考研数学定积分的物理应用
- 格式:doc
- 大小:1.46 MB
- 文档页数:5
Born To Win人生也许就是要学会愚忠。
选我所爱,爱我所选。
考研数学之物理应用分析数学一和数学二的学生对物理应用这一块掌握的比较薄弱。
物理应用不是数学一和数学二的常考点,但是一旦考了,学生往往都不会。
2015年数学二的考研真题出了一道与物理应用有关的大题。
这是个拉分题,很多同学都不会。
所以希望大家能够对物理应用有足够的重视,特别是那些立志上名校,希望数学给力的学生。
下面,跨考教育数学教研室的向喆老师就来和大家分享物理应用分析的学习方法。
一.明确知识框架有句古语:知己知彼,百战不殆。
物理应用可以说是比较难的知识点,所以大家就应该明了考研都考了那些物理应用。
首先,只有数学一和数学二才考物理应用。
然后,物理应用分布在导数应用,定积分应用,微分方程应用中,其中物理应用在定积分中考查的最多。
最后,有关的物理知识的储备。
比如说速率,做功,压强,压力等。
二.掌握学习方法大家在明白了物理应用的体系后,就应该掌握相应的学习方法。
首先是导数中的物理应用。
通过对历年真题的研究,我发现导数的物理应用主要体现在对导数物理意义的理解,即速率。
然后是定积分中的物理应用。
这是考查的重点。
主要包括:变力做功(变力对质点沿直线做功和克服重力做功);液体静压力;质心及形心。
这三个部分求解的核心思想是微元法:分割,近似,求和,取极限。
大家应该把定积分的定义即曲边梯形面积是怎么求得掌握。
接着,大家就应该把这三部分的微元法思想推一遍,从而熟练掌握本质的含义。
其中克服重力做功问题已经在真题中出现过。
最后是微分方程中的物理应用。
通过历年考题分析,我发现微分方程中的物理应用主要考察的是牛顿第二定律。
据此联系了位移与速率;重力,浮力及阻力与加速度关系。
总之,在学习这部分知识时候,应该有一些基本的思想。
比如说:微元法思想,牛顿第二定律,压强及压力,位移与速率等。
三.熟练掌握题型大家在明白了知识体系以及学习方法后就应该通过做题来巩固。
不过现在出现了一个问题:数学一和数学二的同学有很多都不是学物理的。
第1篇一、面试题目1. 请简述数学分析中极限的定义和性质。
解析:数学分析中,极限是指当自变量x趋向于某一点a时,函数f(x)的值趋向于某一点L。
具体来说,如果对于任意给定的正数ε,都存在一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称函数f(x)当x趋向于a时极限为L,记作lim(x→a)f(x)=L。
2. 请解释数学中的导数的概念及其几何意义。
解析:导数是描述函数在某一点处的局部变化率。
对于函数y=f(x),在点x0处的导数表示为f'(x0)。
几何意义上,导数表示曲线在该点的切线斜率。
3. 请简述多元函数偏导数的概念及其几何意义。
解析:多元函数偏导数是指多元函数在某一点处,仅考虑一个变量变化时,函数的导数。
对于多元函数z=f(x,y),在点(x0,y0)处的偏导数表示为f_x'(x0,y0)和f_y'(x0,y0)。
几何意义上,偏导数表示曲线在该点的切线斜率。
4. 请解释定积分的概念及其物理意义。
解析:定积分是指将一个函数在一个区间上的无穷小分割,然后求和并取极限的过程。
物理意义上,定积分可以表示曲线下方的面积、物理量在某段时间内的累积量等。
5. 请简述多元函数的积分概念及其物理意义。
解析:多元函数的积分是指将一个多元函数在一个区域上的无穷小分割,然后求和并取极限的过程。
物理意义上,多元函数的积分可以表示空间曲面的面积、物理量在某区域内的累积量等。
6. 请解释数学中的级数收敛的概念。
解析:级数收敛是指一个无穷级数的各项之和趋向于某个确定的值。
如果对于任意给定的正数ε,都存在一个正整数N,使得当n>N时,级数的部分和S_n与该确定值L之差的绝对值小于ε,则称该级数收敛。
7. 请简述线性代数中矩阵的概念及其运算。
解析:矩阵是一种由数字组成的矩形阵列,表示线性变换、线性方程组等。
矩阵的运算包括加法、数乘、乘法等。
8. 请解释线性代数中行列式的概念及其性质。
第六讲 定积分的应用一、基础知识几何应用(一)平面图形的面积 1.直角坐标情形由曲线)0)(()(≥=x f x f y 及直线 x a =与 x b = ( a b < ) 与 x 轴所围成的曲边梯形面积A 。
()baA f x dx =⎰ 其中:f x dx ()为面积元素。
由曲线y f x =()与y g x =()及直线x a =,x b =(a b <)且f x g x ()()≥所围成的图形面积A 。
()()[()()]=-=-⎰⎰⎰b b baaaA f x dx g x dx f x g x dx2.极坐标情形设平面图形是由曲线 )(θϕ=r 及射线αθ=,βθ=所围成的曲边扇形。
取极角θ为积分变量,则 βθα≤≤,在平面图形中任意截取一典型的面积元素A ∆,它是极角变化区间为],[θθθd +的窄曲边扇形。
