目标导航
重难聚焦
典例透析
题型一
题型二
2������-3������ + 5 = 0, ① (2)解方程组 4������-6������ + 10 = 0, ② ①×2,得4x-6y+10=0, 因此①和②可以化成同一方程, 即①和②表示同一条直线,l1与l2重合. 2������-������ + 1 = 0, ① (3)解方程组 4������-2������ + 3 = 0, ②
3.3 直线的交点坐标与距离公式
-1-
3.3.1 两条直线的交点坐标
-2-
目标导航
重难聚焦
典例透析
1.了解两条直线的交点坐标是它们的方程组成的方程组的解. 2.会用方程组解的个数判断两条直线的位置关系.
目标导航
重难聚焦
典例透析
直线恒过定点问题 剖析:当直线的方程中含有未知参数时,随着参数的变化,直 线也发生变化,这些直线组合在一起,构成直线系,它们通常 具有相同的某一特征.如果直线系恒过定点,可用分离参数 法和赋值法进行求解.如直线(2+m)x-(1+2m)y+(1+5m)=0, 其中 m∈R,我们可以将所给方程的左边分成两部分,一部分 含 m,另一部分不含 m,即(2x-y+1)+m(x-2y+5)=0,然后由 2������-������ + 1 = 0, ������ = 1, 求得 这样就能得到不管m 如何变化, ������ = 3 , ������-2������ + 5 = 0, 直线一定经过定点(1,3),这种方法称为分离参数法.
目标导航
重难聚焦
典例透析
题型一