智能寻迹小车方案
- 格式:doc
- 大小:327.92 KB
- 文档页数:10
智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。
循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。
本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。
二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。
2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。
3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。
4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。
5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。
三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。
(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。
(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。
(4)添加温湿度传感器和光照传感器,以提供环境感知功能。
(5)将无线模块与控制器连接,以实现远程控制功能。
2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。
(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。
(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。
四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。
2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。
3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。
4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。
5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。
循迹小车简单设计方案
循迹小车是一种能够自动沿着指定轨迹行驶的小车。
它通常由车体、电机、传感器、控制板等组件组成。
下面是一个简单的循迹小车设计方案。
首先,车体部分。
车体可以使用两个驱动轮和一个万向轮的结构。
驱动轮可以通过电机驱动,万向轮可以用于保持车体的平衡和方向控制。
车体通常使用轻质材料制作,比如塑料板或者
3D打印的部件。
在车体上还要设计出安装电路板和传感器的
空间。
其次,电机部分。
选择一个适合的直流电机,电机的功率可以根据实际需要进行选择。
电机需要能够提供足够的动力,以便推动小车沿着指定轨迹行驶。
同时,还需要安装一个驱动电路板,用于控制电机的转动速度和方向。
然后,传感器部分。
循迹小车通常会安装光电传感器来检测地面上的轨迹。
光电传感器能够判断地面上的黑白色块,从而确定小车是否需要调整方向。
这些传感器可以通过引脚连接到控制板上。
最后,控制板部分。
控制板是循迹小车的核心,用于接收传感器的数据,控制电机的运行。
在控制板上,可以使用微控制器,如Arduino等,来编写控制程序。
控制程序可以根据传感器检
测到的轨迹,计算出小车需要调整的方向和速度,然后控制电机的转动,实现小车沿着指定轨迹行驶。
综上所述,一个简单的循迹小车设计方案包括车体、电机、传感器和控制板等部分。
这些部分需要合理设计和选型,才能确保小车能够准确行驶在指定的轨迹上。
当然,这只是一个基础的设计方案,实际应用中可能会有更多复杂的要求和功能。