曲边梯形的面积元素 θθϕd dA 2])([21= ⎰=βαθθϕd A )(212(二)旋转体的体积计算由曲线y f x =()直线x a =,x b =及x 轴所围成的曲边梯形,绕x 轴旋转一周而生成的立体的体积。
取x 为积分变量,则],[b a x ∈,对于区间],[b a 上的任一区间],[dx x x +,它所对应的窄曲边梯形绕x 轴旋转而生成的薄片似的立体的体积近似等于以)(x f 为底半径,dx 为高的圆柱体体积。
即:体积元素为 []dx x f dV 2)(π=所求的旋转体的体积为 []dx x f V ba⎰=2)(π(三)平面曲线的弧长 1.直角坐标情形设函数)(x f 在区间],[b a 上具有一阶连续的导数,计算曲线)(x f y =的长度s 。
取x 为积分变量,则],[b a x ∈,在],[b a 上任取一小区间],[dx x x +,弧长元素为[]dx x f ds 2)(1'+= 弧长为 []⎰'+=badx x f s 2)(12.参数方程的情形若曲线由参数方程)()()(βαφϕ≤≤⎩⎨⎧==t t y t x 给出,弧微分[][]dt t t dy dx ds 2222)()()()(φϕ'+'=+=则 [][]⎰'+'=βαφϕdt t t s 22)()(3.极坐标情形若曲线由极坐标方程)()(βθαθ≤≤=r r 给出,将极坐标方程化成参数方程,曲线的参数方程为x r y r ==⎧⎨⎩≤≤()cos ()sin ()θθθθαθβ,弧长元素为θθθθθθθd r r d r r d r r dy dx ds 22222222)()cos sin ()()sin cos ()()('+=+'+-'=+= 从而有 ⎰'+=βαθd r r s 22(四).曲率与曲率半径 曲率记作,k 0lims d k s dsαα∆→∆==∆, 222''''tan '''sec sec 1'd d y y y y dx dx y ααααα=⇒=⋅⇒==+, 2''1'y d dx y α=+,又,ds =故322''(1')y d k dsy α==+.曲率半径 3221(1')''y k y ρ+==. 曲率圆二、例题1.平面图形的面积与旋转体的体积例 1. 已知抛物线2,y px qx =+(其中0,0p q <>)在第一象限内与直线5x y +=相切,且抛物线与x 轴所围成的平面图形的面积为s .问: (1)p q 和为何值时,s 达到最大值? (2)求出此最大值.【答案】,3p q =4=-5,22532s =例2.设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何)(x f0t >,)(1t S 表示矩形t x t -≤≤,0()y F t ≤≤的面积. 求(I) 1()()S t S S t =-的表达式; (II) ()S t 的最小值.【答案】(I) t te t S 221)(--=,t ∈ (0 , +∞).(II) eS 11)21(-=. 例3.设曲线的极坐标方程为(0)a e a θρ=>,则该曲线上相应于θ从0到2π的一段弧与极轴所围成的图形的面积为41(1)4a e aπ-. 例 4.设1D 是由抛物线22y x =和直线x a =, 2x =及0y =所围成的平面区域; 2D 是由抛物线22y x =和直线x a =,0y =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V . (2)问当a 为何值时,12V V +取得最大值?试求此最大值. 【答案】54(32)5a π- 4a π 1295π 例5.设曲线2(0,0)y ax a x =>≥与21y x =-交于点A ,过坐标原点O 和点A 的直线与曲线2y ax =围成一平面图形.问a 为何值时,该图形绕x 轴旋转一周所得的旋转体体积最大?最大体积是多少?【答案】4a =是体积最大,其最大体积为:522161518755V π=⋅= 例6.过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1).求D 的面积A ;(2).求D 绕直线x e =旋转一周所得旋转体的体积V . 【答案】(1)112A e =- (2)2(5123)6V e e π=-+ 例7.(15-2) 设A>0,D 是由曲线段sin (0)2y A x x π=≤≤及直线0y =,2x π=所围成的平面区域,1V ,2V 分别表示D 绕x 轴与绕y 轴旋转成旋转体的体积,若12V V =,求A 的值.【答案】8π例8.(09-3-10 分)设曲线()y f x =,其中()y f x =是可导函数,且()0f x >,已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形,绕x 轴旋转一周所得的立体体积值是曲边梯形面积值的t π倍,求该曲线方程。
考研数学定积分物理应用公式?
