九年级数学上册23.1图形的旋转第一课时教案新人教版
- 格式:doc
- 大小:95.00 KB
- 文档页数:4
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。
本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。
通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。
二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。
但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。
同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。
三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。
2.能够运用图形旋转的性质解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.图形旋转的性质的理解和运用。
2.旋转的表示方法的掌握。
五. 教学方法采用问题驱动法和案例教学法进行教学。
通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。
六. 教学准备1.多媒体教学设备。
2.图形旋转的实例和练习题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。
3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。
4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。
5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。
23.1图形的旋转(第一课时)一、教学内容旋转的概念、旋转的性质二、教学目标知识与技能:通过观察具体实例认识旋转,探索其基本性质。
过程与方法:在发现探索过程中完成对旋转这一图形变换从直观到抽象,从感性认识到理性认识的转变,发展学生的观察、分析、归纳、抽象、概括能力。
情感态度与价值观:学生在经历了实验探究,知识应用及内化等数学活动中,体验数学的具体,生动,灵活性,调动学生学习数学的主动性.三、重难点重点:1、理解旋转的基本概念2、探索旋转的性质.难点:找准旋转变换关系及性质的形成。
四、教学过程设计(一)创设情境、引入新课1、介绍风车2、欣赏风车师生活动:教师展示旋转的风车图片,学生欣赏,并回忆小学曾经知道的旋转。
设计意图:通过转动的风车,引入本节课的研究对象。
(二)师生互动,探求新知1、观察转动的风车得出旋转的概念问题1:观察转动的风车实例:思考这些转动的风车有什么共同特点?师生活动:展示转动的风车图片,学生观察并思考,教师引导学生进行归纳图形旋转的定义。
在师生共同得出旋转定义后,教师射线OA绕着点O旋转到OB的位置为例,介绍图形旋转的相关概念“旋转中心”、“旋转角”、“旋转方向”设计意图:让学生从具体的实例中发现旋转现象,抽象出旋转的本质属性,即将“生活中的旋转”抽象为“数学中的旋转”让学生理解数学概念,同时发展抽象概括能力。
2、再次观察旋转的风车强调旋转的三要素问题:仔细观察两个旋转的风车有哪些异同点?师生活动:展示两个旋转方向、旋转角度都不同的风车,抛出问题,学生观察思考,寻找异同点。
设计意图:帮助学生巩固对旋转概念的认识,使学生初步感受决定旋转的三要素的重要性,缺少任何一条都会导致旋转的结果有所不同。
3、观看学生表演,强调图形旋转的三要素的重要性表演:(1)逆时针旋转900;(2)绕着肩关节旋转600;(3)绕着肘关节顺时针旋转。
师生活动:教师提出要求,两名同学表演,其他同学说明为什么表演的结果确不同。
23.1 图形的旋转一、教学目标1。
掌握旋转的有关概念及基本性质.2。
能够根据旋转的基本性质解决实际问题和进行简单作图。
二、课时安排1课时三、教学重点掌握旋转的有关概念及基本性质.四、教学难点能够根据旋转的基本性质解决实际问题和进行简单作图.五、教学过程(一)导入新课问题:观察下列动画,说一说,生活中的这些现象有什么共同特点?(二)讲授新课1.观察实例得出旋转概念.我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.(1)请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?学生口答,教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.(2)再看自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?思考:这些现象有什么共同特点?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳:像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.2.通过类比试验探究旋转的性质探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC ),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′ )移开硬纸板.△A'B’C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?教师让学生思考这些问题.必要时,可引导学生从以下问题中进行思考:(1)轴对称的性质中对应点之间有怎样的位置关系和数量关系?旋转呢?(2)旋转是一个图形围绕旋转中心旋转一定的角度,此时,图形上的点发生旋转了吗?它是如何旋转的?哪个角表示了旋转的角度?归纳:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.旋转前、后的图形全等.(三)重难点精讲例1 如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.解:∵点A 是旋转中心,∴它的对应点是 。
1. 教学目标1.1 知识与技能:[1]了解图形的旋转的有关概念并理解它的基本性质.[2]会利用旋转的概念解决相关的数学问题。
1.2过程与方法:[1]让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.[2]通过动手操作从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.1.3 情感态度与价值观:从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.2. 教学重点/难点2.1 教学重点旋转及对应点的有关概念及其应用.2.2 教学难点从活生生的数学中抽出概念.3、教学过程:1 引入新课1、出示本节课的学习目标:(1)认识旋转,熟悉现实生活中的旋转现象;(2)理解图形旋转的基本性质2、课件出示生活中的旋转事例今天我们就来学习另一种新的图形变换---旋转由此导入新课,【板书】第二十三章旋转23.1 图形的旋转2探索新知研修教材[1] 旋转的有关概念1、如图钟表的指针在不停在转动,从3时到5时,时针转动了多少度.2、如图23.1-2,风车风轮的每个叶片在风的吹动下转动到新的位置.3、以上这些现象有什么共同特点呢?共同特点是如果我们把时针、车轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.【板演/PPT】像这样,在同一平面内,把一个图形绕着某一定点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.[2] 认识旋转及旋转的三要素【PPT动画演示】三幅旋转动画:分别旋转45度、90读、100度,观察动画,并回答:点A绕__点,往___方向,转动了__度到点B.线段AB绕__点,往___方向,转动了__度到线段A’B’.△ABC绕__点,往___方向,转动了__度到△A’B’C’.