应用题模型大全
- 格式:doc
- 大小:189.00 KB
- 文档页数:19
初中数学常考的几何模型和应用题答题公式是学习和备考数学的关键内容。
不过,
请注意,我无法列出具体的66个常考几何模型或50个应用题答题公式,因为这
取决于不同地区、不同版本的教材和考试要求。
但我可以为你提供一些常见的几何模型和应用题答题思路或公式。
几何模型示例:
1.等边三角形模型:等边三角形的三条边相等,三个内角都是60°。
2.等腰三角形模型:等腰三角形有两条边相等,且对应的两个底角也相等。
3.直角三角形模型:直角三角形有一个90°的角,满足勾股定理(a² + b² = c²)。
4.平行四边形模型:平行四边形的对边平行且相等,对角相等。
5.梯形模型:梯形有一组对边平行,常考察其面积计算(上底加下底,乘以高,再除
以2)。
应用题答题公式或思路示例:
1.速度、时间、距离关系:速度= 距离/ 时间,距离= 速度×时间,时间= 距
离/ 速度。
2.工作问题:工作效率= 工作总量/ 工作时间,常用于比较不同人或机器的工作效
率。
3.百分比问题:部分= 总量×百分比,总量= 部分/ 百分比,百分比= 部分/
总量× 100%。
4.利息问题:简单利息= 本金×利率×时间,复利则考虑本金和利息的共同增
长。
5.浓度问题:浓度= 溶质质量/ 溶液质量× 100%,常用于解决混合溶液的浓度问
题。
初中数学题型模型初中数学题型模型包括以下几种:
1. 将军饮马模型(对称点模型)。
2. 利用三角形两边差求最值。
3. 手拉手全等取最值。
4. 手拉手相似取最值。
5. 平移构造平行四边形求最小。
6. 两点对称勺子型连接两端求最小。
7. 两点对称折线连两端求最小。
8. 时钟模型,中点两定边求最小值。
9. 时钟模型,相似两定边求最小值。
10. 转化构造两定边求最值。
11. 面积转化法求最值。
12. 相似转化法求最值。
13. 相似系数化一法求最值。
14. 三角函数化一求最值。
15. 轨迹最值。
16. 三动点的垂直三角形。
17. 旋转最值。
18. 隐圆最值-定角动弦。
19. 隐圆最值-动角定弦。
以上是初中数学题型模型,仅供参考,建议查阅初中数学教辅获取更全面的信息。
六年级数学上册基本应用题模型
1、果园里有桃树120棵,梨树棵数是桃树的1/5,梨树有多少棵?(列式)
2、果园里有桃树120棵,梨树棵树比桃树多1/5,梨树有多少棵?(列式)
果园里有桃树120棵,梨树棵树比桃树少1/5,梨树有多少棵?(列式)
3、果园里有桃树120棵,先增加1/5,再减少1/5,现在有多少棵?(列式)
4、果园里有桃树120棵,桃树棵数是梨树的1/5,梨树有多少棵?(列式、列方程)
5、果园里有桃树120棵,桃树棵数比梨树少1/5,梨树有多少棵?(列式、列方程)
果园里有桃树120棵,桃树棵数比梨树多1/5,梨树有多少棵?(列式、列方程)
6、果园里有桃树、梨树共120棵,桃树棵数是梨树的1/5,梨树、桃树各有多少棵?(列式、列方程)
7、果园里桃树棵数与梨树棵数多1/5,梨树棵树比桃树棵树少几分之几?(列式)
8、果园里有桃树、梨树共120棵,桃树棵数与梨树棵数之比为1∶5,梨树、桃树各有多少棵?(列式)
9、果园里桃树棵数与梨树棵数之比为1∶5,梨树比桃树多100棵,梨树、桃树共有多少棵?(列式)
10、一项工作,甲独做5天完成,乙独做6天完成,甲、乙合作每天完成这项工作的几分之几?完成这
项工作需要几天?(列式)
注意:一般的,题中单位1的量是已知的,求与之相关联的其它数量,用乘法;题中单位1的量是未知的,求单位1的量,用除法。
当然,要具体问题具体分析。
以上数量关系理解并记忆。
函数应用题的几种常见模型函数应用题主要有以下几种常见模型:1、一次函数模型例1某家报刊售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.5元,卖不掉的报纸还可以以每份0.08元的价格退回报社。
在一个月(30天)里,有20天每天可以卖出400份,其余每天只能卖出250份。
设每天从报社买进的报纸的数量相同,则每天应从报社买进多少份,才能使每月所获的利润最大?并计算该销售点一个月最多可赚多少元? 注:现实生活中很多事例可以用一次函数模型表示,例如:匀速直线运动的时间和位移的关系,弹簧的伸长和拉力的关系等,对一次函数来说,当一次项系数为正时,表现为匀速增长,即为增函数,一次项系数为负时为减函数。
