人教A版高中数学选修1-2 2.2.2 反证法
- 格式:ppt
- 大小:675.50 KB
- 文档页数:36
1.1回归分析的基本思想及其初步应用(一)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.教学难点:解释残差变量的含义,了解偏差平方和分解的思想.教学过程:一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报.二、讲授新课:1. 教学例题:体重.(分析思路→教师演示→学生整理)第一步:作散点图第二步:求回归方程 第三步:代值计算 ② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗?不一定,但一般可以认为她的体重在60.316kg 左右.③ 解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.1.1回归分析的基本思想及其初步应用(二)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即21()ni i i SSE y y ==-∑. 回归平方和:相应回归值与样本均值差的平方和,即21()ni i SSR y y ==-∑. (2)学习要领:①注意i y 、 i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即 222111()()()n n ni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数 22121()1()n i i i ni i y y R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.2. 教学例题:为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论.(答案: 52211521()155110.8451000()i i i ii y y R y y ==-=-=-=-∑∑,221R =- 521521()18010.821000()i i i i i y y y y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.1.1回归分析的基本思想及其初步应用(三)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.教学过程:一、复习准备:1. 给出例3:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. 二、讲授新课: 1. 探究非线性回归方程的确定: ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的关系线的附近,因此可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =- ,因此红铃虫的产卵数对温度的非线性回归方程为 0.272 3.843x y e -=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.2. 小结:用回归方程探究非线性回归问题的方法、步骤.三、巩固练习:(1(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy=e x +.)1.1回归分析的基本思想及其初步应用(四)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.教学过程:一、复习准备:1. 提问:在例3中,观察散点图,我们选择用指数函数模型来拟合红铃虫的产卵数y 和温度x 间的关系,还可用其它函数模型来拟合吗?2. 讨论:能用二次函数模型234y c x c =+来拟合上述两个变量间的关系吗?(令2t x =,则34y c t c =+,此时y 与t 间的关系如下:直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次曲线234y c x c =+来拟合y 与x 之间的关系. )小结:也就是说,我们可以通过观察变换后的散点图来判断能否用此种模型来拟合. 事实上,除了观察散点图以外,我们也可先求出函数模型,然后利用残差分析的方法来比较模型的好坏.二、讲授新课:1. 教学残差分析:① 残差:样本值与回归值的差叫残差,即 i ii e y y=-. ② 残差分析:通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.③ 残差图:以残差为横坐标,以样本编号,或身高数据,或体重估计值等为横坐标,作出的图形称为残差图. 观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高.2. 例3中的残差分析:计算两种模型下的残差一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果. 残差平方和越小的模型,拟合的效果越好.由于两种模型下的残差平方和分别为1450.673和15448.432,故选用指数函数模型的拟合效果远远优于选用二次函数模型. (当然,还可用相关指数刻画回归效果)3. 小结:残差分析的步骤、作用三、巩固练习:练习:教材P13第1题1.2独立性检验的基本思想及其初步应用(一)教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.K的含义.教学难点:了解独立性检验的基本思想、了解随机变量2教学过程:一、复习准备:回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤.二、讲授新课:1. 教学与列联表相关的概念:①分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量. 分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男”,用“1”表示“女”.②列联表:分类变量的汇总统计表(频数表). 一般. 如吸烟与患肺癌的列联表:称为222. 教学三维柱形图和二维条形图的概念:由列联表可以粗略估计出吸烟者和不吸烟者患肺癌的可能性存在差异.(教师在课堂上用EXCEL软件演示三维柱形图和二维条形图,引导学生观察这两类图形的特征,并分析由图形得出的结论)3. 独立性检验的基本思想:①独立性检验的必要性(为什么中能只凭列联表的数据和图形下结论?):列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体.第一步:提出假设检验问题H0:吸烟与患肺癌没有关系↔H1:吸烟与患肺癌有关系第二步:选择检验的指标22()K()()()()n ad bca b c d a c b d-=++++(它越小,原假设“H:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H1:吸烟与患肺癌有关系”成立的可能性越大.1.2独立性检验的基本思想及其初步应用(二)教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量2K的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?①第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步:由学生计算出2K的值;第四步:解释结果的含义.②通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:由表中数据计算得到的观察值. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:①使得2( 3.841)0.05P K ≥≈成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.3. 小结:独立性检验的方法、原理、步骤 三、巩固练习: 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?2.1.1 合情推理(一)教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.教学重点:能利用归纳进行简单的推理.教学难点:用归纳进行推理,作出猜想.