高等工程热力学 童钧耕 习题1解析
- 格式:ppt
- 大小:2.37 MB
- 文档页数:24
工程热力学童钧耕第六版
(原创版)
目录
1.童钧耕的《工程热力学》第六版的概述
2.工程热力学的定义和作用
3.第六版《工程热力学》的主要内容
4.本书的特点和亮点
5.对读者的建议和期待
正文
《工程热力学》是工程领域中一门重要的学科,它主要研究热力学原理在工程中的应用。
童钧耕的《工程热力学》第六版是一本优秀的教材,它详细介绍了工程热力学的基本原理和应用。
工程热力学是一门研究热力学原理在工程中应用的学科。
它主要研究热力学系统的宏观性质和行为,包括热力学系统的状态、热力学过程、热力学循环等。
在工程领域中,工程热力学的应用非常广泛,它不仅可以用于研究热力学系统的设计、运行和优化,还可以用于研究能源转换和利用、环境工程等问题。
第六版《工程热力学》的主要内容包括热力学基本概念、热力学第一和第二定律、热力学循环、热力学过程、热力学系统的状态方程等。
本书详细介绍了这些内容,并且通过大量的例题和习题,帮助读者理解和掌握工程热力学的基本原理和应用。
本书的特点和亮点在于,它不仅内容全面,而且讲解详细,适合初学者学习。
此外,本书还采用了大量的例题和习题,帮助读者理解和掌握工程热力学的基本原理和应用。
对于读者的建议和期待,我希望读者能够认真学习本书的内容,理解
工程热力学的基本原理和应用。
同时,我也希望读者能够多做练习,通过练习来加深对工程热力学的理解。
沈维道、将智敏、童钧耕《工程热力学》课后思考题答案工程热力学思考题及答案第十二章制冷循环1.压缩蒸汽制冷循环采用节流阀来代替膨胀机,压缩空气制冷循环是否也可以采用这种方法?为什么?答压缩空气制冷循环不能采用节流阀来代替膨胀机。
工质在节流阀中的过程是不可逆绝热过程,不可逆绝热节流熵增大,所以不但减少了制冷量也损失了可逆绝热膨胀可以带来的功量。
而压缩蒸汽制冷循环在膨胀过程中,因为工质的干度很小,所以能得到的膨胀功也极小。
而增加一台膨胀机,既增加了系统的投资,又降低了系统工作的可靠性。
因此,为了装置的简化及运行的可靠性等实际原因采用节流阀作绝热节流。
2.压缩空气制冷循环采用回热措施后是否提高其理论制冷系数?能否提高其实际制冷系数?为什么?答:采用回热后没有提高其理论制冷系数但能够提高其实际制冷系数。
因为采用回热后工质的压缩比减小,使压缩过程和膨胀过程的不可逆损失的影响减小,因此提高实际制冷系数。
3.参看图12-5,若压缩蒸汽制冷循环按1-2-3-4-8-1运行,循环耗功量没有变化,仍为h2-h1,而制冷量却从h1-h5增大到h1-h8,显见是有利的.这种考虑错误何在?答:过程4-8熵减小,必须放热才能实现。
而4点工质温度为环境温度T,要想放热达到温度Tc (8点),必须有温度低于Tc的冷源,这是不存在的。
(如果有,就不必压缩制冷了)。
4.作制冷剂的物质应具备哪些性质?你如何理解限产直至禁用R11、R12这类工质?答:制冷剂应具备的性质:对应于装置的工作温度,要有适中的压力;在工作温度下气化潜热要大;临界温度应高于环境温度;制冷剂在T-s图上的上下界限线要陡峭;工质的三相点温度要低于制冷循环的下限温度;比体积要小;传热特性要好;溶油性好;无毒等。
限产直至禁用R11和R12时十分必要的,因为这类物质进入大气后在紫外线作用下破坏臭氧层使得紫外线直接照射到地面,破坏原有的生态平衡。
5.本章提到的各种制冷循环有否共同点?若有,是什么?答:各种制冷循环都有共同点。
工程热力学童钧耕第六版摘要:一、工程热力学概述二、热力学第一定律三、热力学第二定律四、热力学第三定律五、热力学势和熵六、热力学循环和热机七、传热和热传导八、热力学应用领域正文:工程热力学是一门研究热量传递、能量转换以及热力学系统性质的学科。