答:考研数学定积分物理应用公式包括:
1. 变力做功:∫(从a到b) F(x) dx,其中F(x)是变力,a和b分别是初位置和末位置。
2. 质心公式:∫(从a到b) xρ(x) dx / ∫(从a到
b) ρ(x) dx,其中ρ(x)是线密度,用于求细棒的质量中心。
3. 引力公式:∫(从a到b) km1m2/r^2 dr,用于求两质点间的引力,其中k是引力常数,m1和m2是两质点的质量,r是两质点间的距离。
4. 压力公式:P = pA,其中p是压强,A是面积。
5. 液体静压力:∫(从h1到h2) ρgh dA,其中ρ是液体密度,g是重力加速度,h是液体深度,dA是水平面积微元。
6. 旋转体体积:∫(从a到b) π[f(x)]^2 dx,其中f(x)是旋转曲线的函数表达式。
7. 液体对侧壁的压力:∫(从a到b) 2πxlρg dx,其中l是液体高度,ρ是液体密度,g是重力加速度。
8. 物体在液体中所受的浮力:∫(从a到b) ρVg dx,其中ρ是液体密度,V是物体体积,g是重力加速度。
9. 物体绕定轴旋转的转动惯量:∫(从a到b) r^2 dm,其中r是物体上各点到转轴的距离,dm是物体上的质量微元。
10. 细棒对过端点且与棒垂直的轴的转动惯量:∫(从0到l) (1/3)ml^2 dx = (1/3)ml^2。
以上是考研数学定积分物理应用的一些常见公式。
希望这些信息对您有帮助,如果您还有其他问题,欢迎告诉我。
第1篇一、数学分析1. 请解释实数的完备性及其意义。
2. 证明:若数列{an}单调有界,则{an}收敛。
3. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
4. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
5. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
6. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
7. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
8. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
9. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
10. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
二、高等代数1. 请解释行列式的定义及其性质。
2. 证明:若矩阵A可逆,则|A|≠0。
3. 设矩阵A为n阶方阵,求证:A的行列式|A|等于其特征值的乘积。
4. 证明:若矩阵A为n阶方阵,且|A|=0,则A不可逆。
5. 设矩阵A为n阶方阵,求证:A的行列式|A|等于其特征值的乘积。
高等数学不用看的部分:第5页映射;第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;第107页由参数方程所确定的函数的导数;第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;第169页第七节;第178页第八节;第213页第四节;第218页第五节;第280页平行截面面积为已知的立体体积;第282页平面曲线的弧长;第287页第三节;第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;第八章;第90页第六节;第101页第七节;第157页第三节;165页第四节;第十一章;第261页定理6;第278页第四节;第285页第五节;第302页第七节;第316第八节线性代数不用看的部分:第102页第五节概率论与数理统计要考的部分:第一二三四五章;第六章第135页抽样分布;第7章第一节点估计和第二节最大似然估计注意:数学课本和习题中标注星号的为不考内容,在上面的内容中我并没有标出。
上述内容是根据文都发放的教材编的。
《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。
要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题●─大纲中没有明确要求,但对做题和以后的学习有帮助。
要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。
高等数学考研指定教材:同济大学数学系主编《高等数学》(上下册)(第六版)第一章函数与极限(7天)(考小题)学习内容复习知识点与对应习题大纲要求第一节:映射与函数(一般章节)函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.(集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看)习题1-1:4,5,6,7,8,9,13,15,16(重点)1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.第二节:数列的极限(一般章节)数列定义,数列极限的性质(唯一性、有界性、保号性)(本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看)习题1-2:1第三节:函数的极限(一般章节)函数极限的基本性质(不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)P33(例4,例5)(例7不用做,定理2,3的证明不用看,定理4不用看)习题1-3:1,2,3,45.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.第四节:无穷大与无穷小(重要)无穷小与无穷大的定义,它们之间的关系,以及与极限的关系(无穷小重要,无穷大了解)(例2不用看,定理2不用证明)习题1-4:1,6第五节:极限的运算法则(掌握)极限的运算法则(6个定理以及一些推论)(注意运算法则的前提条件是否各自极限存在)(定理1,2的证明理解,推论1,2,3,定理6的证明不用看)P46(例3,例4),P47(例6)习题1-5:1,2,3,4,5(重点)第六节:极限存在准则(理解)两个重要极限(重要)两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限(准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看)P51(例1)习题1-6:1,2,4第七节:无穷小阶的概念(同阶无穷小、等价无穷小、高无穷小的比较(重要)阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法(定理1,2的证明理解)P57(例1)P58(例5)习题1-7:全做9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.第八节:函数的连续性与间断点(重要,基本必考小题)函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。
考研数学定积分的物理应用分析
在考研数学中,对于数学(一)和数学(二)的考生来说,考试大纲要求掌握一些定积分的物理应用,主要包括:做功、压力、引力、质心、形心等,这是因为数学(一)和数学(二)的大部分考生是理工科专业的学生,因此要求掌握一些物理应用是十分合理和自然的定积分在作用力做功计算中的应用
定积分在压力计算中的应用
从上面的分析和典型例题来看,求解定积分的物理应用问题时,首先要掌握相应的物理基本原理,这是最基本、同时也是最重要的前提条件,如果不理解其物理原理,则应用就无从谈起。