教学过程:一、新课引入:1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,于是提出猜想:对所有的自然数n ,任何形如221n n F =+的数都是素数. 后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.二、讲授新课:1. 教学概念:① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.② 归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii )观察等式:2221342,13593,13579164+==++==++++==,能得出怎样的结论? ③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段)(iii )归纳推理的结果是否正确?(不一定)2. 教学例题:① 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)1n n na a n a +==+ ,试归纳出通项公式. (分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构造新数列)② 思考:证得某命题在n =n 0时成立;又假设在n =k 时命题成立,再证明n =k +1时命题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递推关系) ③ 练习:已知(1)0,()(1)1,f af n bf n ==-= 2,0,0n a b ≥>>,推测()f n 的表达式.3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳.三、巩固练习:1. 练习:教材P 38 1、2题.2. 作业:教材P 44 习题A 组 1、2、3题.2.1.1合情推理(二)教学要求:结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理.教学难点:用归纳和类比进行推理,作出猜想.教学过程:一、复习准备:1. 练习:已知 0(1,2,,)i a i n >= ,考察下列式子:111()1i a a ⋅≥;121211()()()4ii a a a a ++≥;123123111()()()9iii a a a a a a ++++≥. 我们可以归纳出,对12,,,n a a a 也成立的类似不等式为 . 2. 猜想数列1111,,,,13355779--⨯⨯⨯⨯ 的通项公式是 . 3. 导入:鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理,发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、扰轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即类比推理.二、讲授新课:1. 教学概念:① 概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由特殊到特殊的推理.② 类比练习:(i )圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径. 由此结论如何类比到球体? (ii )平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论?(iii )由圆的一些特征,类比得到球体的相应特征. (教材P81 探究 填表)小结:平面→空间,圆→球,线→面.③ 讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维.2. 教学例题:思维:直角三角形中,090C ∠=,3条边的长度,,a b c ,2条直角边,a b 和1条斜边c ; →3个面两两垂直的四面体中,090PDF PDE EDF ∠=∠=∠=,4个面的面积123,,S S S 和S 3个“直角面”123,,S S S 和1个“斜面”S . → 拓展:三角形到四面体的类比. 3. 小结:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理.三、巩固练习:1. 练习:教材P 38 3题. 2. 探究:教材P 35 例5 3.作业:P 44 5、6题.2.1.2 演绎推理教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。
2.2.2 反证法一、教学目标1.核心素养培养学生用反证法证明简单问题的推理技能,进一步培养分析能力、逻辑思维能力及解决问题的能力2.学习目标(1)理解反证法的概念(2)体会反证法证明命题的思路方法及反证法证题的步骤(3)会用反证法证明简单的命题3.学习重点对反证法的概念和三个步骤的理解与掌握.4.学习难点理解“反证法”证明得出“矛盾的所在”即矛盾依据.二、教学设计(一)课前设计【学习过程】1.预习任务任务1预习教材P42—P43,思考:什么是反证法?你以前学过反证法吗?任务2反证法证明问题的步骤是什么?值得注意的问题哪些?2.预习自测1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()①结论相反的判断,即假设②原命题的条件③公理、定理、定义等④原结论A.①②B.①②④C.①②③D.②③答案:C【知识点:三角形内角和的性质,命题的否定,反证法】由反证法的定义可知应选C.2.如果两个实数之和为正数,则这两个数()A.一个是正数,一个是负数B.两个都是正数C.两个都是非负数D.至少有一个是正数答案:D3.已知a+b+c>0,ab+bc+ca>0,abc>0,用反证法求证a>0,b>0,c>0时的假设为()A.a<0,b<0,c>0B.a≤0,b>0,c>0C.a,b,c不全是正数D.abc<0答案:C4.否定“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有两个解D.至少有三个解答案:D(二)课堂设计1.知识回顾著名的“道旁苦李”的故事:王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友摘了李子一尝,原来是苦的.他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这棵树上却结满了李子,所以李子一定是苦的.”王戎的论述运用了什么推理思想?王戎的推理方法是:假设李子不苦,则因树在“道”边,李子早就被别人采摘而没有了,这与“多李”产生矛盾.所以假设不成立,李为苦李.2.问题探究问题探究一反证法的概念●活动一1.什么是反证法?引例:证明:在一个三角形中至少有一个角不小于60°.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个不小于60°.∆的三个内角∠A,∠B,∠C都小于60°,证明:假设ABC则有∠A <60°,∠B < 60°,∠C <60°,∠A+∠B+∠C<180°这与三角形内角和等于180°相矛盾.所以假设不成立,所求证的结论成立.先假设结论的反面是正确的,然后通过逻辑推理,推出与公理、已证的定理、定义或已知条件相矛盾,说明假设不成立,从而得到原结论正确.这种证明方法就是——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.反证法也称归谬法●活动二1.常用词语的反义词从上面的引例可以看出:用反证法证明问题时,都是得到一系列矛盾结果,会出现一些反义词,因此,同学们要注意常见词语的反义词,你知道哪些反义词呢?下面是一些常见反义词:问题探究二反证法的证题的基本步骤●活动一反证法的证明过程从前面的引例中你可以总结出反证法证明问题有哪些步骤?反证法的证明过程:否定结论——推出矛盾——肯定结论,即分三个步骤:反设—归谬—存真反设——假设命题的结论不成立;归谬——从假设出发,经过一系列正确的推理,得出矛盾;存真——由矛盾结果,断定反设不成立,从而肯定原结论成立.●活动二归谬矛盾的方法思考一下,归谬矛盾的方法有哪些?归谬矛盾主要有以下方法:(1)与已知条件矛盾.(2)与假设矛盾或自相矛盾.(3)与已有公理、定理、定义、事实矛盾.●活动三反证法证明问题的适用范围同学们知道用反证法证明问题的范围有哪些吗?是不是所有的问题反证法都适用?