(04)第四章分子对称性资料
- 格式:ppt
- 大小:23.08 MB
- 文档页数:83
第四章分子对称性一、概念及问答题1、对称操作与点操作能不改变物体内部任何两点间的距离而使物体复原的操作叫对称操作,对于分子等有限物体,在进行操作时,分子中至少有一点是不动的,叫做点操作2、旋转轴和旋转操作旋转操作是将分子绕通过其中心轴旋转一定的角度使分子复原的操作,旋转依据的对称元素为旋转轴,n次旋转轴用C n表示。
3、对称中心和反演操作当分子有对称中心i时,从分子中任一原子至对称中心连一直线,将此线延长,必可在和对称中心等距离的另一侧找到另一相同原子。
和对称中心相应的操作。
叫做反演操作。
4、镜面和反映操作镜面是平分分子的平面,在分子中除位于镜面上的原子外,其他成对地排在镜面两侧,它们通过反映操作可以复原。
反映操作是使分子的每一点都反映到该点到镜面垂线的延长线上,在镜面另一侧等距离处。
5、C n群属于这类点群的分子,它的对称元素只有一个n次旋转轴。
6、C nh群属于这类点群的分子,它的对称元素只有一个n次旋转轴和垂直于此轴的镜σ。
面h7、C nv群属于这类点群的分子,它的对称元素只有一个n次旋转轴和通过此轴的镜面σ。
v8、D nh群在C n群中加入一垂直于C n轴的C2轴,则在垂直于C n轴的平面内必有n个σ,得D nh群。
C2轴得D n群,在此基础上有一个垂直于C n轴的镜面hσ能得到另外的什么群?9、在C3V点群中增加h得到D3h群。
根据组合原理两个夹角为α的对称面的交线必为一其转角为2α的对称轴,C 3V 中有三个v σ面,v σ与h σ之间为90度,所以必有三个C 2轴垂直于C 3轴,构成了D 3h 群。
10、假定-24CuCl 原来属于T d 群,四个氯原子的标记如图所示,当出现下列情况时,它所属点群如何变化? a. 1Cl Cu -键长缩短b. 1Cl Cu -和2Cl Cu -缩短同样长度c. 12Cl Cl -间距离缩短 答:a. C 3V b. C 2V c. C 2V11、一立方体,在8个项角上放8个相同的球,如图所示,那么: a. 去掉1,2号球分子是什么点群? b. 去掉1,3号球分子是什么点群?答:a. C 2V b. C 2V12、写出偶极矩的概念、物理意义及计算公式。
第四章 分子的对称性§4.1 对称性操作和对称元素§ <1>分子对称性概念原子组成分子构成有限的图形,具有对称性。
与晶体的对称性不同。
晶体的主要对称性是点阵结构,而分子的对称性主要是指分子骨架在空间的对称性以及分子轨道(波函数)的对称性。
○1分子对称性:指分子的几何图形(原子骨架和原子、分子轨道空间形状)中有相互等同的部分,而这些等同部分互相交换以后,与原来的状态相比,不发生可辨别的变化,即交换前后图形复原。
○2对称操作:不改变物体内部任何两点间的距离,使图形完全复原的一次或连续几次的操作。
(借助于一定几何实体)○3对称元素:对图形进行对称操作,所依赖的几何要素,如:点,线,面及其组合。
<2>对称元素及相应的对称操作○1恒等元素和恒等操作,(E ) ΛE 所有分子图形都具有。
○2旋转轴(对称轴)和旋转操作,Λn n C C ,;对称轴是一条特定的直线。
绕该线按一定方向(逆时针方向为正方面)进行一个角度θ旋转,nπθ2=如:H 2O : πθ21==n 。
分子中可能有 n 个对称轴,其中n 最大的称为主轴,其它称为非主轴,如:BF 3 ,主轴C 3 ,三个C 2垂直于C 3 与分子平面平行。
n C 将产生n 个旋转操作:E =-nn n n n n C C C C ,,,,12逆时旋转为正操作,k n C ;顺时旋转为逆操作,k n C -。
)(k n nk n C C --= 分子图形完全复原的最少次数称操作周期,旋转操作的周期为 n ;分子中,nC的轴次不受限制,n 为任意整数。
如: E =→332333,,C C C C○3对称和反映操作。
Λσσ, :对称面是一个特定的镜面,把分子图形分成两个完全相等的对称部分,两部分之间互为镜中映像,对称操作是镜面的一个反映。
图形中相等的部分互相交换位置,其反映的周期为2。
E =Λ2σ。
对称面可分为:v σ面:包含主轴; h σ面:垂直于主轴;d σ面:包含主轴且平分相邻'2C 轴的夹角(或两个v σ之间的夹角)。