异方差性检验
- 格式:doc
- 大小:4.01 MB
- 文档页数:13
异方差性的检验及处理方法异方差性是指随着自变量变化,因变量的方差不保持恒定,即方差存在不均匀的变化趋势。
在统计分析中,如果忽视了异方差性,可能会导致误差的不准确估计,从而影响对因变量的显著性检验和参数估计结果的准确性。
为了避免异方差性给统计分析带来的影响,需要进行异方差性的检验和处理。
下面将介绍几种常用的异方差性检验及处理方法。
一、异方差性的检验方法:1.绘制残差图:绘制因变量的残差(观测值与拟合值之差)与自变量的散点图,观察残差是否随着自变量的变化而存在明显的模式。
如果残差图呈现出锥形或漏斗形状,则表明存在异方差性。
2.帕金森检验:帕金森检验是一种常用的检验异方差性的方法。
该方法的原理是通过对残差进行变换,判断变换后的残差是否与自变量相关。
3. 布罗斯-佩根检验(Breusch-Pagan test):布罗斯-佩根检验是一种常用的检验异方差性的方法。
该方法的原理是通过计算残差与自变量的相关系数,进而判断是否存在异方差性。
4. 品尼曼检验(Leve ne’s test):品尼曼检验是一种非参数的检验方法,可以用于检验不同组别的方差是否存在显著差异。
二、异方差性的处理方法:1.变量转换:通过对因变量和自变量进行变换,可以使数据满足异方差性的假设。
比如可以对因变量进行对数转换或平方根转换,对自变量进行标准化处理等。
2.使用加权最小二乘法(WLS):加权最小二乘法是一种可以处理异方差性的回归分析方法。
该方法的原理是通过对残差进行加权,使得残差的方差与自变量无关。
3.使用广义最小二乘法(GLS):广义最小二乘法是一种可以处理异方差性的回归分析方法。
该方法的原理是通过对残差进行加权,使得残差的方差可以通过自变量的一个线性组合来估计。
4.进行异方差性的鲁棒估计:鲁棒估计是一种对异常值和异方差性具有较好鲁棒性的估计方法。
通过使用鲁棒估计,可以减少异方差性对参数估计的影响。
综上所述,异方差性是统计分析中需要重视的问题。
时间序列异方差检验时间序列数据是指按时间顺序排列的一组观测数据,它们可以是连续的,也可以是离散的。
在许多实际问题中,时间序列数据的方差可能随着时间的变化而发生改变,这种现象被称为异方差性。
异方差性可能会对数据的分析和模型建立产生影响,因此需要进行异方差检验。
一种常用的异方差检验方法是利用残差的变化来判断异方差性。
具体来说,我们可以通过拟合一个回归模型,然后检验残差是否存在异方差性。
我们需要选择一个合适的回归模型来拟合时间序列数据。
常见的回归模型包括线性回归模型、多项式回归模型和指数回归模型等。
选择合适的回归模型需要考虑数据的特点和目标,可以借助统计方法和经验进行选择。
在选择了合适的回归模型后,我们可以通过拟合这个模型来得到残差。
残差是观测值与预测值之间的差异,可以表示模型无法解释的随机波动。
如果残差存在异方差性,那么其方差应该会随着预测值的变化而发生改变。
为了检验残差的异方差性,我们可以使用一些统计检验方法,如Breusch-Pagan检验和White检验等。
这些检验方法的基本思想是通过构造一个统计量,然后与相应的分布进行比较,以判断残差是否存在异方差性。
Breusch-Pagan检验是一种常用的异方差检验方法,它假设残差的方差与自变量之间存在线性关系。
具体来说,我们可以通过拟合一个辅助回归模型来估计残差的方差与自变量之间的关系,然后利用残差的平方和进行统计检验。
White检验是另一种常用的异方差检验方法,它不依赖于对残差方差与自变量关系的假设。
White检验将残差的平方和作为统计量,然后与自变量之间的交叉项进行比较,以判断残差是否存在异方差性。
除了上述方法外,还有一些其他的异方差检验方法,如Goldfeld-Quandt检验和ARCH检验等。
这些方法的具体原理和应用范围可以根据实际情况进行选择。
时间序列数据的异方差性可能会对数据的分析和模型建立产生影响,因此需要进行异方差检验。
我们可以通过拟合回归模型,然后检验残差的变化来判断异方差性。
时序预测是统计学和经济学中一个重要的课题,通常用来预测未来某一时间点的数值。
然而,在进行时序预测时,我们经常会遇到异方差性的问题。
异方差性指的是时间序列数据的方差不是恒定的,而是随时间变化的情况。
在异方差性存在的情况下,传统的预测方法可能会出现问题,因此需要采用一些特殊的方法来进行检验和处理。
本文将探讨时序预测中的异方差性检验方法,为读者提供一些参考和借鉴。
一、异方差性的检验方法在进行时序预测之前,我们首先需要检验数据是否存在异方差性。