反证法证明问题的适用范围(1)否定性命题;(2)限定式命题;(3)无穷性命题;(4)逆命题;(5)某些存在性命题;(6)全称肯定性命题;(7)一些不等量命题的证明;(8)基本命题;(9)结论以“至多……”“至或少……”的形式出现的命题等.问题探究三反证法可以解决哪些问题?●活动一用反证法证明否(肯)定式命题例1 设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【知识点:函数的零点,命题的否定,反证法;数学思想:函数与方程】详解:假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z).而f(0),f(1)均为奇数,即c 为奇数,a+b为偶数,则an2+bn=-c为奇数,即n(an+b)为奇数.∴n,an+b均为奇数.又a+b为偶数,∴an-a为奇数,即a(n-1)为奇数,∴n-1为奇数,这与n为奇数矛盾.∴f(x)=0无整数根.点拔:(1)此题为否定形式的命题,直接证明很困难,可选用反证法.证题的关键是根据f(0),f(1)均为奇数,分析出a,b,c的奇偶情况,并应用.(2)对某些结论为肯定形式或者否定形式的命题的证明,从正面突破较困难时,可用反证法.通过反设将肯定命题转化为否定命题或将否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理,推出矛盾,从而达到证题的目的.●活动二用反证法证明“唯一性”命题例2 若函数f(x)在区间[a,b]上的图象连续不断开,f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.【知识点:函数的零点,函数的单调性,命题的否定,反证法】详解:由于f(x)在[a,b]上的图象连续不断开,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f (x )在(a ,b )内至少存在一个零点,设零点为m ,则f (m )=0,假设f (x )在(a ,b )内还存在另一个零点n ,且n ≠m .,使f (n )=0,若n >m ,则f (n )>f (m ),即0>0,矛盾;若n <m ,则f (n )<f (m ),即0<0,矛盾.因此假设不正确,即f (x )在(a ,b )内有且只有一个零点.点拔:证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”、“只有一个”、“唯一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其唯一性就较简单明了.●活动三 用反证法证明“至多、至少”问题例3 已知x ,y >0,且x +y >2.求证:1+x y ,1+y x 中至少有一个小于2.【知识点:不等式的性质,不等式的证明,命题的否定,反证法】详解: 假设1+x y ,1+y x 都不小于2,即1+x y ≥2,1+y x ≥2.∵x >0,y >0,∴1+x ≥2y,1+y ≥2x .∴2+x +y ≥2(x +y ).即x +y ≤2,这与已知x +y >2矛盾.∴1+x y ,1+y x 中至少有一个小于2.点拔:反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个等.例4 设二次函数2()f x x px q =++,求证:(1),(2),(3)f f f 中至少有一个不小于12. 【知识点:不等式的性质,绝对值不等式的性质,不等式的证明,命题的否定,反证法】 详解:假设(1),(2),(3)f f f 都小于12,则 .2)3()2(2)1(<++f f f (1)另一方面,由绝对值不等式的性质,有2)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确.点拔:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行.议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况.试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?●活动四利用反证法证题时,假设错误而致误例5 已知a,b,c是互不相等的非零实数.求证:三个方程ax2+2bx+c=0,bx2+2cx+a =0,cx2+2ax+b=0至少有一个方程有两个相异实根.【错解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac<0,Δ2=4c2-4ab<0,Δ3=4a2-4bc<0,相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2<0,即(a-b)2+(b-c)2+(c-a)2<0,此不等式不能成立,所以假设不成立,即三个方程中至少有一个方程有两个相异实根.【知识点:方程的根,反证法】【错因分析】上面解法的错误在于认为“方程没有两个相异实根就有Δ<0”,事实上,方程没有两个相异实根时Δ≤0.【正解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,即(a-b)2+(b-c)2+(c-a)2≤0,(*)由题意a,b,c互不相等,所以(*)式不能成立.所以假设不成立,即三个方程中至少有一个方程有两个相异实根.点拔:用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.3.课堂总结【知识梳理】(1)反证法:假设原命题的反面正确,根据已知条件及公理、定理、定义,按照严格的逻辑推理导出矛盾.从而说明假设不正确,得出原命题正确.(2)反证法是间接证明的一种方法,在证明否定性命题、唯一性命题和存在性命题时运用反证法比较简便.(3)反证法的基本步骤是:①反设——假设命题的结论不成立,即假设原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾的结果;③存真——由矛盾结果,断定反设不真,从而肯定结论成立.【难点突破】用反证法证题时,应注意的事项:(1)周密考察原命题结论的否定事项,防止否定不当或有所遗漏.(2)推理过程必须完整,否则不能说明命题的真伪性.(3)在推理过程中,要充分使用已知条件,否则推不出矛盾,或者不能断定推出的结果是错误的.(4)反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.(5)归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.4.随堂检测1.用反证法证明“如果a>b,那么3a>3b”的假设内容应是()A.3a=3bB.3a<3bC.3a≤3bD.3a≥3b答案:C【知识点:不等式的性质,绝对值不等式的性质,不等式的证明,命题的否定,反证法】“大于”的对立面为“小于等于”,故应假设“3a ≤3b ”.2.否定“任何一个三角形的外角都至少有两个钝角”时正确的说法为( )A .存在一个三角形,其外角最多有一个钝角B .任何一个三角形的外角都没有两个钝角C .没有一个三角形的外角有两个钝角D .存在一个三角形,其外角有两个钝角答案:A【知识点:三角形的性质,命题的否定,反证法】原命题的否定为:存在一个三角形,其外角最多有一个钝角.3.用反证法证明命题:若a 、b 是实数,且|a -1|+|b -1|=0,则a =b =1时,应作的假设是________.答案:a ≠1或b ≠1.【知识点:命题的否定,反证法】∵“a =b =1”的否定为“a ≠1或b ≠1”,故应填a ≠1或b ≠1.4.证明方程2x =3有且仅有一个实根.【知识点:命题的否定,反证法】证明:∵2x =3,∴x =32,∴方程2x =3至少有一个实根.设x 1,x 2是方程2x =3的两个不同实根,则⎩⎨⎧2x 1=3, ①2x 2=3, ② 由①-②得2(x 1-x 2)=0,∴x 1=x 2,这与x 1≠x 2矛盾.故假设不正确,从而方程2x =3有且仅有一个实根.三、智能提升★基础型 自主突破1.(2013·海口高二检测)用反证法证明命题:三角形三个内角至少有一个不大于60°时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°答案:B三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°,故B正确.2.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0答案:D【知识点:命题的否定,反证法】实数a,b,c不全为0,即a,b,c至少有一个不为0,故应选D.3.