智能循迹小车毕业论文一、前言随着科技的发展,智能机器人已经成为人们关注的热门话题。
智能机器人的出现和应用,不仅可以提高生产效率,减少劳动强度,并且可以创造出很多新的应用领域。
其中,智能循迹小车作为一种基于仿生学和机器人学的新型机器人,已经逐渐应用到许多领域,如环境监测、病毒检测等。
本文着重介绍智能循迹小车的设计和实现,以期为相关研究提供参考。
二、智能循迹小车的需求分析智能循迹小车主要用于环境监测和物品巡检。
为了保证循迹小车的运转效果,需要进行以下需求分析:1.循迹精度高:循迹小车的自主导航是基于视觉和控制系统完成的,因此需要保证循迹精度高,以便更准确地定位目标位置。
2.交通状况适应性强:循迹小车需适用于不同的路况和环境,如转向直接性、弯道安全性、山地路段行驶性等。
3.控制系统稳定性高:为了确保循迹小车的运转稳定,控制系统需稳定、耐用。
4.多功能性:循迹小车需具备多种传感器和设备,以实现环境监测和物品巡检等多项功能。
三、智能循迹小车的设计方案1.硬件设计智能循迹小车由四个电动轮驱动,需要具备以下硬件配置:1) 微型处理器:采用单片机实现控制、通信等功能。
2) 直流电机:用于驱动小车前进和后退。
3) 舵机:控制小车方向。
4) 金属质量传感器:检测循迹目标的位置,并对小车进行控制。
5) 视觉传感器:采集路面图像,并进行图像处理。
6) 电源模块:提供小车稳定的电力来源。
2.软件设计1) 系统设计:采用嵌入式系统,将设备的物理特性和功能与程序环境相结合,实现对小车的控制和行为规划。
2) 控制算法设计:采用视觉处理和运动控制算法实现对小车的控制,并对其交通状况和循迹精度进行优化。
3) 通信协议设计:采用串口通信协议实现与上位机的数据传输。
四、智能循迹小车的实现演示智能循迹小车的实现演示中,需要注意以下几点:1. 使用电源模块为小车提供稳定的电力来源。
2. 通过视觉传感器采集并处理路面的图像信息。
3. 通过金属质量传感器检测循迹目标的位置。
循迹避障智能小车设计一、硬件设计1、车体结构智能小车的车体结构通常采用四轮驱动或两轮驱动的方式。
四轮驱动能够提供更好的稳定性和动力,但结构相对复杂;两轮驱动则较为简单,但在稳定性方面可能稍逊一筹。
在选择车体结构时,需要根据实际应用场景和需求进行权衡。
为了保证小车的灵活性和适应性,车架材料一般选择轻质且坚固的铝合金或塑料。
同时,合理设计车轮的布局和尺寸,以确保小车能够在不同的地形上顺利行驶。
2、传感器模块(1)循迹传感器循迹传感器是实现小车循迹功能的关键部件。
常见的循迹传感器有光电传感器和红外传感器。
光电传感器通过检测反射光的强度来判断黑线的位置;红外传感器则利用红外线的反射特性来实现循迹。
在实际应用中,可以根据小车的运行速度和精度要求选择合适的传感器。
为了提高循迹的准确性,通常会在小车的底部安装多个传感器,形成传感器阵列。
通过对传感器信号的综合处理,可以更加精确地判断小车的位置和行驶方向。
(2)避障传感器避障传感器主要用于检测小车前方的障碍物。
常用的避障传感器有超声波传感器、激光传感器和红外测距传感器。
超声波传感器通过发射和接收超声波来测量距离;激光传感器则利用激光的反射来计算距离;红外测距传感器则是根据红外线的传播时间来确定距离。
在选择避障传感器时,需要考虑其测量范围、精度、响应速度等因素。
一般来说,超声波传感器测量范围较大,但精度相对较低;激光传感器精度高,但成本较高;红外测距传感器则介于两者之间。
3、控制模块控制模块是智能小车的核心部分,负责处理传感器数据、控制电机驱动和实现各种逻辑功能。
常见的控制模块有单片机(如 Arduino、STM32 等)和微控制器(如 PIC、AVR 等)。
单片机具有开发简单、资源丰富等优点,适合初学者使用;微控制器则在性能和稳定性方面表现更优,适用于对系统要求较高的场合。
在实际设计中,可以根据需求和个人技术水平选择合适的控制模块。
4、电机驱动模块电机驱动模块用于控制小车的电机运转,实现前进、后退、转弯等动作。
智能循迹小车设计方案一、设计目标:1.实现智能循迹功能,能够沿着预定轨迹自动行驶。
2.具备避障功能,能够识别前方的障碍物并及时避开。