常用的异方差性检验方法包括LM检验、BP检验和White检验。
LM检验是利用残差平方和的序列进行检验,其原假设是数据不存在异方差性。
BP检验是对LM检验的一种改进,可以检验更多的异方差性形式。
White检验是一种广义的异方差性检验方法,适用于多元回归模型。
通过对数据进行这三种检验,我们可以初步判断数据是否存在异方差性,并选择合适的处理方法。
二、异方差性的处理方法一旦确定数据存在异方差性,我们需要对数据进行处理,以确保预测模型的准确性。
常用的异方差性处理方法包括加权最小二乘法、异方差稳健标准误差和变换方法。
加权最小二乘法是一种根据异方差性的严重程度对数据进行加权的方法,可以有效减少异方差性对预测结果的影响。
异方差稳健标准误差是一种对参数估计的标准误差进行修正的方法,可以提高参数估计的准确性。
变换方法是通过对原始数据进行变换,使其满足异方差性的假设,从而得到更准确的预测结果。
通过选择合适的处理方法,我们可以有效处理数据的异方差性,提高预测模型的准确性。
三、异方差性对时序预测的影响异方差性对时序预测模型的影响是不可忽视的。
在存在异方差性的情况下,传统的预测方法可能会出现参数估计偏误、标准误差过低等问题,导致预测结果的不准确性。
因此,及时发现和处理数据的异方差性是非常重要的。
通过合适的异方差性检验和处理方法,我们可以有效降低异方差性对时序预测的影响,得到更准确的预测结果。
异方差自相关豪斯曼检验异方差性(Heteroscedasticity)是指数据的方差不是常数,而是随着自变量的变化而变化。
当数据呈现异方差性时,固定效应模型可能会产生无偏但不一致的估计,而随机效应模型通常能够更好地处理异方差性。
因此,豪斯曼检验可以帮助确定在存在异方差性时应该选择哪种模型。
同时,时间序列数据中还可能存在自相关性(Autocorrelation),即误差项之间存在相关性。
如果数据中存在自相关性,那么OLS估计量可能不再是最佳线性无偏估计。
通过进行豪斯曼检验,可以确定在存在自相关性时是否需要使用修正的OLS估计方法。
要进行豪斯曼检验,首先需要建立两个模型:一个固定效应模型和一个随机效应模型。
然后通过计算两个模型的估计值的差异来进行检验。
在检验中,我们感兴趣的是这个差异是否由异方差性或自相关性引起的。
具体来说,豪斯曼检验的原假设是两个模型没有系统性的差异。
如果原假设被拒绝,说明两个模型之间存在显著差异,这可能是由于异方差性或自相关性导致的。
为了说明豪斯曼检验的方法和步骤,我们将考虑一个实际的研究示例。
假设我们对一个国家的 GDP 进行研究,我们想分析GDP 与劳动力投入之间的关系。
我们建立了一个固定效应模型和一个随机效应模型,用来估计 GDP 对劳动力投入的影响。
在固定效应模型中,我们假设不同国家之间的劳动力投入是不同的,即随着时间的推移,劳动力投入在各国之间也可能存在差异。
而在随机效应模型中,我们假设劳动力投入在各国之间是同质的,即不同的劳动力投入只是由于随机误差所致。
接下来,我们用豪斯曼检验来检验这两个模型之间的差异。
我们首先估计这两个模型,并计算它们之间的差异。
接着,我们对这些差异进行统计检验,以确定差异是否显著。
如果实证结果表明固定效应模型比随机效应模型更好,那么我们可以得出结论,数据中存在异方差性和自相关性。
在这种情况下,我们可能需要对模型进行修正,以更准确地描述数据。
总的来说,豪斯曼检验是一种在经济学和其他社会科学研究中经常使用的方法,用于检验两个模型之间的差异。
实验四-异方差性的检验与处理实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。
二、实验学时:2学时三、实验要求(1)掌握用MATLAB 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法(1) 用X-Y 的散点图进行判断(2). 22ˆ(,)(,)e x e y %%或的图形 ,),x )i i y %%i i ((e 或(e 的图形)(3) 等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
:i u 0原假设H 是等方差的;:i u 0备择假设H 是异方差;检验的三个步骤① ˆt ty y =-%i e②|i x %%i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)|i x %i i 其中, n 为样本容量d 为|e和的等级的差数。