2、二次函数模型例2某工厂生产的商品A ,若每件定价为80元,则每年可销售80万件,政府税务部门对市场销售的商品A 要征收附加税,为增加国家收入又要有利于生产发展,必须合理确定税率,根据市场调查,若政府对商品A 征收附加税率为%p 时,每年销售额将减少p 10万件。
据此,试问:(1)若税务部门对商品A 征收的税金不少于96万元,求p 的范围;(2)若税务部门仅仅考虑每年所获得的税金最高,求此时p 的值。
注:在第二问即二次函数求最值问题,一定要注意隐含条件。
所以应用题中变量的取值范围是一个非常值得重视的问题。
3、指数函数模型例3某城市现有人口总数100万人,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市人口总数y (万人)与年份x (年)的函数关系;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后该城市人口将达到120万人(精确到1年);(4)如果20年后该城市人口总数不超过120万人,年增长率应该控制在多少? 注:在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型表示。
通常可以表示为为为增长率,为基础数,其中x p N p N y x()1(+= )时间的形式。
初中数学66个常考几何模型50个应用题答题公式(二)初中数学66个常考几何模型50个应用题答题公式1. 模型一:直角三角形•直角三角形的斜边长度 = 根号下(直角边1的长度的平方 + 直角边2的长度的平方)–例题:已知直角三角形的直角边1的长度为3,直角边2的长度为4,求斜边的长度。
•解答:斜边长度 = 根号下(3^2 + 4^2)= 52. 模型二:等边三角形•等边三角形的边长 = 边长–例题:已知等边三角形的边长为6,求周长和面积。
•解答:周长 = 6 + 6 + 6 = 18,面积 = (6 × 6× √3)/ 4 = 9√33. 模型三:等腰三角形•等腰三角形的底边长度 = (底角对边长度× 2)/ sin(顶角的一半)–例题:已知等腰三角形的顶角为60°,底边对应的底角对边长度为5,求底边的长度。
•解答:底边长度 = (5 × 2)/ sin(60°的一半)= 10/ sin(30°) = 10/ = 204. 模型四:等腰梯形•等腰梯形的面积 = (上底 + 下底)× 高 / 2–例题:已知等腰梯形的上底为6,下底为10,高为8,求面积。
•解答:面积 = (6 + 10)× 8 / 2 = 805. 模型五:矩形•矩形的周长 = (长 + 宽)× 2•矩形的面积 = 长× 宽•矩形的对角线长度 = 根号下(长的平方 + 宽的平方)–例题:已知矩形的长为5,宽为3,求周长、面积和对角线的长度。
•解答:周长 = (5 + 3)× 2 = 16,面积= 5 × 3 = 15,对角线长度 = 根号下(5^2 + 3^2)= √34 6. 模型六:菱形•菱形的周长 = 边长× 4•菱形的面积 = 对角线长度1 × 对角线长度2 / 2–例题:已知菱形的边长为6,对角线长度1为8,求周长和面积。
初中数学66个常考几何模型50个应用题答题公式
【实用版】
目录
1.初中数学几何模型的重要性
2.常考几何模型的种类
3.几何模型在解题中的应用
4.提高几何解题能力的方法
5.50 个应用题答题公式的总结与应用
正文
数学几何模型在初中数学教学中占有举足轻重的地位,它对于培养学生的逻辑思维能力、空间想象能力以及解决实际问题的能力具有重要意义。
在初中数学考试中,几何题目往往是压轴题,难度较大,因此掌握一些常考的几何模型和解题方法十分必要。
初中数学常考的几何模型包括:三角形、四边形、圆形、相似形、勾股定理、三角形面积、圆的相关计算等,这些模型在初中数学课程中出现的频率较高,同学们需要熟练掌握其性质、公式以及解题方法。
在解决几何题目时,同学们要善于运用几何模型,通过观察题目中的图形特点,找到与之相关的几何模型,从而快速解题。
同时,也要学会分析题目,进行分类讨论,避免盲目尝试,浪费时间。