(1)已知p3+q3=2,求证p+q≤2.用反证法证明时,可假设p+q≥2.(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确答案:D【知识点:命题的否定,反证法】(1)的假设应为p+q>2;(2)的假设正确.答案是D4.下列命题不适合用反证法证明的是()A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1答案:C【知识点:命题的否定,反证法】A中命题条件较少,不易正面证明;B中命题是否定性命题,其反设是显而易见的定理;D 中命题是至少性命题,其结论包含两种情况,而反设只有一种情况,适合用反证法证明.5.命题“三角形中最多只有一个内角是直角”的否定是_____________.答案:三角形中最少有两个内角是直角【知识点:三角形的性质,命题的否定,反证法】“最多”的反面是“最少”,故本题的否定是:三角形中最少有两个内角是直角.能力型 师生共研1.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案:C【知识点:基本不等式,命题的否定,反证法】假设都大于-2,则1116a b c b c a+++++>-,又()112a a a a ⎡⎤+=--+≤-=-⎢⎥-⎣⎦,同理12b b +≤-,12c c +≤-, 故1116a b c b c a+++++≤-,矛盾.即a +1b ,c +1a ,b +1c 中至少有一个不大于-2,所以答案C . 2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 答案:a 、b 不全为0【知识点:命题的否定,反证法】“a 、b 全为0”即“a =0且b =0”,因此它的反设为“a ≠0或b ≠0,3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.答案:③①②【知识点:三角形的性质,命题的否定,反证法】4.甲乙丙三位同学中,有一位同学做了一件好事,这时候老师问他们三人,是谁做的?甲说:"丙做的.”丙说:“不是我做的.”乙也说:“不是我做的.”如果知道他们三个人中,有两人说了假话,有一人说真话,你能判断出是谁做的吗?【知识点:推理与证明,命题的否定,反证法】解:每人讲的话中都有一句真话,一句假话.乙说:“我没有做这件事,丙也没有做这件事.”说明乙丙两人中有一人做了这件事,甲一定没做而甲说:“我没有做这件事,乙也没有做这件事.”前一句是真的,后一句一定是假的.所以,是乙做的这件好事!5.用反证法证明:无论m 取何值,关于x 的方程x 2-5x +m =0与2x 2+x +6-m =0至少有一个有实数根.【知识点:推理与证明,命题的否定,反证法】解:假设存在实数m ,使得这两个方程都没有实数根,则⎩⎨⎧ Δ1=25-4m <0,Δ2=1-8(6-m )<0,解得⎩⎪⎨⎪⎧ m >254,m <478,无解.与假设存在实数m 矛盾.故无论m 取何值,两个方程中至少有一个方程有实数根.6.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.【知识点:不等式的证明,命题的否定,反证法】证明: 假设a <0,由abc >0得bc <0,由a +b +c >0,得b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这与已知矛盾.又若a =0,则abc =0,与abc >0矛盾,故a >0,同理可证b >0,c >0.探究型 多维突破1.若x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,则a ,b ,c 中是否至少有一个大于0?请说明理由.【知识点:推理与证明,实数非负性,命题的否定,反证法】解:假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z -1)2+π-3,因为π-3>0,且无论x ,y ,z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,所以a +b +c >0.这与假设a +b +c ≤0矛盾.因此,a,b,c中至少有一个大于0.2.如下图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;(2)用反证法证明:直线ME与BN是两条异面直线.【知识点:线面垂直,面面垂直,异面直线,命题的否定,反证法】解:(1)如图,取CD的中点G,连接MG,NG,∵ABCD,DCEF为正方形,且边长为2,∴MG⊥CD,MG=2,NG=2.∵平面ABCD⊥平面DCEF,∴MG⊥平面DCEF.∴MG⊥GN.∴MN=MG2+GN2=6.(2)证明假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN∩平面DCEF=EN.由已知,两正方形ABCD和DCEF不共面,故AB⊄平面DCEF.又AB∥CD,∴AB∥平面DCEF,∴EN∥AB,又AB∥CD∥EF.∴EF∥NE,这与EF∩EN=E矛盾,故假设不成立.∴ME与BN不共面,它们是异面直线.(四)自助餐1.用反证法证明命题“若a,b∈N,ab可以被7整除,则a,b中至少有一个能被7整除”,其假设正确的是()A.a,b都能被7整除B.a,b都不能被7整除C.a不能被7整除D.a,b中有一个不能被7整除答案:B【知识点:推理与证明,命题的否定,反证法】“至少有一个”的否定是“一个也没有”.所以选B.2.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形的内角中最多有一个钝角”的反面是“三角形的内角中没有钝角”,其中正确的叙述有()A.0个B.1个C.2个D.3个答案:B【知识点:推理与证明,命题的否定,反证法】①错,应为a≤b.②对.③错,应为三角形的外心在三角形内或三角形的边上.④错,应为三角形的内角中有2个或3个钝角.即选B.3.设正实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.1 3B.1 2C.3 4D.2 5答案:A【知识点:推理与证明,命题的否定,反证法】假设a,b,c中至少有一个数不小于x的反命题成立,即假设a,b,c都小于x,即a<x,b<x,c<x,∴a+b+c<3x.∵a+b+c=1,∴3x>1.∴x>13,若取x=13就会产生矛盾.故选A.4.下列命题错误的是()A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a、b∈Z,若a、b中至少有一个为奇数,则a+b是奇数答案:D【知识点:推理与证明,命题的否定,反证法】a+b为奇数⇔a、b中有一个为奇数,另一个为偶数,故D错误.因此选D.5.已知α∩β=l,a⊂α,b⊂β,若a,b为异面直线,则()A.a,b都与l相交B.a,b中至少有一条与l相交C.a,b中至多有一条与l相交D.a,b都不与l相交答案:B【知识点:推理与证明,命题的否定,反证法】逐一从假设选项成立入手分析,易得B是正确选项,故选B.6.以下各数不能构成等差数列的是()A.3,4,5B.2,3, 5C.3,6,9D.2,2, 2答案:B【知识点:推理与证明,命题的否定,反证法】假设2,3,5成等差数列,则23=2+5,即12=7+210,此等式不成立,故2,3,5不成等差数列.7.“任何三角形的外角都至少有两个钝角”的否定应是________.答案:存在一个三角形,其外角最多有一个钝角【知识点:命题的否定,反证法】“存在一个三角形,其外角最多有一个钝角”.“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.8.设二次函数f(x)=ax2+bx+c(a≠0)中,a、b、c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【知识点:函数的奇偶性,推理与证明,命题的否定,反证法】证明设f(x)=0有一个整数根k,则ak2+bk=-c.①又∵f(0)=c,f(1)=a+b+c均为奇数,∴a+b为偶数,当k为偶数时,显然与①式矛盾;当k为奇数时,设k=2n+1(n∈Z),则ak2+bk=(2n+1)·(2na+a+b)为偶数,也与①式矛盾,故假设不成立,所以方程f(x)=0无整数根.9.如图,已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a.