③ 做等级相关系数的显著性检验。
n>8时,22(2)1s sn t t n r-=--0当H 成立时,/2(2),t t n α≤-若认为异方差性问题不存在;/2(2),t t n α>-反之,若||i i e x %说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若α在统计上是显著的,表明存在异方差性。
2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121()()()()()i i p pi iji ji ji ji ji y x x u f x f x f x f x f x βββ=+⋅++⋅+L 在该模型中:2211()()()()()()i i ji u u ji ji ji Var u Var u f x f x f x f x σσ===即满足同方差性。
异方差检验的方法
异方差检验是用于检验数据中是否存在异方差(不等方差)的统计方法。
异方差检验常用的方法有以下几种:
1. 眼测法(Eyeball test):通过观察数据的散点图或箱线图,检测不同组之间是否存在显著差异。
如果图形中不同组之间存在不同的离散程度,则可能存在异方差。
2. Bartlett检验:适用于正态分布的数据。
Bartlett检验的零假设是各组数据的方差相等,备择假设是各组数据的方差不等。
如果计算得出的统计量显著小于临界值,则不拒绝零假设,即认为各组数据的方差相等。
3. Levene检验:适用于非正态分布的数据。
Levene检验同样用来检验各组数据的方差是否相等,其零假设是各组数据的方差相等,备择假设是各组数据的方差不等。
Levene检验的统计量是基于各组数据的绝对离差计算的,如果计算得出的p值小于设定的显著性水平,则可以拒绝零假设。
4. Brown-Forsythe检验:一种对非正态分布的数据进行异方差检验的鲁棒方法。
类似于Levene检验,Brown-Forsythe检验也是通过比较各组数据的绝对离差来判断方差是否有显著差异。
需要注意的是,异方差检验是一种辅助性的检验方法,不能代替其他统计方法的
结果解释。
在进行异方差检验时,还应结合实际问题和数据特点来进行综合分析和判断。
异方差性及其检验I 概念对于多元线性回归模型同方差性假设为 如果出现即对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,不具有等同的分散程度,则认为出现了异方差(Heteroskedasticity ) II 类型同方差性假定是指,回归模型中不可观察的随机误差项i u 以解释变量X 为条件的方差是一个常数,因此每个i u 的条件方差不随X 的变化而变化,即有2()i i f X σ=≠常数在异方差的情况下,总体中的随机误差项i u 的方差 2i σ不再是常数,通常它随解释变量值的变化而变化,即异方差一般可归结为三种类型:01122 1,2,,i i i k ki i Y X X X i n ββββμ=+++++=2(), 1,2,...,i Var i n μσ==2(), 1,2,...,i i Var i nμσ==2()i i f X σ=异方差类型图:III来源(1)截面数据(不同样本点除解释变量外其他影响差异大)(2)时间序列(规模差异)(3)分组数据、异常值等(4)模型函数形式设置不正确和数据变形不正确(5)边错边改学习模型IV影响计量经济学模型一旦出现异方差,如果仍然用普通最小二乘法估计模型参数,会产生一系列不良后果。
(1)参数估计量非有效(2)OLS估计的随机干扰项的方差不再是无偏的(3)基于OLS估计的各种统计检验非有效(4)模型的预测失效V检验异方差性,即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差,那么检验异方差性,也就是检验随机干扰项的方差与解释变量观测值之间的相关性。
一般检验方法如下:(1)图示检验法(2)帕克(Park)检验与戈里瑟(Gleiser)检验(3)G-Q(Goldfeld-Quandt)检验(4)F检验(5)拉格朗日乘子检验(6)怀特检验(具体步骤随后介绍)VI修正方法加权最小二乘法定义:加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS法估计其参数。
g-q方法进行异方差检验的基本步骤1.引言1.1 概述概述是一篇文章引言部分的重要组成部分,旨在给读者提供对文章内容的整体了解和背景信息。