为了提高几何解题能力,同学们需要多做练习,加强训练。
在做题过程中要注意总结经验,梳理知识点,形成自己的解题方法。
同时,要关注题目中出现的辅助线,学会合理运用辅助线来解决几何问题。
此外,50 个应用题答题公式的掌握对于提高几何解题能力也至关重要。
这些公式包括:勾股定理、相似比、三角形面积、圆的面积和周长等。
同学们要熟练掌握这些公式,并能灵活运用到实际解题中。
总之,初中数学几何模型是同学们在初中阶段必须掌握的重要知识点。
要想在几何题目中取得好成绩,同学们需要熟练掌握常考的几何模型、解题方法,以及 50 个应用题答题公式。
专题09一元二次方程的应用压轴题八种模型全攻略(传播,增长率,与图形有关,数字,营销,动态几何,工程,行程问题)【考点导航】目录【典型例题】 (1)【题型一一元二次方程的应用--传播问题】 (1)【题型二一元二次方程的应用--增长率问题】 (3)【题型三一元二次方程的应用--与图形有关的问题】 (4)【题型四一元二次方程的应用--数字问题】 (6)【题型五一元二次方程的应用--营销问题】 (8)【题型六一元二次方程的应用--动态几何问题】 (10)【题型七一元二次方程的应用--工程问题】 (13)【题型八一元二次方程的应用--行程问题】 (14)【过关检测】 (17)【典型例题】【题型一一元二次方程的应用--传播问题】例题:(2023春·广东汕头·九年级统考阶段练习)有一人感染了某种病毒,经过两轮传染后,共有256人感染了该种病毒,求每轮传染中平均每人传染了多少个人.【答案】15人【分析】有一人感染了某种病毒,经过两轮传染后,共有256人感染了该种病毒,设每轮传染中平均每人传染了x 人,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设每轮传染中平均每人传染了x 人,依题意,得1(1)256x x x +++=,即2(1)256x +=,解方程,得115x =,217x =-(舍去).【题型二一元二次方程的应用--增长率问题】【分析】(1)设这两个月藏书的月平均增长率为x ,利用该校“阅读公园”5月底的藏书量=该校“阅读公园”3月的藏书量×21+月(藏书的平均增长率),即可得出关于x 的一元二次方程,解之,取其正值即可得出结论;(2)利用该校“阅读公园”6月的藏书量=该校“阅读公园”5月的藏书量×(1+藏书的月平均增长率),即可求出该校“阅读公园”6月的藏书量.【详解】(1)解:设该校这两个月藏书的月均增长率为x ,根据题意,得()2500017200x +=解得10.220%x ==,2 2.2x =-(不合题意,舍去)该校这两个月藏书的月均增长率为20%;(2)()7200120%8640⨯+=(册),所以,预测到6月该校“阅读公园”的藏书量是8640册.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【题型三一元二次方程的应用--与图形有关的问题】例题:(2023春·北京石景山·八年级统考期末)如图,矩形草地ABCD 中,16AB =m ,10AD =m ,点O 为边AB 中点,草地内铺了一条长和宽分别相等直角折线甬路(PO PQ =,OM QN =),若草地总面积(两部分阴影之和)为2132m ,求甬路的宽.【答案】2m【分析】设甬路的宽为x m ,先得出8PQ OB ==,即8MB OB OM x =-=-,再据题意列一元二次方程,解方程即可求解.【详解】解:设甬路的宽为x m ,∵矩形ABCD 中,PO PQ =,OM QN =,∴四边形OPQB 是正方形,∵点O 为边AB 中点,16AB =m ,【答案】()()20218x x --=【分析】由花园的长、宽及雨道的宽,可得出种植花卉的部分可合成长为形,结合花卉种植面积共为【详解】解:∵花园长20直于墙的木栏隔开,分成面积相等的两个区域,并在两个区域中各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD 的一边长CD 为x 米.(1)求矩形ABCD 的另一边长BC 是多少米?(用含x 的代数式表示)(2)矩矩形ABCD 的面积能否为272m ?若能,求出CD 的长;若不能,请说明理由.