求证:b与c是异面直线.【知识点:线面平行,线线平行,推理与证明,命题的否定,反证法】证明:证明:假设b,c不是异面直线,则①b∥c;②b∩c=B.①若b∥c,∵a∥c,∴a∥b,与a∩b=A矛盾,∴b∥c不成立.②若b∩c=B,∵c⊂β,∴B∈β.又A∈β,A∈b,∴b⊂β.又b⊂α,∴α∩β=b.又α∩β=a,∴a与b重合.这与a∩b=A矛盾.∴b∩c=B不成立.∴b与c是异面直线.10.若下列方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.【知识点:判别式,不等式组的解法,命题的否定,反证法】解:设三个方程均无实根,则有⎩⎨⎧ Δ1=16a 2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=4a 2-4(-2a )<0,解得⎩⎪⎨⎪⎧ -32<a <12,a <-1,或a >13,-2<a <0,所以-32<a <-1. 所以当a ≥-1,或a ≤-32时,三个方程至少有一个方程有实根.11.已知函数f (x )=x 22x -2,如果数列{a n }满足a 1=4,a n +1=f (a n ),求证:当n ≥2时,恒有a n <3成立.【知识点:推理与证明,命题的否定,反证法】证明:法一(直接证法) 由a n +1=f (a n )得a n +1=a 2n 2a n -2, ∴1a n +1=-2a 2n +2a n =-2⎝ ⎛⎭⎪⎫1a n -122+12≤12, ∴a n +1<0或a n +1≥2;(1)若a n +1<0,则a n +1<0<3,∴结论“当n ≥2时,恒有a n <3”成立;(2)若a n +1≥2,则当n ≥2时,有a n +1-a n =a 2n 2a n -2-a n =-a 2n +2a n 2(a n -1)=-a n (a n -2)2(a n -1)≤0, ∴a n +1≤a n ,即数列{a n }在n ≥2时单调递减;由a 2=a 212a 1-2=168-2=83<3, 可知a n ≤a 2<3,在n ≥2时成立.综上,由(1)、(2)知:当n ≥2时,恒有a n <3成立.法二:(用反证法) 假设a n ≥3(n ≥2),则由已知得a n +1=f (a n )=a 2n 2a n -2, ∴当n ≥2时,a n +1a n=a n 2a n -2=12·⎝ ⎛⎭⎪⎫1+1a n -1≤12⎝ ⎛⎭⎪⎫1+12=34<1,(∵a n -1≥3-1), 又易证a n >0,∴当n ≥2时,a n +1<a n ,∴当n >2时,a n <a n -1<…<a 2;而当n =2时,a 2=a 212a 1-2=168-2=83<3,∴当n ≥2时,a n <3;这与假设矛盾,故假设不成立,∴当n≥2时,恒有a n<3成立.三、数学视野边际分析法是这一时期产生的一种经济分析方法,同时形成了经济学的边际效用学派,代表人物有瓦尔拉(L.Walras)、杰文斯(W.S.Jevons)、戈森(H.H.Gossen)、门格尔(C.Menger)、埃奇沃思(F.Y.Edgeworth)、马歇尔(A.Marshall)、费希尔(I.Fisher)、克拉克(J.B.Clark)以及庞巴维克(E.von Bohm-Bawerk)等人.边际效用学派对边际概念作出了解释和定义,当时瓦尔拉斯把边际效用叫做稀缺性,杰文斯把它叫做最后效用,但不管叫法如何,说的都是微积分中的“导数”和“偏导数”.西方经济学中,边际分析方法是最基本的分析方法之一,是一个比较科学的分析方法.西方边际分析方法的起源可追溯到马尔萨斯.他在1814年曾指出微分法对经济分析所可能具有的用途.1824年,汤普逊(W.Thompson)首次将微分法运用于经济分析,研究政府的商品和劳务采购获得最大利益的条件.功利主义创始人边沁(J.Bentham)在其最大快乐和最小痛苦为人生追求目标的信条中,首次采用最大和最小术语,并且提出了边际效应递减的原理.边际分析法是把追加的支出和追加的收入相比较,二者相等时为临界点,也就是投入的资金所得到的利益与输出损失相等时的点.如果组织的目标是取得最大利润,那么当追加的收入和追加的支出相等时,这一目标就能达到.边际分析法的数学原理很简单.对于离散discrete情形,边际值marginal value为因变量变化量与自变量变化量的比值;对于连续continuous情形,边际值marginal value为因变量关于某自变量的导数值.所以边际的含义本身就是因变量关于自变量的变化率,或者说是自变量变化一个单位时因变量的改变量.在经济管理研究中,经常考虑的边际量有边际收入MR、边际成本MC、边际产量MP、边际利润MB等.。
(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)必修一目录第一章集合与函数概念1.1集合1.1.1集合的含义与表示1.1.2集合间的基本关系1.1.3集合的基本运算阅读与思考集合中元素的个数1.2函数及其表示1.2.1函数的概念1.2.2函数的表示法阅读与思考函数概念的发展历程1.3函数的基本性质1.3.1单调性与最大(小)值1.3.2奇偶性信息技术应用用计算机绘制函数图象实习作业小结复习参考题第二章基本初等函数(I)2.1指数函数2.1.1指数与指数幂的运算。
2.1.2指数函数及其性质信息技术应用借助信息技术探究指数函数的性质2.2对数函数2.2.1对数与对数运算阅读与思考对数的发明2.2.2对数函数及其性质探究与发现互为反函数的两个函数图象之间的关系2.3幂函数小结复习参考题第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解阅读与思考中外历史上的方程求解信息技术应用借助信息技术求方程的近似解3.2函数模型及其应用3.2.1几类不同增长的函数模型3.2.2函数模型的应用实例信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二目录第一章空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征1.1.2简单组合体的结构特征1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图1.2.3空间几何体的直观图阅读与思考画法几何与蒙日1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积1.3.2球的体积与表面积探究与发现祖暅原理与柱体、锥体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.1.1平面2.1.2空间中直线与直线之间的位置关系2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1直线的倾斜角与斜率3.1.1倾斜角与斜率3.1.2两条直线平行与垂直的判定探究与发现魔术师的地毯3.2直线的方程3.2.1直线的点斜式方程3.2.2直线的两点式方程3.2.3直线的一般式方程3.3直线的交点坐标与距离公式3.3.1两条直线的交点坐标3.3.2两点间的距离3.3.3点到直线的距离3.3.4两条平行直线间的距离阅读与思考笛卡尔与解析几何小结复习参考题第四章圆与方程4.1圆的方程4.1.1圆的标准方程4.1.2圆的一般方程阅读与思考坐标法与机器证明4.2直线、圆的位置关系4.2.1直线与圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用4.3空间直角坐标系4.3.1空间直角坐标系4.3.2空间两点间的距离公式信息技术应用用《几何画板》探究点的轨迹:圆小结复习参考题必修三目录第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图与算法的基本逻辑结构1.2基本算法语句1.2.1输入语句、输出语句和赋值语句1.2.2条件语句1.2.3循环语句1.3算法案例阅读与思考割圆术小结复习参考题第二章统计2.1随机抽样阅读与思考一个著名的案例2.1.1简单随机抽样2.1.2系统抽样阅读与思考广告中数据的可靠性2.1.3分层抽样阅读与思考如何得到敏感性问题的诚实反应2.2用样本估计总体2.2.1用样本的频率分布估计总体分布2.2.2用样本的数字特征估计总体的数字特征阅读与思考生产过程中的质量控制图2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1随机事件的概率3.1.1随机事件的概率3.1.2概率的意义3.1.3概率的基本性质阅读与思考天气变化的认识过程3.2古典概型3.2.1古典概型3.2.2(整数值)随机数(random