3.具备远程遥控功能,方便用户进行操作和控制。
4.具备数据上报功能,能够实时反馈运行状态和数据。
二、硬件设计:1.主控模块:使用单片机或者开发板作为主控模块,负责控制整个小车的运行和数据处理。
2.传感器模块:-光电循迹传感器:用于检测小车当前位置,根据光线的反射情况确定移动方向。
-超声波传感器:用于检测前方是否有障碍物,通过测量障碍物距离来判断是否需要避开。
3.驱动模块:-电机和轮子:用于实现小车的运动,可选用直流电机或者步进电机,轮子要具备良好的抓地力和摩擦力。
-舵机:用于实现小车的转向,根据循迹传感器的信号来控制舵机的角度。
4.通信模块:-Wi-Fi模块:用于实现远程遥控功能,将小车与遥控设备连接在同一个无线网络中,通过网络通信进行控制。
-数据传输模块:用于实现数据上报功能,将小车的运行状态和数据通过无线通信传输到指定的接收端。
三、软件设计:1.循迹算法:根据光电循迹传感器的反馈信号,确定小车的行进方向。
为了提高循迹的精度和稳定性,可以采用PID控制算法进行修正。
2.避障算法:通过超声波传感器检测前方障碍物的距离,当距离过近时,触发避障算法,通过调整小车的行进方向来避开障碍物。
3.遥控功能:通过Wi-Fi模块与遥控设备建立连接,接收遥控指令并解析,根据指令调整小车的运动状态。
4.数据上报功能:定时采集小车的各项运行数据,并通过数据传输模块将数据发送到指定的接收端,供用户进行实时监测和分析。
四、系统实现:1.硬件组装:根据设计要求进行硬件的组装和连接,确保各个模块之间的正常通信。
2.软件编程:根据功能要求,进行主控模块的编程,实现循迹、避障、遥控和数据上报等功能。
3.调试测试:对整个系统进行调试和测试,确保各项功能正常运行,并进行性能和稳定性的优化。
4.用户界面设计:设计一个用户友好的界面,实现对小车的远程控制和数据监测,提供良好的用户体验。
智能循迹小车设计方案智能循迹小车方案自动化06--2班2009年6月5日自动寻迹小车摘要本寻迹小车是以PCB电路板为车架,AT89S51单片机为控制核心,加以直流电机、光电传感器和电源电路以及其他电路构成。
系统由AT89S51通过IO口控制小车的前进后退以及转向。
寻迹由RPR2…各省主要风电塔架制造厂名单序号123456789101112131415161718192021222324 公司名称甘肃玉门锦辉长城甘肃科耀电力有限公司北车集团兰州金牛轨道交通装备有限公司河北强盛风电设备有限公司保定天威电气设备结构有限公司…学习“七.一”讲话精神,深入剖析“四种危险” 胡锦涛在党庆90年大会上,总结了建党以来的“三件大事”和“两大成果”,提出了往后“两个宏伟目标”,指出中共面临“四种考验”和存在“四种危险”。
整篇讲话与时俱进,有新意,有不少新提法,是一篇回顾历史、总结经…自动化06--2班2009年6月5日自动寻迹小车摘要本寻迹小车是以PCB电路板为车架,AT89S51单片机为控制核心,加以直流电机、光电传感器和电源电路以及其他电路构成。
系统由AT89S51通过IO口控制小车的前进后退以及转向。
寻迹由RPR220型光电对管完成。
关键词:AT89S51 直流电机光电传感器自动寻迹电动车AbstractThe smart car is aluminum alloy for the chassis, AT89S51 MCU as its core, including motor and servo, plus photoelectric sensors, as well as other flame sensor and power circuit. MCU controls the car turning back forward or running on the white line. RPR220 reflective photo sensor seeks the trace. Far infrared flame sensor tracks the flame. In addition, the SCM system with Sunplus for voice broadcast can remind current status. The