在本文中,我们将介绍和讨论使用G-Q方法进行异方差检验的基本步骤。
异方差是指随着自变量或其他因素的变化,观测值的方差也会相应改变的现象。
在许多实际应用中,我们常常需要检验变量之间是否存在异方差,以确保结果的准确性和可靠性。
而G-Q方法是一种常用的异方差检验方法。
在本文中,我们将首先对G-Q方法进行详细介绍,包括其基本原理和适用范围。
然后,我们将重点讨论异方差检验的基本原理,解释为什么需要进行异方差检验以及其在实践中的重要性。
通过本文的阅读,读者将能够了解G-Q方法在异方差检验中的基本步骤和应用场景,以及理解异方差检验的原理和意义。
希望本文能为读者在实际研究和数据分析中进行异方差检验提供基本的指导和帮助。
文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将按照以下结构进行阐述和讨论异方差检验的基本步骤:1. 引言:在引言部分,我们会对异方差检验的背景和重要性进行概述,同时介绍本文的研究目的和意义。
2. 正文:在正文部分,我们将首先介绍G-Q方法的基本原理。
这个方法是进行异方差检验的一种常用方法,其核心思想是通过构建辅助回归模型来对异方差性进行检验。
我们将详细阐述G-Q方法的原理和应用过程。
3. 结论:在结论部分,我们将对本文进行总结和展望。
我们将回顾本文所介绍的异方差检验的基本步骤,并总结其优点和局限性。
同时,我们也会展望未来对异方差检验方法的进一步研究方向。
通过以上结构,读者能够系统地了解异方差检验的基本步骤,并对其原理和应用有一个清晰的认识。
在文章的撰写过程中,我们将深入讨论每个部分的内容,以确保文章的准确性和完整性。
希望本文能够对读者在进行异方差检验时提供帮助和指导。
1.3 目的本文的目的在于介绍使用G-Q方法进行异方差检验的基本步骤。
异方差是指不同组或不同条件下变量的方差不相等的情况,如果在进行统计分析时不考虑异方差的存在,可能导致结果的不准确性甚至错误的结论。
eviews异方差检验步骤Eviews异方差检验步骤异方差是指随着自变量的变化,因变量的方差也会发生变化。
在回归分析中,如果存在异方差,会导致回归系数的估计值不准确,从而影响模型的可靠性。
因此,进行异方差检验是非常重要的。
Eviews是一款常用的统计软件,它提供了多种方法来检验异方差。
下面我们将介绍Eviews中进行异方差检验的步骤。
步骤一:建立回归模型我们需要建立一个回归模型。
在Eviews中,可以通过“Quick”菜单中的“Estimate Equation”来建立回归模型。
在弹出的对话框中,选择因变量和自变量,并设置其他参数,如拟合方法、截距项等。
步骤二:检验异方差建立好回归模型后,我们需要进行异方差检验。
在Eviews中,可以通过“View”菜单中的“Residual Diagnostics”来进行检验。
在弹出的对话框中,选择“Heteroskedasticity Tests”选项卡,然后选择需要进行的异方差检验方法。
Eviews提供了多种异方差检验方法,包括Breusch-Pagan-Godfrey 检验、White检验、Goldfeld-Quandt检验等。
这些方法的原理和适用条件不同,需要根据具体情况选择合适的方法。
步骤三:解释检验结果进行异方差检验后,Eviews会输出检验结果。
通常包括检验统计量、p值等信息。
如果p值小于显著性水平(通常为0.05),则可以拒绝原假设,认为存在异方差。
如果检验结果显示存在异方差,我们需要对模型进行修正。
常用的方法包括使用异方差稳健标准误、进行加权最小二乘回归等。
总结Eviews提供了多种方法来检验异方差,包括Breusch-Pagan-Godfrey 检验、White检验、Goldfeld-Quandt检验等。
进行异方差检验后,需要根据检验结果对模型进行修正,以提高模型的可靠性。
金融122班 23号钟萌
异方差性检验
引入滞后变量X-1、X-2、Y-1 。
可建立如下中国居民消费函数: Y=β0+β1X+β2X(-1)+β3X(-2)+β4Y(-1)
用OLS法进行估计,结果如下:
对应的表达式为
Y=429.3512+0.143X-0.104X(-1)+0.063X(-2)+0.838Y(-1)
2.18 2.09 -0.73 0.63 7.66
R2=0.9988 F=4503.94
估计结果显示,在5%的显著性水平下,自由度为25的临界值为2.060,若存在异方差性,则可能是由X、Y(-1)引起的。
做OLS回归得到的残差平方项分别与X、Y(-1)的散点图