numbers)产生3.3几何概型3.3.1几何概型3.3.2均匀随机数的产生阅读与思考概率与密码小结复习参考题必修四目录第一章三角函数1.1任意角和弧度制1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数阅读与思考三角学与天文学1.2.2同角三角函数的基本关系1.3三角函数的诱导公式1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.4.2正弦函数、余弦函数的性质探究与发现函数y=Asin(ωx+ψ)及函数y=Acos(ωx+ψ)的周期探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质1.4.3正切函数的性质与图象信息技术应用利用正切线画函数y=tanx,x∈(—,)的图象1.5函数函数y=Asin(ωx+ψ)的图象阅读与思考振幅、周期、频率、相位1.6三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示2.1.3相等向量与共线向量阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义2.2.3向量数乘运算及其几何意义2.3 平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义2.4.2平面向量数量积的坐标表示、模、夹角2.5平面向量应用举例2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式3.1.2两角和与差的正弦、余弦、正切公式3.1.3二倍角的正弦、余弦、正切公式信息技术应用利用信息技术制作三角函数表3.2简单的三角恒等变换小结复习参考题必修五目录第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理探究与发现解三角形的进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业小结复习参考题第二章数列2.1数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用估计的值2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4基本不等式:≤小结复习参考题选修1-1第一章常用逻辑用语1.1命题及其关系1.1.1命题1.1.2四种命题1.1.3四种命题间的相互关系1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件1.3简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)阅读与思考“且”“或”“非”与“交”“并”“补”1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定小结复习参考题第二章圆锥曲线与方程2.1椭圆2.1.1 椭圆及其标准方程探究与发现为什么截口曲线是椭圆2.1.2椭圆的简单几何性质信息技术应用用《几何画板》探究点的轨迹:椭圆2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的简单几何性质信息技术应用探究与发现为什么y=± x是双曲线-=1的渐近线2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的简单几何性质探究与发现为什么二次函数y=ax²+bx+c(a≠0)的图象是抛物线阅读与思考圆锥曲线的光学性质及其作用小结复习参考题第三章导数及其应用3.1变化率与导数3.1.1变化率问题3.1.2导数的概念3.1.3导数的几何意义3.2导数的计算3.2.1几个常用函数的导数3.2.2基本初等函数的导数公式及导数的运算法则探究与发现牛顿法——用导数方法求方程的近似解3.3导数在研究函数中的应用3.3.1函数的单调性与导数3.3.2函数的极值与导数3.3.3函数的最大(小)值与导数信息技术应用图形技术与函数性质3.4生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1合情推理与演绎证明2.1.1合情推理2.1.2演绎推理阅读与思考科学发现中的推理2.2直接证明与间接证明2.2.1综合法和分析法2.2.2反证法小结复习参考题第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念3.1.2复数的几何意义3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义3.2.2复数代数形式的乘除运算小结复习参考题第四章框图4.1流程图4.2结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1命题及其关系1.1.1命题1.1.2四种命题1.1.3四种命题间的相互关系1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件1.3简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)阅读与思考“且”“或”“非”与“交”“并”“补”1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定小结复习参考题第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程2.1.2求曲线的方程2.2椭圆2.2.1 椭圆及其标准方程探究与发现为什么截口曲线是椭圆2.2.2椭圆的简单几何性质信息技术应用用《几何画板》探究点的轨迹:椭圆2.3双曲线2.3.1双曲线及其标准方程2.3.2双曲线的简单几何性质信息技术应用探究与发现为什么y=± x是双曲线-=1的渐近线2.4抛物线2.4.1抛物线及其标准方程2.4.2抛物线的简单几何性质探究与发现为什么二次函数y=ax²+bx+c(a≠0)的图象是抛物线阅读与思考一、圆锥曲线的光学性质及其作用二、圆锥曲线的离心率与统一方程小结复习参考题第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算3.1.3空间向量的数量积运算3.1.4空间向量的正交分解及其坐标表示3.1.5空间向量运算的坐标表示阅读与思考向量概念的推广与应用3.2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1.1变化率与导数1.1.1 变化率问题1.1.2导数的概念1.1. 3导数的几何意义1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则探究与发现牛顿法——用导数方法求方程的近似解1.3导数在研究函数中的应用1.3.1函数的单调性与导数1.3.2函数的极值与导数1.3.3函数的最大(小)值与导数信息技术应用图形技术与函数性质1.4生活中的优化问题举例1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程1.5.3定积分的概念信息技术应用曲边梯形的面积1.6微积分基本定理1.7定积分的简单应用1.7.1定积分在几何中的应用1.7.2定积分在物理中的应用实习作业走进微积分小结复习参考题第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理阅读与思考平面与空间中的余弦定理2.2直接证明与间接证明2.2.1综合法和分析法2.2.2反证法2.3数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念3.1.2复数的几何意义3.2复数代数形式的四则运算3.2.1复数代数形式的加、减运算及其几何意义3.2.2复数代数形式的乘除运算阅读与思考代数基本原理小结复习参考题选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合1.2.1排列1.2.2组合探究与发现组合数的两个性质1.3二项式定理1.3.1二项式定理1.3.2 “杨辉三角”与二项式系数的性质探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.2二项分布及其应用2.2.1条件概率2.2.2事件的相互独立性2.2.3 独立重复试验与二项分布探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值2.3.2离散型随机变量的方差2.4正态分布信息技术应用用计算机研究正态曲线随着μ,σ变化而变化的特点对正态分布的影响信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用实习作业选修3-1【没有找到书】第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质信息技术应用四直角三角形的射影定理第一讲小结第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-3选修4-4第一讲坐标系一平面直角坐标系1.