system transmits information through DF module. The car’s status will be transmitted to the Remote Console. OCMJ4X8C LCDdisplay and 2 keys for start control.Keywords: AT89S51 Motor Servo Photo sensor Electrical fire engines一、系统设计1、设计要求(1)寻线跑(2)显示小车当前的速度(3)显示时间并记录行驶距离(4)自动避开障碍物(5)其他2、小车循迹的原理这里的循迹是指小车在地板白纸上循黑线行走,通常采取的方法是红外探测法。
引言概述:智能寻迹小车是一种结合了人工智能和机械工程的创新产品。
它能够根据预设的轨迹自动行驶并进行导航,具有很高的便捷性和灵活性,适用于各种环境和任务。
在本文中,将对智能寻迹小车的设计原理、工作模式、技术优势和应用前景进行详细阐述。
正文内容:一、设计原理1.1 感知模块的设计智能寻迹小车的感知模块采用多种传感器进行环境感知,包括视觉传感器、红外线传感器和超声波传感器。
视觉传感器用于识别道路标志和障碍物,红外线传感器用于进行物体跟踪,超声波传感器用于进行距离测量。
1.2 控制模块的设计智能寻迹小车的控制模块采用嵌入式系统,实现对感知模块的数据处理和运动控制。
通过运用机器学习算法,控制模块能够学习和记忆不同轨迹的特征,从而实现自主导航和寻迹功能。
二、工作模式2.1 自主导航模式智能寻迹小车在自主导航模式下,可以根据预设的轨迹进行自动行驶,不需要人工干预。
它能够通过感知模块实时获得周围环境的信息,并根据这些信息做出相应的决策和控制。
2.2 手动遥控模式智能寻迹小车还可以切换到手动遥控模式,由人工遥控进行操作。
在这种模式下,小车的控制将完全依赖于操作者的指令,可以实时控制小车的速度和方向。
三、技术优势3.1 高精度的轨迹识别智能寻迹小车的感知模块采用先进的图像处理算法和目标识别技术,能够准确地识别出道路标志,并对轨迹进行跟踪,从而实现高精度的轨迹识别和导航。
3.2 自动避障和防碰撞智能寻迹小车的感知模块不仅可以识别道路标志,还能够探测到前方的障碍物,并实时进行避障和防碰撞。
这种智能寻迹小车能够确保行驶的安全性和可靠性。
3.3 强大的自学习能力智能寻迹小车的控制模块具有强大的自学习能力,可以通过机器学习算法不断学习和适应不同的环境和任务,提高智能寻迹小车的导航精度和性能。
四、应用前景4.1 物流领域智能寻迹小车在物流领域有着广阔的应用前景。
它能够自动化完成货物运输和仓储管理任务,提高物流效率和准确性。
4.2 安防领域智能寻迹小车可以在安防领域进行侦查和监控,通过自主导航和环境感知功能,实现对重要区域的巡逻和监测。
循迹避障智能小车设计
循迹避障智能小车设计文档范本:
⒈摘要
本文档旨在详细介绍循迹避障智能小车的设计方案。
介绍了小车的硬件组成、软件设计和算法实现,以及测试结果和优化方案。
⒉引言
介绍循迹避障智能小车的背景和应用场景,解释设计的目的和意义。
⒊系统架构
详细介绍循迹避障智能小车的系统组成,包括传感器模块、控制器、执行器等硬件部分,以及软件部分的整体架构。
⒋传感器设计
说明循迹避障智能小车所使用的传感器,包括红外线传感器、超声波传感器等的选择原因和工作原理,以及如何与控制器进行连接。
⒌控制器设计
介绍循迹避障智能小车的控制器设计,包括主控芯片的选择、引脚分配以及与传感器和执行器的连接方式。
⒍执行器设计
详细说明循迹避障智能小车的执行器设计,包括电机控制模块、转向模块等的选择和工作原理。
⒎算法设计
阐述循迹避障智能小车所采用的算法设计,包括循迹算法和避障算法的原理和实现方法。
⒏系统测试与优化
描述循迹避障智能小车的测试方法和实验结果分析,以及针对存在的问题进行的优化措施。
⒐结论
总结循迹避障智能小车设计的成果,评估其性能和应用前景,并展望未来的发展方向。
⒑附件
提供循迹避障智能小车的原理图、源代码、测试数据等附件,以供读者参考使用。
1⒈法律名词及注释
在文档末尾提供相关法律名词的注释,并进行对应解释,以确保读者对相关法律概念的理解和使用的合法性。