在本篇文章中,我们将介绍工程热力学的概述以及相关的基本概念和应用。
一、工程热力学概述工程热力学作为一门学科,主要研究热力学原理在工程中的应用。
它旨在解决热量传递、能量转换及热力学系统稳定性等问题。
工程热力学在我国得到了广泛的应用,尤其在能源、化工、冶金等行业。
二、热力学第一定律热力学第一定律,又称能量守恒定律。
它表明在封闭系统中,能量的总量是恒定的,仅能从一种形式转化为另一种形式。
在工程热力学中,这一定律为我们提供了分析和计算能量转换的依据。
三、热力学第二定律热力学第二定律阐述了热力学过程的方向性,即自然界的过程总是向着熵增加的方向进行。
这一定律在工程热力学中的应用主要体现在热力学循环的优化、节能减排等方面。
四、热力学第三定律热力学第三定律,又称熵定律。
它表明在恒定温度和压力下,封闭系统的熵趋于增加。
这一定律在工程热力学中的应用有助于我们理解和预测熵变,从而优化热力学过程。
五、热力学势和熵热力学势是描述热力学系统在恒定温度和压力下的状态的物理量。
熵则是描述热力学系统混乱程度的物理量。
在工程热力学中,了解热力学势和熵的变化规律有助于分析和优化热力学过程。
六、热力学循环和热机热力学循环是热力学系统中能量转换的过程。
常见的热力学循环有奥托循环、布雷顿循环等。
热机是将热能转换为机械能的设备。
了解热力学循环和热机的原理,有助于提高能源利用效率和优化热力学系统设计。
七、传热和热传导传热是指热量从高温物体传递到低温物体的过程。
热传导是传热的一种方式,主要发生在固体中。
在工程热力学中,研究传热和热传导的规律有助于我们设计和优化热交换设备、保温材料等。
八、热力学应用领域工程热力学在多个领域具有广泛的应用,如能源工程、化学工程、航空航天、环境保护等。
1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
24p=p b+p g中,压p b67.促使系统状态变化的原因是什么?举例说明。
有势差(温度差、压力差、浓度差、电位差等等)存在。
9.家用电热水器是利用电加热水的家用设备,通常其表面散热可忽略。
取正在使用12(1(2)体先恢复平衡在抽下一块,则又如何?(3)上述两种情况从初态变化到终态,其过程是否都可在p-v图上表示?p14.一刚性容器,中间用绝热隔板分为两部分,A 中存有高压空气,B 中保持真空,如图2-12所示。
若将隔板抽去,分析容器中空气的热力学能将如何变化?若在隔板上有一小孔,气体泄漏入B 中,分析A 、B 两部分压力相同时A 、B 两部分气体热力学能如何变化? 能在。
89.气体流入真空容器,是否需要推动功?推动功的定义为,工质在流动时,推动它下游工质时所作的功。
下游无工质,故不需要推动功。
利用开口系统的一般能量方程式推导的最终结果也是如此。
11.为什么稳定流动开口系内不同部分工质的比热力学能、比焓、比熵等都会改变,而整个系统的∆U CV =0、∆H CV =0、∆S CV=0?控制体的∆U CV=0、∆H CV=0、∆S CV=0是指过程进行时间前后的变化值,稳定流动系统在不同时间内各点的状态参数都不发生变化,所以∆U CV=0、∆H CV=0、∆S CV=0。
稳定流动开口系内不同部分工质的比热力学能、比焓、比熵等的改变仅仅是依坐标的改变。
13.1-1、2-2h3q m3(h3+c f32/2+gz3)如果合流前后流速变化不太大,且势能变化一般可以忽略,则能量方程为:q m1⋅h1+ q m2⋅h2= q m3⋅h3出口截面上焓值h3的计算式h3=(q m1⋅h1+ q m2⋅h2)/ q m3本题中,如果流体反向流动就是分流问题,分流与合流问题的能量方程式是一样的,一般习惯前后反过来写。