平面直角坐标系2.平面直角坐标系中的伸缩变换二极坐标系1.极坐标系的概念2.极坐标和直角坐标的互化三简单曲线的极坐标方程1.圆的极坐标方程2.直线的极坐标方程四柱坐标系与球坐标系简介1.柱坐标系2.球坐标系阅读与思考笛卡尔、费马与坐标方法第二讲参数方程一曲线的参数方程1.参数方程的概念2.圆的参数方程3.参数方程和普通方程的互化二圆锥曲线的参数方程1.椭圆的参数方程2.双曲线的参数方程信息技术应用圆锥曲线参数方程中参数的几何意义3.抛物线的参数方程三直线的参数方程四渐开线与摆线1.渐开线2.摆线阅读材料摆线及其应用学习总结报告选修4-5第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一连分数附录二分数法德最优性证明附录三常用正交表选修4-8选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例。
2.2.2反证法[教材研读],思考以下问题预习课本P42~431.著名的“道旁苦李”的故事:王戎小时候爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友摘了李子一尝,原来是苦的.他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这棵树上却结满了李子,所以李子一定是苦的.”王戎的论述运用了什么推理思想?2.“反证法”的关键是得出矛盾,那么矛盾可以是哪些矛盾?[要点梳理]1.反证法假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.反证法常见矛盾类型反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设定义矛盾,或与公理、定理、事实矛盾等.[自我诊断]判断(正确的打“√”,错误的打“×”)1.反证法属于间接证明问题的方法.()2.反证法的证明过程既可以是合情推理也可以是一种演绎推理.()3.反证法的实质是否定结论导出矛盾.()[答案] 1.√ 2.× 3.√题型一用反证法证明“否定性”命题思考:根据反证法的定义如何证明一个命题?提示:反证法证明可考虑以下步骤:①反设;②归谬;③存真.已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负实根.[思路导引] 此题从正面证明无所适从,可考虑用反证法,即设方程f (x )=0存在负实根.[证明] 假设方程f (x )=0有负实根x 0,则x 0<0且x 0≠-1且a x 0=-x 0-2x 0+1, 由0<a x 0<1⇒0<-x 0-2x 0+1<1, 解得12<x 0<2,这与x 0<0矛盾.故方程f (x )=0没有负实根.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.[跟踪训练]设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.[证明]假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z),而f(0),f(1)均为奇数,即c为奇数,a+b为偶数,则an2+bn=-c为奇数,即n(an+b)为奇数.∴n,an+b均为奇数,又∵a+b为偶数,∴an-a为奇数,即a(n-1)为奇数,∴n-1为奇数,这与n为奇数矛盾.∴f(x)=0无整数根.题型二用反证法证明“至多”、“至少”型问题思考:什么样的命题证明可用反证法?提示:直接证明情况比较多,不易证明从词语上看含有“至多”“至少”等词语.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c )a 不能都大于14.[思路导引] 从量词角度分析,该命题的否定只含一种情况.[证明] 假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.因为a ,b ,c ∈(0,1),所以1-a >0,1-b >0,1-c >0.所以(1-a )+b 2>(1-a )b >14=12.同理(1-b )+c 2>12,(1-c )+a 2>12. 三式相加得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32, 即32>32,矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明时常见的“结论词”与“反设词”[跟踪训练]已知函数y=f(x)在区间(a,b)上是增函数.求证:函数y=f(x)在区间(a,b)上至多有一个零点.[证明]假设函数y=f(x)在区间(a,b)上至少有两个零点,设x1,x2(x1≠x2)为函数y=f(x)在区间(a,b)上的两个零点,且x1<x2,则(x1)=f(x2)=0.因为函数y=f(x)在区间(a,b)上为增函数,x1,x2∈(a,b)且x1<x2,∴f(x1)<f(x2),与f(x1)=f(x2)=0矛盾,假设不成立,故原命题正确.题型三用反证法证明“唯一性”命题已知:一点A和平面α.求证:经过点A只能有一条直线和平面α垂直.[思路导引]用反证法,假设存在另一条直线.[证明]根据点A和平面α的位置关系,分两种情况证明.①如图,点A在平面α内,假设经过点A至少有平面α的两条垂线AB,AC,那么AB,AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于经过点A的一条直线a.因为AB⊥平面α,AC ⊥平面α,a⊂α,所以AB⊥a,AC⊥a,在平面β内经过点A有两条直线都和直线a垂直,这与平面几何中经过直线上一点只能有已知直线的一条垂线相矛盾.②如图,点A在平面α外,假设经过点A至少有平面α的两条垂线AB,AC(B,C为垂足),那么AB,AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于直线BC,因为AB⊥平面α,AC⊥平面α,BC⊂α,所以AB⊥BC,AC⊥BC.在平面β内经过点A 有两条直线都和BC垂直,这与平面几何中经过直线外一点只能有已知直线的一条垂线相矛盾.综上,经过一点A只能有平面α的一条垂线.证明“唯一性”问题的方法“唯一性”包含“有一个”和“除了这个没有另外一个”两层意思.证明后一层意思时,采用直接证明往往会相当困难,因此一般情况下都采用间接证明,即用反证法(假设“有另外一个”,推出矛盾)或同一法(假设“有另外一个”,推出它就是“已知那一个”)证明,而用反证法有时比用同一法更方便.提醒:证明“有且只有”的问题,需要证明两个命题,即存在性和唯一性.[跟踪训练]用反证法证明:过已知直线a外一点A有且只有一条直线b与已知直线a平行.[证明]由两条直线平行的定义可知,过点A至少有一条直线与直线a平行.假设过点A还有一条直线b′与已知直线a平行,即b∩b′=A,b′∥a.因为b∥a,由平行公理知b′∥b.这与假设b∩b′=A矛盾,所以假设错误,原命题成立.1.反证法的证题步骤:(1)反设;(2)推理归谬;(3)存真,即假设不成立,原命题成立.2.用反证法证明问题时要注意以下三点:(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能性结论,缺少任何一种可能,反证都是不完全的.(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.1.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”,则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有1个不能被5整除[解析]用反证法只否定结论即可,而“至少有一个”的反面是“一个也没有”,故B正确.[答案] B2.“a<b”的反面应是()A.a≠b B.a>bC.a=b D.a=b或a>b[解析]“a<b”的反面即否定,为“a≥b”.[答案] D3.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交[解析]在同一平面a与b平行的否定为a与b相交.[答案] D4.否定“等差数列{b n}中任意不同的三项不可能为等比数列”时,正确的反设是:________________________________________.[答案]假设等差数列{b n}中存在不同的三项成等比数列5.已知a是整数,a2是偶数,求证a也是偶数.[证明](反证法)假设a不是偶数,即a是奇数.设a=2n+1(n∈Z),则a2=4n2+4n+1.∵4(n2+n)是偶数,∴4n2+4n+1是奇数,这与已知a2是偶数矛盾.由上述矛盾可知,a一定是偶数.。