智能循迹小车设计方案摘要本文介绍了智能循迹小车的设计方案。
智能循迹小车是一种能够根据预设的路径自动行驶的小车。
它可以通过传感器感知周围环境,并根据预设的路径进行行驶。
在本文中,我们将讨论智能循迹小车的系统设计、硬件实现以及软件算法。
1. 引言智能循迹小车是近年来智能交通领域的一个热门研究方向。
它可以应用于无人驾驶、物流配送等领域,具有广阔的应用前景。
本文将介绍智能循迹小车的设计方案,以供相关研究人员参考。
2. 系统设计智能循迹小车的系统设计由硬件和软件两部分组成。
2.1 硬件设计智能循迹小车的硬件设计主要包括以下几个方面:•电机驱动:智能循迹小车需要有强大的驱动力来行驶。
通常采用直流电机作为驱动装置,并配备电机驱动器。
•路径感知:智能循迹小车需要能够感知预设的路径。
通常使用红外线传感器或摄像头进行路径感知。
•避障功能:智能循迹小车还需要具备避障功能,以避免与障碍物发生碰撞。
通常使用超声波传感器或红外线传感器进行障碍物的检测。
•控制系统:智能循迹小车的控制系统通常采用微控制器或单片机进行控制。
它可以根据传感器的反馈信息,控制电机驱动器的转动。
2.2 软件设计智能循迹小车的软件设计主要包括以下几个方面:•路径规划算法:智能循迹小车需要能够根据预设的路径进行行驶。
路径规划算法会根据传感器感知到的环境信息,计算出最优的行驶路径。
•控制算法:智能循迹小车的控制算法会根据路径规划算法的结果,控制电机驱动器的转动。
它可以实现小车沿着路径稳定行驶,并及时调整行驶方向。
•避障算法:智能循迹小车的避障算法会根据传感器感知到的障碍物信息,判断是否需要进行避障操作。
它可以实时监测障碍物,并及时采取措施进行避让。
3. 硬件实现智能循迹小车的硬件实现通常需要进行电路设计和机械结构设计。
电路设计主要包括电机驱动电路、传感器接口电路以及控制系统电路的设计。
可以使用电路设计软件进行模拟和调试,确保电路的性能和稳定性。
机械结构设计主要包括车身设计、电机安装以及传感器安装等。
基于51单片机的自动寻迹避障小车设计方案一.系统方案的论证与比较根据设计要求,本系统主要由控制器模块,电源模块,寻迹传感器模块,避障传感器模块,直流电机及其驱动等模块构成.为较好的实现各模块的功能,我们分别设计了几种方案并分别进行了论证.1.1车体设计方案1:采用底部为三轮的车体,其中并排的两个轮子分别有不同电机控制,另一个轮子选用万向轮。
方案2:采用底部为四个轮子的车体,其中左右各一对轮子分别由不通连杆连在一起,并分别由不通电机控制。
方案一和方案二在电机控制那块大体相同,但是方案一选用了万向轮,车子动起来时有时不能确保其路径,特别是直线行进时。
所以我们最终选用了方案二。
1.2控制器模块方案1:采用可编程逻辑器件CPLD 作为控制器.CPLD可以实现各种复杂的逻辑功能,规模大,密度高,体积小,稳定性高,IO资源丰富,易于进行功能扩展.采用并行的输入输出方式,提高了系统的处理速度,适合作为大规模控制系统的控制核心.但本系统不需要复杂的逻辑功能,对数据的处理速度的要求也不是非常高.且从使用及经济的角度考虑我们放弃了此方案.方案2:采用单片机作为控制器。
51系列的单片机由于其价格低廉且资料多,发展比较成熟。
这里我们选用STC公司的89C52RC型号的单片机,它有32个IO接口,内部有256B 的RAM和8KB的ROM,3个16位的定时/计数器以及6个中断源,而且可以可以在线编程,便地实现程序的下载与整机的调试。
1.3电源模块1.3.1供电部分由于本系统需要电池供电,我们考虑了如下集中方案为系统供电.方案1: 采用10节1.5V干电池供电,电压达到15V,经7812稳压后给支流电机供电,然后将12V电压再次降压,稳压后给单片机系统和其他芯片供电.但干电池电量有限,使用大量的干电池给系统调试带来很大的不便,因此,我们放弃了这种方案.方案2:采用7.2V可充电式锂电池串7给直流电机供电,经过7805稳压得到+5V 电压,稳压后给单片机系统和其他芯片供电.锂电池的电量比较足,并且可以充电,重复利用,因此,这种方案比较可行.