【答案】(1)(30﹣3x )米(2)能,6m【分析】(1)根据题中条件即可求出BC 的长;(2)根据矩形ABCD 的面积为272m ,列出一元二次方程,解方程,即可解决问题.【详解】(1) 修建所用木栏总长28米,且两处各留1米宽的门(门不用木栏),2283(303)BC x x ∴=+-=-米,即另一边长BC 是(303)x -米;(2)矩形ABCD 的面积能为272m ,理由如下:由题意得:(303)72x x -=,整理得:210240x x -+=,解得:14x =,26x =,当4x =时,30330341815x -=-⨯=>,不符合题意,舍去;当6x =时,30330361215x -=-⨯=<,符合题意;答:矩形ABCD 的面积能为272m ,CD 的长为6m .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【题型四一元二次方程的应用--数字问题】例题:(2023·全国·九年级假期作业)一个两位数等于它个位数字的平方,且个位数字比十位数字大3,则这个两位数是()A .25B .36C .25或36D .64【答案】C【分析】设十位数字为x ,表示出个位数字,根据题意列出方程求解即可.【详解】设这个两位数的十位数字为x ,则个位数字为()3x +.依题意得:2103(3)x x x ++=+,解得:122,3x x ==.∴这个两位数为25或36.故选C .【点睛】本题考查一元二次方程的应用,根据题意列出一元二次方程是解题的关键.【变式训练】1.(2023秋·江苏镇江·九年级统考期末)两个连续奇数的积为323,设其中的一个奇数为x ,可得方程________.【答案】()2323x x ⋅+=或()2323x x ⋅-=【分析】已知设其中的一个奇数为x ,且设其中的一个奇数为x ,分两种情况讨论:若x 为较小的奇数,则另一个奇数为(2)x +,即可列出方程()2323x x ⋅+=;若x 为较大的奇数,则另一个奇数为(2)x -,即可列出方程()2323x x ⋅-=,即可正确解答.【详解】①若x 为较小的奇数,则另一个奇数为(2)x +,∵两个连续奇数的积为323,∴()2323x x ⋅+=;②若x 为较大的奇数,则另一个奇数为(2)x -,∴()2323x x ⋅-=;故答案为:()2323x x ⋅+=或()2323x x ⋅-=【点睛】本题主要考查由实际问题抽象出一元二次方程,正确的理解题意,找出题目中的等量关系是解题的关键.2.(2023·全国·九年级假期作业)一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是_____.【答案】98【分析】设这个两位数个位上的数字为x ,则十位上的数字为()1x +,根据“个位数字与十位数字的乘积等于72,”列出方程,即可求解.【详解】解∶设这个两位数个位上的数字为x ,则十位上的数字为()1x +,依题意,得:()172x x +=,整理,得:2720x x +-=,解得:19x =-(不合题意,舍去),28x =,∴()()1011081898x x ++=⨯++=.故答案为:98【点睛】本题主要考查了一元二次方程的应用,正确表示出这个两位数的十位数字是解题的关键.【题型五一元二次方程的应用--营销问题】例题:(2023春·安徽合肥·八年级统考期中)某水果批发商店经销一种高档水果,如果每千克盈利5元,每天可售出600千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商店要保证每天盈利5000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【答案】每千克水果应涨价5元【分析】设每千克应涨价x 元,根据每千克盈利5元,每天可售出600千克,每天盈利5000元,列出方程,求解即可.【详解】解:设每千克应涨价x 元,由题意列方程得:(5)(60020)5000x x +-=,解得:5x =或20x =,为了使顾客得到实惠,那么每千克应涨价5元;答:每千克水果应涨价5元.【点睛】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.【变式训练】1.