1.用反证法证明命题“三角形的内角中至多有一个钝角”时,假设正确的是()A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角解析:选B.“至多有一个”即要么一个都没有,要么有一个,故假设为“至少有两个”.2.用反证法证明命题:“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除解析:选B.“至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”.3.已知数列{a n},{b n}的通项公式分别为a n=an+2,b n=bn+1(a,b是常数),且a>b,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n使得a n=b n,由题意a>b,n∈N*,则恒有an>bn,从而an+2>bn+1恒成立,∴不存在n使a n=b n.答案:04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.解析:由反证法证明数学命题的步骤可知,上述步骤的顺序应为③①②.答案:③①②[A级基础达标]1.下列命题错误的是()A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a、b∈Z,若a+b是奇数,则a、b中至少有一个为奇数解析:选D.a+b为奇数⇔a、b中有一个为奇数,另一个为偶数.故D错误.2.(2012·东北师大附中高二检测)用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为()A.a,b,c,d全都大于等于0B.a,b,c,d全为正数C.a,b,c,d中至少有一个正数D.a,b,c,d中至多有一个负数解析:选A.至少有一个负数的否定是一个负数也没有,即a,b,c,d全都大于等于0.3.“M不是N的子集”的充要条件是()A .若x ∈M ,则x ∈NB .若x ∈N ,则x ∈MC .存在x 1∈M 且x 1∈N ,又存在x 2∈N 且x 2∈MD .存在x 0∈M 且x 0∉N解析:选D.假设M 是N 的子集,则M 中的任一个元素都是集合N 的元素,所以,要使M 不是N 的子集,只需存在x 0∈M 且x 0∉N .4.设实数a 、b 、c 满足a +b +c =1,则a 、b 、c 中至少有一个数不小于________.解析:假设a 、b 、c 都小于13,则a +b +c <1与a +b +c =1矛盾.故a 、b 、c 中至少有一个不小于13. 答案:135.已知p 3+q 3=2,用反证法证明p +q ≤2时,得出的矛盾为________.解析:假设p +q >2,则p >2-q .∴p 3>(2-q )3=8-12q +6q 2-q 3,将p 3+q 3=2代入得6q 2-12q +6<0,∴(q -1)2<0这不可能.∴p +q ≤2.答案:(q -1)2<06.已知a ,b ,c ∈(0,1),求证(1-a )b ,(1-b )c ,(1-c )a 不可能都大于14证明:假设三个式子同时大于14, 即(1-a )b >14,(1-b )c >14,(1-c )a >14, 三式相乘得(1-a )a ·(1-b )b ·(1-c )c >143, ① 又因为0<a <1,所以0<a (1-a )≤(a +1-a 2)2=14. 同理0<b (1-b )≤14,0<c (1-c )≤14, 所以(1-a )a ·(1-b )b ·(1-c )c ≤143, ② ①与②矛盾,所以假设不成立,故原命题成立.[B 级 能力提升]7.设a ,b ,c 均为正实数,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P 、Q 、R 同时大于零”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.首先若P 、Q 、R 同时大于零,则必有PQR >0成立.其次,若PQR >0且P 、Q 、R 不都大于零,则必有两个为负,不妨设P <0,Q <0,即a +b -c <0,b +c -a <0,∴b <0与b >0矛盾,故P 、Q 、R 都大于零.8.设x ,y ,z 都是正实数,a =x +1y ,b =y +1z c =z +1x,则a ,b ,c 三个数( ) A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2解析:选C.若a ,b ,c 都小于2,则a +b +c <6①,而a +b +c =x +1x y +1y +z +1z≥6②,显然①②矛盾,所以C正确.9.完成反证法证题的全过程.设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.证明:反设p为奇数,则a1-1,a2-2,…,a7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________________①=________________②=0.但0≠奇数,这一矛盾说明p为偶数.解析:将a1-1,a2-2,…,a7-7相加后,再分组结合计算.答案:(a1-1)+(a2-2)+…+(a7-7)(a1+a2+...+a7)-(1+2+ (7)10.(2012·佛山高二检测)设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.证明:假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z),而f(0),f(1)均为奇数,即c为奇数,a+b为偶数,则a,b,c同时为奇数或a,b同时为偶数,c为奇数,当n为奇数时,an2+bn为偶数;当n为偶数时,an2+bn也为偶数,即an2+bn+c为奇数,与an2+bn+c=0矛盾.∴f(x)=0无整数根.11.(创新题)已知直线ax-y=1与曲线x2-2y2=1相交于P,Q两点,是否存在实数a,使得以PQ为直径的圆经过坐标原点O?若存在,试求出a的值;若不存在,请说明理由.解:假设存在实数a,使得以PQ为直径的圆经过坐标原点O,则OP⊥OQ.设P(x1,y1),Q(x2,y2),则y1x1·y2x2=-1,∴(ax1-1)(ax2-1)=-x1·x2,即(1+a2)x1·x2-a(x1+x2)+1=0.由题意得(1-2a2)x2+4ax-3=0,∴x1+x2=-4a1-2a2,x1·x2=-31-2a2.∴(1+a2)·-31-2a2-a·-4a1-2a2+1=0,即a2=-2,这是不可能的.∴假设不成立.故不存在实数a,使得以PQ 为直径的圆经过坐标原点O.。
新人教A版高中数学教材目录(必修+选修)【很全面】人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策附录探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告。
满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。
其中正确的是( )。
(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。
∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。
(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。