因此,我们选择了这种方案.1.3.2稳压部分方案1: 采用两片7812将电压稳压至12V后给直流电机供电,然后采用一片7809将电压稳定至9V,最后经7805将电压稳至5V,给单片机系统和其他芯片供电,但7809和7805压降过大,使7809和7805消耗的功率过大,导致7809和7805发热量过大,因此,我们放弃了这种方案.方案 2:采用两片7812将电压稳压至12V后给直流电机供电,然后采用2576将电压稳至5V.2576的输出电流最大可至3A,完全满足系统要求.综上考虑,我们选择了方案2.1.4寻迹传感器模块方案1:用光敏电阻组成光敏探测器.光敏电阻的阻值可以跟随周围环境光线的变化而变化. 当光线照射到白线上面时,光线发射强烈,光线照射到黑线上面时,光线发射较弱.因此光敏电阻在白线和黑线上方时,阻值会发生明显的变化.将阻值的变化值经过比较器就可以输出高低电平.但是这种方案受光照影响很大,不能够稳定的工作.因此我们考虑其他更加稳定的方案.方案2:用红外发射管和接收管自己制作光电对管寻迹传感器.红外发射管发出红外线,当发出的红外线照射到白色的平面后反射,若红外接收管能接收到反射回的光线则检测出白线继而输出低电平,若接收不到发射管发出的光线则检测出黑线继而输出高电平.这样自己制作组装的寻迹传感器基本能够满足要求,但是工作不够稳定,且容易受外界光线的影响,因此我们放弃了这个方案.方案3:用RPR220型光电对管.RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管.RPR220采用DIP4封装,其具有如下特点:塑料透镜可以提高灵敏度.内置可见光过滤器能减小离散光的影响.体积小,结构紧凑.当发光二极管发出的光反射回来时,三极管导通输出低电平.此光电对管调理电路简单,工作性能稳定.因此我们选择了方案3.1.5避障传感器模块方案一:采用碰撞开关避障。
这个方案结构虽然简单,但是小车车必须碰到障碍物避障模块才能工作,大大降低了小车的灵活性,所以这种方案不可取。
方案二:采用红外传感器避障。
红外传感器采用几何方式测量,靠计算红外线光束在物体上反射构成的三角形底边长度推算“高”得到的距离。
因为底边的测量范围受传感器几何尺寸限制,所以检测距离近,调节范围小,灵活度低,而且不易控制。
方案三:采用超声波传感器避障。
超声波也是利用给压电传感器送一个脉冲信号从而产生超声波信号;发射出的超声波向空中四面八方直线传播,遇到障碍物后它可以发生反射,使内部的谐振片谐振,通过声电转换作用将声能转换为电脉冲信号,然后输入信号放大器,最后驱动执行器使电路动作.超声波的探测距离相对于红外距离长,调节范围大,灵活度较高。
因此我们选用方案三。
1.6电机模块1.6.1电机的选取本系统为智能电动车,对于电动车来说,其驱动轮的驱动电机的选择就显得十分重要.由于本实验要实现对路径的准确定位和避障,我们综合考虑了一下两种方案.方案1:采用步进电机作为该系统的驱动电机.由于其转过的角度可以精确的定位,可以实现小车前进路程和位置的精确定位.虽然采用步进电机有诸多优点,步进电机的输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统.经综合比较考虑,我们放弃了此方案.方案2:采用直流减速电机.直流减速电机转动力矩大,体积小,重量轻,装配简单,使用方便.由于其内部由高速电动机提供原始动力,带动变速(减速)齿轮组,可以产生较大扭力.能够较好的满足系统的要求,因此我们选择了此方案.1.6.2电机的驱动方案一:在电动机前段加电位器使之分压减少以降低转速;同时在前端并联一个电容可以使电动机缓慢加速从而避免突然加速对系统的冲击,避免轮子打滑。
这种方案的缺点是调节转速需要人工手动调节电位器,非常不方便。
方案二:采用专用集成电路芯片LM18200T驱动电机,用单片机控制LM18200T的输入使之工作在占空比可调的开关状态,精确调整电动机转速。
电子开关的速度很快,稳定性也极强。
采用集成电路芯片,节省空间和元器件。
缺点是小车启动时,由于突然施加的电压比较高,车轮容易打滑;而且价格较昂贵。
方案三:使用L298N芯片驱动电机L298N既可以驱动直流电机也可以驱动步进电机,本设计中考虑到电机的带负载能力以及控制小车行驶的精度问题所以选择用步进电机。