1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。
对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p =p b +p g (p > p b ), p = p b -p v (p < p b )中,当地大气压是否必定是环境大气压?当地大气压p b 改变,压力表读数就会改变。
当地大气压p b 不一定是环境大气压。
6.经验温标的缺点是什么?为什么?不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。
7.促使系统状态变化的原因是什么?举例说明。
有势差(温度差、压力差、浓度差、电位差等等)存在。
4题图9.家用电热水器是利用电加热水的家用设备,通常其表面散热可忽略。
取正在使用的家用电热水器为控制体(但不包括电加热器),这是什么系统?把电加热器包括在研究对象内,这是什么系统?什么情况下能构成孤立系统?不包括电加热器为开口(不绝热)系统(a 图)。
包括电加热器则为开口绝热系统(b 图)。
将能量传递和质量传递(冷水源、热水汇、热源、电源等)全部包括在内,构成孤立系统。
或者说,孤立系统把所有发生相互作用的部分均包括在内。
12.图1-22中容器为刚性绝热容器,分成两部分,一部分装气体,一部分抽成真空,中间是隔板,(1)突然抽去隔板,气体(系统)是否作功?(2)设真空部分装有许多隔板,逐个抽去隔板,每抽一块板让气体先恢复平衡在抽p v1 a b29题图下一块,则又如何?(3)上述两种情况从初态变化到终态,其过程是否都可在p-v图上表示?4.一刚性容器,中间用绝热隔板分为两部分,A中存有高压空气,B 中保持真空,如图2-12所示。
沈维道、将智敏、童钧耕《工程热力学》课后思考题答案工程热力学思考题及答案第 六 章 实际气体1.实际气体性质与理想气体性质差异产生的原因是什么?在什么条件下才可以把实际气体作为理想气体处理?答:理想气体模型中忽略了气体分子间的作用力和气体分子所占据的体积。
实际气体只有在高温低压状态下,其性质和理想气体相近。
或者在常温常压下,那些不易液化的气体,如氧气、氦气、空气等的性质与理想气体相似,可以将它们看作理想气体,使研究的问题简化。
2. 压缩因子Z 的物理意义怎么理解?能否将Z 当作常数处理?答:压缩因子为温度、压力相同时的实际气体比体积与理想气体比体积之比。
压缩因子不仅随气体的种类而且随其状态而异,故每种气体应有不同的),(T p f Z =曲线。
因此不能取常数。
3. 范德瓦尔方程的精度不高,但在实际气体状态方程的研究中范德瓦尔方程的地位却很高,为什么?答:范德瓦尔方程其计算精度虽然不高,但范德瓦尔方程式的价值在于能近似地反映实际气体性质方面的特征,并为实际气体状态方程式的研究开拓了道路,因此具有较高的地位。
4. 范德瓦尔方程中的物性常数a 和b 可以由试验数据拟合得到,也可以由物质的 cr cr cr v p T 、、计算得到,需要较高的精度时应采用哪种方法,为什么?答:当需要较高的精度时应采用实验数据拟和得到a 、b 。
利用临界压力和临界温度计算得到的a 、b 值是近似的。
5. 什么叫对应态原理?为什么要引入对应态原理?什么是对比参数?答:在相同的压力与温度下,不同气体的比体积是不同的,但是只要他们的r p 和r T 分别相同,他们的r v 必定相同这就是对应态原理,0),,(=r r r v T p f 。
对应态原理并不是十分精确,但大致是正确的。
它可以使我们在缺乏详细资料的情况下,能借助某一资料充分的参考流体的热力性质来估算其他流体的性质。
相对于临界参数的对比值叫做对比参数。
对比温度c T T r T =,对比压力c p p r p =,对比比体积c v v r v =。