(2023秋·广东惠州·九年级统考期末)某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;【详解】(1)解:由题意可把2020年新能源汽车的销售总量看作单位“1”,则设该汽车企业这两年新能源汽车销售总量的平均年增长率为x ,则有:()21196x +=+%,解得:120.4, 2.4x x ==-(不符合题意,舍去),答:该汽车企业这两年新能源汽车销售总量的平均年增长率为40%.(2)解:设下调后每辆汽车的售价为m 万元,由题意得:()()15822596m m -+-=⎡⎤⎣⎦解得:1223,21m m ==,∵尽量让利于顾客,∴21m =;答:下调后每辆汽车的售价为21万元.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.【题型六一元二次方程的应用--动态几何问题】例题:(2023春·上海静安·八年级上海市回民中学校考期中)在ABC 中,9016cm 12cm ACB AC BC ∠=︒==,,,动点M 、N 分别从点A 和点C 同时开始移动,点M 的速度为2cm /秒,点N 的速度为3cm /秒,点M 移动到点C 后停止,点N 移动到点B 后停止.问经过几秒钟,MCN △的面积为236cm【答案】2秒【分析】设经过x 秒钟后,MCN △的面积为236cm ,则()162cm 3cm CM AC AM x CN x =-=-=,,据此利用三角形面积公式建立方程求解即可.【详解】解:设经过x 秒钟后,MCN △的面积为236cm ,【答案】4cm【分析】设cm AP x =,则形面积公式求解出AP 的值即可.【详解】设cm AP x =,则(1)若点P从点A移动到点B停止,点Q 是10cm?(2)若点P沿着AB BC CD→→移动,点探求经过多长时间PBQ的面积为12cm【答案】(1)8s5或24s5;【题型七一元二次方程的应用--工程问题】例题:(2023·重庆开州·校联考一模)某工程队采用A ,B 两种设备同时对长度为3600米的公路进行施工改造.原计划A 型设备每小时铺设路面比B 型设备的2倍多30米,则30小时恰好完成改造任务.(1)求A 型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的3600米多了750米.在实际施工中,B 型设备在铺路效率不变的情况下,时间比原计划增加了()25m +小时,同时,A 型设备的铺路速度比原计划每小时下降了3m 米,而使用时间增加了m 小时,求m 的值.【答案】(1)A 型设备每小时铺设的路面长度为90米(2)m 的值为10【分析】(1)设B 型设备每小时铺设路面x 米,则A 型设备每小时铺设路面()230x +米,根据题意列出方程求解即可;(2)根据“A 型设备铺设的路面长度B +型设备铺设的路面长度3600750=+”列出方程,求解即可.【详解】(1)解:设B 型设备每小时铺设路面x 米,则A 型设备每小时铺设路面()230x +米,根据题意得,()30302303600x x ++=,解得:30x =,则23090x +=,答:A 型设备每小时铺设的路面长度为90米;(2)根据题意得,()()()303025903303600750m m m +++-+=+,整理得,2100m m -=,解得:110m =,20m =(舍去),∴m 的值为10.【点睛】本题主要考查一元一次方程、一元二次方程的应用,解题关键是读懂题意,找准等量关系并列出方程.【变式训练】1.(2023春·八年级课时练习)全球疫情爆发时,口罩极度匮乏,中国许多企业都积极地生产口罩以应对疫情,经调查发现:1条口罩生产线最大产能是78000个/天,每增加1条生产线,每条生产线减少1625个/天,工厂的产线共x 条(1)该工厂最大产能是_____个/天(用含x 的代数式表示).(2)若该工厂引进的生产线每天恰好能生产口702000个,该工厂引进了多少条生产线?【答案】(1)2780001625x x -;(2)12或36【分析】(1)根据题意,根据代数式的性质计算,即可得到答案;(2)结合(1)的结论,列一元二次方程并求解,即可得到答案.