L298N芯片可以驱动两个二相电机(如图1.2.5),也可以驱动一个四相电机,输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号;而且电路简单,使用比较方便。
通过比较,使用L298N芯片充分发挥了它的功能,能稳定地驱动步进电机,且价格不高,故选用L298N驱动电机。
而使用L298N时,可以用L297来提供时序信号,实现步进电机的驱动控制。
L297是一款为两相步进电机设计的环分控制芯片,可以实现脉冲的环分、转向的控制、无细分/二细分方式的选择等功能,此外还具有电流保护能力,可防电机过流,同时节省单片机IO口。
通过各个方面综合比较为达到最佳驱动效果,我们选择方案三。
1.6.3电机的调速对于直流电机的调速方法,最常用的就是PWM(脉冲宽度调节);它是按一定的规律改变脉冲序列的脉冲宽度,以调节输出量和波形的一种调制方式。
在电机调速中最常用的就是矩形波PWM信号,在控制时需要调节PWM的占空比。
在控制电机的的转速时,占空比越大,速度越快;占空比为100#是,速度达到最快。
用单片机的I/O口输出PWM信号时,有以下三种方案选取:方案一:利用软件延时。
当高电延时时间到时,对I/O口电平取反变成低电平,然后再延时;当低电平延时时间到,再对I/O口电平取反,如此循环下去即可得到PWM信号。
方案二:利用定时器。
控制方法同上,只是在这里利用单片机的定时器来进行高低电平的反翻,而不用软延时。
显然,方案二定时更精确,产生的脉冲对与电机的调速就更稳定。
因此,我们选择了方案二。
二.硬件实现及单元电路2.1 循迹模块电路原理及设计2.1.1循迹检测原理根据黑线和白线反射系数不同,故可通过以光电传感器为核心的光电检测电路将路面两种颜色进行区分,转化为不同电平信号,将此电平信号送单片机,由单片机控制转向电机做相应的转向,保证小车沿引导线行驶。
考虑到小车与路面的相对位置,本系统采用反射式光电检测电路,并采用多传感器信息融合技术。
设计中在车体左中右分别装有四个红外线光电传感器,采用4个四个红外传感器并排在一条直线上,中间的两个红外传感器一直在黑线范围内,外面的两个一直在黑线范围外。
如图所示:图中1#到5#表示5个传感器当红外传感器在黑线范围内,反射接收到的是高电平,当红外传感器在黑线范围外,反射接收到的是低电平。
当小车左边的传感器检测到黑线的边界,主控芯片控制电机使左轮减速,小车向左修正。
当小车右边的传感器检测到黑线的边界,主控芯片控制电机使右轮减速,小车向右修正。
中间的传感器起附带修正作用,当黑线偏离小车中间时,中间的传感器也开始修正,从而使小车沿着黑色轨道行进,中间传感器的作用可减少控制电路频繁的修正。
2.1.2光电对管电路的设计由于所采用的红外反射式传感器属于反射传感器,其光电二极管光生电流随所受到的反射光的强度而连续变化,因而会引起其两端电压的连续变化。
因此,若直接把这个电平信号供给单片机,容易产生误读情况,所以选择下图所示电路。
用电位器产生一个基准电平,当光电二极管的光生电流超过某一值时,运放的正向输入端电平高于基准电平,这时运放的输出电平发生跳变,该信号即可被单片机处理。
通过对基准电平的调整,还可以调整传感器的灵敏度和探测距离。
2.2超声波测距原理及相关电路的设计2.2.1超声波测距原理由于在小车行进过程中随时会遇到障碍物,所以本系统在车体正前方安装一个超声波传感器进行检测现场环境信息。
在超声波传感器检测过程中,障碍物的信息包括:超声波传感器中心到障碍物的最短距离及障碍物相对车体的方位。
避障算法:小车以某一速度前进,如果传感器检测到的距离小于d,这个距离是预定义可编程的临界距离,那么小车以某一角度偏转,从而避开障碍物,否则继续前进。
2.2.2超声波发生电路超声波发生电路下图所示,根据超声波传感器的工作特点,选择NE555产生40K的方波,占空比为50%,电源电压为5V。
脉冲调制由单片机P1.0口控制NE555的复位(RST)引脚实现。
P1.0=1时,3脚输出40kHz的方波,持续8—12个周期。
持续周期数若太少,难以正常激励超声波探头,若太多则发射波与反射波容易产生叠加干扰,P1.0=0时,3脚无信号输出。