从散点图可以看出,两者存在异方差性。
下面进行统计检验。
采用White异方差检验:
所以辅助回归结果为:
e2=-194156.4-249.491X+0.003X2+265.306X(-1)-0.004X(-1)2+4.187X(-2)-
0.001X(-2)2 +51.377Y(-1)+0.001Y(-1)2
-1.566 -4.604 2.863 2.648 -1.604 0.055 -0.301 0.579 0.410
X与X的平方项的参数的t检验是显著的,且White统计量为
16.999>5%显著性水平下,自由度为8的卡方分布值15.51,(从nR2 统计量的对应值的伴随概率值容易看出)所以在5%的显著性水平下,拒绝同方差性这一原假设,方程确实存在异方差性。
用加权最小二乘法对异方差性进行修正,重新进行回归估计,
得到加权后消除异方差性的估计结果:
回归表达式为:
Y=275.0278-0.0192X+0.1617X(-1)-0.0732X(-2)+0.9165Y(-1)
3.5753 -0.3139 1.3190 -1.0469 16.5504
R2=0.999950 F=36016.15
序列相关性检验
由上,得到表达式
Y=275.0278-0.0192X+0.1617X(-1)-0.0732X(-2)+0.9165Y(-1)
3.5753 -0.3139 1.3190 -1.0469 16.5504
R2=0.999950 F=36016.15
D.W.=1.6913 进行序列相关性检验,作残差项e和t,e和e(-1)关系图如下
从上图可以看出,随即干扰项呈现正序列相关性。
DW检验结果表明,在5%的显著性水平下,n=26,k=2,查表得d L=1.30,d U=1.46,由于
d U<D.W.<4-d L, 故不存在自相关。
下面进行拉格朗日乘数检验。
含1阶滞后残差项的辅助回归过程如下:
得到
LM=8.5128,从伴随概率值可以看出,在显著性为5%的水平下,模型存在1阶序列相关性。
但是e(-1)的参数不显著,说明不存在1阶序列相关性。
作2阶滞后残差项的辅助回归结果如下:
LM=9.2756,从伴随概率值可以看出,在显著性为5%的水平下,模型存在2阶序列相关性。
但是e(-2)的参数不显著,说明不存在2阶序列相关性。
多重共线性检验
由上述的异方差修正结果显示
Y=275.0278-0.0192X+0.1617X(-1)-0.0732X(-2)+0.9165Y(-1)
3.5753 -0.3139 1.3190 -1.0469 16.5504
R2=0.999950 D.W.=1.6913
可得到R2较大且接近于1, F=36016.15>F0.05(4,21)=2.84,故认为支出与上述解释变量间总体线性关系显著。
但由于X、X(-1)、X(-2)未能通过t检验,且符号的经济意义也不合理,故认为解释变量间存在多重共线性。
进行简单的相关系数检验
从上面的结果可以看出,相比较而言,X与X(-1),X(-1)与X(-2)与之间存在高度相关性。
接下来找出最简单的回归形式。
分别作出Y与X、X(-1)、X(-2)、Y(-1)间的回归如下:
(1)
则 Y=1738.686+0.454X
5.951 51.147 R2=0.9902 D.W.=0.3909 (2)
Y=1544,.798+0.5081X(-1)
6.7475 6
7.2007
R2=0.9945 D.W.=0.6221 (3)
Y=1510.031+0.5580X(-2)
6.2674 65.15998
R2=0.9943 D.W.=0.7584 (4)
Y=36.8247+1.0788Y(-1)
0.2598 117.6831
R2=0.9982 D.W.=1.5181
从上面4个模型的结果和检验值可以看出,选择模型4为初始的回归模型。
采用逐步回归寻找最佳回归方程。
(1)在初始模型中引入X,
从上面的结果可以看出,模型拟合度提高,且参数符号合理,变量也通过了t检验。
(2)在初始模型中引入X(-1),
从上面的结果可以看出,模型拟合度提高,且参数符号合理,变量未能通过t检验。
(3)去掉X(-1),引入X(-2).
从上面的结果可以看出,模型拟合度提高,且参数符号合理,但变量
未能通过了t检验。
所以最终的函数应以Y=f{X,Y(-1)}为最优,拟合结果如下:Y=394.148+0.098X+0.846Y(-1)
当X=85623.1,Y(-1)=33214.4,Y=36884.6。