin pAB α= 推导:12AB AF BF x x p =+=++由④的推导知,当AB 不垂直于x 轴时,()1220py y k k+=≠1212122222y y y y p p p x x p p k k k k+∴+=+++=+=+ 222212212tan sin p p AB p p k αα⎛⎫∴=+=+= ⎪⎝⎭当k 不存在时,即90α=时,22sin pAB α=亦成立 ④A B 、两点的横坐标之积、纵坐标之积为定值,即2124p x x =,212y y p =-分析:利用点斜式写出直线AB 的方程,与抛物线方程联立后进行证明.要注意直线斜率不存在的情况. 推导:焦点F 的坐标为,02p ⎛⎫⎪⎝⎭,当AB 不垂直于x 轴时,可设直线AB 的方程为:()02p y k x k ⎛⎫=-≠ ⎪⎝⎭,由222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得:2220ky py kp --= ()2224212212121222,22444y y y y p p y y p x x p p p p ∴=-==== 当AB 垂直于x 轴时,直线AB 的方程为:2px =则222212121212,,224y y p y p y p y y p x x p p ==-⇒=-==⑤11AF BF +为定值2p推导:由焦半径公式知,12,22p pAF x BF x =+=+ ()12212121211112224x x p p pp p AF BF x x x x x x ++∴+=+=+++++又21212,4p x x x x AB p =+=-,代入上式得:()22112424AB p p p AF BF p AB p +==+-+为常数 故11AF BF +为定值2p.2、抛物线中与焦点弦有关的一些几何图形的性质(1)抛物线以过焦点的弦为直径的圆和准线相切(2)抛物线()220y px p =>中,设AB 为焦点弦,M 为准线与x 轴的交点,则AMF BMF ∠=∠ (3)设AB 为抛物线的焦点弦.① 点A B 、在准线上的射影分别为点11A B 、,若P 为11A B 的中点,则PA PB ⊥;②O 为抛物线的顶点,若AO 的延长线交准线于点C ,连接BC ,则BC 平行于x 轴,反之,若过点B 作平行于x 轴的直线交准线于点C ,则,,A O C 三点共线. (4)通径是所有焦点弦(过焦点的弦)中最短的弦.例3、已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为4π的直线,被抛物线所截得的弦长为6,求抛物线方程.解:当抛物线的焦点在x 轴正半轴上时,可设抛物线的标准方程为()220y px p =>,则焦点F的坐标为,02p ⎛⎫ ⎪⎝⎭,直线l 的方程为2p y x =-.设直线l 与抛物线的交点为()()1122,,,A x y B x y ,过点,A B 分别向抛物线的准线作垂线,垂足分别为点11A B 、,则有:111212+=622p p AB AF BF AA BB x x x x p ⎛⎫⎛⎫=+=+++=++= ⎪ ⎪⎝⎭⎝⎭,由222p y x y px⎧=-⎪⎨⎪=⎩,消去y ,得222p x px ⎛⎫-= ⎪⎝⎭,即22304p x px -+= 123x x p ∴+=,代入①式得:336,2p p p +=∴= ∴所求抛物线的标准方程为23y x =当抛物线的焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是:23y x =-例4、已知抛物线()220y px p =>的焦点为F ,点()()()111222333,,,P x y P x y P x y 、、在抛物线上,且2132x x x =+,则有( )123.A FP FP FP += 222123.B FP FP FP += 213.2C FP FP FP =+ 2213.D FPFP FP =解析:123P P P 、、在抛物线上,且2132x x x =+,两边同时加上p ,得2132()222p p p x x x +=+++ 即2132FP FP FP =+ 答案:C例5、过抛物线24y x =的焦点作直线交抛物线于()()1122,,,A x y B x y 两点,如果126x x +=,那么AB =?解析:由抛物线定义,得12628AB AF BF x x p =+=++=+=。
人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习抛物线的方程与性质【学习目标】1.掌握抛物线的定义 、几何图形和标准方程.2.理解抛物线的简单性质(范围、对称性、顶点、离心率). 3.能用抛物线的方程与性质解决与抛物线有关的简单问题. 4. 进一步体会数形结合的思想方法. 【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点二、抛物线的标准方程 标准方程的推导如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合}|||{d MF M P ==..|2|)2(|,2|,)2(||2222p x y p x px d y p x MF +=+-∴+=+-=将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p它的准线方程是2p x =-. 抛物线标准方程的四种形式:根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式22y px =,22y px =-,22x py =,22x py =-(0)p >。
要点诠释:①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程;②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线220x y =-的一次项为20y -,故其焦点在y 轴上,且开口向负方向(向下)③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线220x y =-的一次项20y -的系数为20-,故其焦点坐标是(0,5)-。
高中数学知识点:椭圆、双曲线、抛物线的标准
方程与几何性质
椭圆、双曲线、抛物线的标准方程与几何性质
椭圆双曲线抛物线
定义1.到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹1.到两定点F1,F2的距离之差的绝对值为定值
2a(0|F1F2|)的点的轨迹
2.与定点和直线的距离之比为定值e的点的轨迹.(02.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.
图形
方
程标准方程(0,b0)y2=2px
参数方程
(t为参数)
范围─a£x£a,─b£y£b|x| 3 a,y Rx30
中心原点O(0,0)原点O(0,0)
顶点(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)对称轴x轴,y轴;
长轴长2a,短轴长2bx轴,y轴;
实轴长2a, 虚轴长2b.x轴
焦点F1(c,0), F2(─c,0)F1(c,0), F2(─c,0)
焦距2c (c=)2c (c=) 离心率e=1
准线x=x=
渐近线y=x
焦半径
通径
2p
焦参数
P。