【板书/PPT】旋转的三要素:旋转中心旋转方向旋转角度[3] 旋转的基本性质【师】同学们找出下列两组旋转中的旋转三要素【PPT动画出示】,并回答问题:(1)如图,△ABO绕点O旋转得到△CDO, 则:点A的对应点是________;旋转中心是________; 旋转角是_________________;(2)如图,△ABC绕点M旋转得到△ DEF,则:点C的对应点是________;旋转中心是________;旋转方向是________;旋转角是______________________;【师强调】旋转角就是对应点与旋转中心所连线段的夹角【师】小组探究下列问题:1.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?【生】大小、形状没变;位置改变;旋转前后的图形全等2.分别连结对应点A、D与旋转中心O,量一量线段OA与线段OD,它们有什么关系?任意找一对对应点,量一下它们与旋转中心的连线段,你能发现什么规律?【生】对应点到旋转中心的距离相等3.量一下∠AOD的度数,再任意找几对对应点,分别量一下对应点与旋转中心连线段夹角的度数,你又能发现什么规律?【生】对应点与旋转中心所连线段的夹角等于旋转角.【小结】指导生总结【板书/PPT】旋转的基本性质旋转前、后的图形全等.对应点到旋转中心的距离相等.每一对对应点与旋转中心所连线段的夹角等于旋转角.练一练P61练习1、2[4]例题如图,在正方形ABCD中,E是CB延长线上一点,△ABE经过旋转后得到△ADF,请按图回答:(1)旋转中心是哪一点? 点A (2)旋转角是多少度? 90度(3)∠EAF等于多少度? 90度(4)经过旋转,点B与点E分别转到什么位置? 点D、点F (5)若点G是线段BE的中点,经过旋转后,点G转到了什么位置?请在图形上作出.练一练P61练习3课堂小结1、旋转的概念:在同一平面内,把一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转2、旋转三要素:旋转中心、旋转的角度、旋转方向.3、旋转前、后图形的形状和大小不改变。
人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《23.1图形的旋转(第1课时)》这一章节主要介绍了图形的旋转性质及其在实际问题中的应用。
通过本节课的学习,学生能够理解图形旋转的定义,掌握图形旋转的性质,并能够运用旋转性质解决一些实际问题。
本节课的内容是学生进一步学习图形变换的基础,对于培养学生的空间想象能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。
但是,对于图形旋转这一概念,学生可能较为陌生,因此需要在教学中给予充分的引导和解释。
此外,学生可能对于实际问题中的应用方面存在一定的困难,因此需要通过具体的例子和练习来帮助学生理解和掌握。
三. 教学目标1.知识与技能目标:学生能够理解图形旋转的定义和性质,并能够运用旋转性质解决一些实际问题。
2.过程与方法目标:通过观察和操作,学生能够培养空间想象能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对图形变换产生兴趣,并能够自主学习和探索。
四. 教学重难点1.重点:图形旋转的定义和性质。
2.难点:图形旋转在实际问题中的应用。
五. 教学方法1.引导法:通过提问和解释,引导学生思考和探索图形旋转的性质。
2.实例教学法:通过具体的例子和练习,帮助学生理解和掌握图形旋转的应用。
3.小组合作学习:学生分组进行讨论和练习,培养学生的合作和沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示图形旋转的定义和性质,以及一些实际问题的例子。
2.练习题:准备一些与图形旋转相关的练习题,用于巩固学生对知识的理解和应用能力。
3.教学工具:准备一些教具,如图形模板和旋钮,用于直观地展示图形旋转的过程。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的图形成交和平移的知识,为新课的学习做好铺垫。
23.1 图形的旋转(第一课时)教案
教学内容
1.什么叫旋转?旋转中心?旋转角?
2.什么叫旋转的对应点?
教学目标
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
重难点、关键
1.重点:旋转及对应点的有关概念及其应用.
2.难点与关键:从活生生的数学中抽出概念.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1、2两题有什么共同特点呢?
共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺
时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A、B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.
(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?
(2)请画出旋转中心和旋转角.
(3)指出,经过旋转,点A、B、C、D分别移到什么位置?
(老师点评)
(1)可以看做是由正方形ABCD的基本图案通过旋转而得到
的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.
三、巩固练习
教材P65 练习1、2、3.
四、应用拓展
例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心
重合,不难知道重合部分的面积为1
4
,现把其中一个正方形固定不动,•另一个正方形绕其
中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.
解:面积不变.
理由:设任转一角度,如图所示.
在Rt△ODD′和Rt△OEE′中
∠ODD′=∠OEE′=90°
∠DOD′=∠EOE′=90°-∠BOE
OD=OD
∴△ODD′≌△OEE′
∴S△ODD`=S△OEE`
∴S四边形OE`BD`=S正方形OEBD=1 4
五、归纳小结(学生总结,老师点评)
本节课要掌握:
1.旋转及其旋转中心、旋转角的概念. 2.旋转的对应点及其它们的应用.
六、布置作业
1.教材P66 复习巩固1、2、3.
2.《同步练习》
一、选择题
1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().
A.6个 B.7个 C.8个 D.9个
2.从5点15分到5点20分,分针旋转的度数为().
A.20° B.26° C.30° D.36°
3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().
A.70° B.80° C.60° D.50°
(1) (2) (3)
二、填空题.
1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.
2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.
3.如图3,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP•是________三角形.
三、综合提高题.
1.阅读下面材料:
如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.
如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.
(4) (5) (6) (7)
如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.
回答下列问题
如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=1
2 AB.
(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE移到△ADF的位置?
(2)指出如图7所示中的线段BE与DF之间的关系.
2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?
答案:
一、1.B 2.C 3.B
二、1.旋转旋转中心旋转角 2.A 45° 3.点A 60°等边
三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.
(2)BE=•DF,BE⊥DF
2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.。