【详解】(1)根据题意,得该工厂最大产能是:()2780001625780001625x x x x -=-个/天故答案为:2780001625x x -;(2)根据题意,得:2780001625702000x x -=12x =或36x =∴即该工厂引进了12或36条生产线.【点睛】本题考查了一元二次方程、代数式的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.【题型八一元二次方程的应用--行程问题】例题:(2023春·浙江·八年级专题练习)《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问乙走的步数是()【过关检测】一、单选题1.(2023春·安徽淮北·八年级统考期末)要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,则应邀请()个球队参加比赛.A .6B .7C .8D .9【答案】C【分析】设应邀请x 个球队参加比赛,则总共需安排()112x x -场比赛,根据计划安排28场比赛建立方程,解方程即可得.【详解】解:设应邀请x 个球队参加比赛,则总共需安排()112x x -场比赛,由题意得:()11282x x -=,解得8x =或70x =-<(不符合题意,舍去),故选:C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.2.(2023秋·辽宁葫芦岛·九年级统考期末)电影《长津湖之水门桥》以抗美援朝战争第二次战役中的长津湖战役的一部分为背景,上演了一段可歌可泣的历史,一上映就获得全国人民的追捧,第一天票房约6亿元,以后每天票房按相同的增长率增长;三天后累计票房收入达14.7亿元,若设平均每天票房的增长率为x ,则可以列方程为()A .()6114.7x +=B .26(1)14.7x +=C .266(1)14.7x ++=D .()26616(1)14.7x x ++++=【答案】D【分析】设平均每天票房的增长率为x ,根据一元二次方程增长率问题,列出方程即可求解.【详解】设平均每天票房的增长率为x ,则可以列方程为()()26616114.7x x ++++=,故选:D .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.3.(2023春·河南驻马店·七年级校考阶段练习)小明在某书店购买数学课外读物《几何原本》,已知每本《几何原本》的定价为40元,若按八折出售,该书店仍可获利10元,则每本《几何原本》的进价为()A .22元B .24元C .26元D .28元【答案】A 【分析】根据题意可知:标价⨯(折数÷10)-成本=利润,可以列出相应方程,然后求解即可;【详解】设每本《几何原本》的进价为x 元,则:由题意可得:400.810x ⨯-=,解得:22x =;故选:A .【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程;对于本题运用到的公式:标价⨯(折数÷10)-成本=利润,一定要熟记并能够在题目中合理运用.4.(2023秋·山西阳泉·九年级统考期末)如图,某景区计划在一个长为72m ,宽为40m 的矩形空地上修建一个停车场,停车场中修建三块相同的矩形停车区域,它们的面积之和为21792m ,三块停车区域之间以及周边留有宽度相等的行车通道,问行车通道的宽度是多少m ?设行车通道的宽度是m x ,则可列方程为()A .()()72401792x x --=B .()()7244021792x x --=C .()()7234021792x x --=D .()()724401792x x --=【答案】B 【分析】设行车通道的宽度为m x ,再根据停车区域面积之和为21792m 列出一元二次方程,然后求解即可.【详解】解:设行车通道的宽度为m x .根据题意,得()()7244021792x x --=.故选:B .【点睛】本题主要考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.5.(2023春·浙江·八年级专题练习)《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问乙走的步数是()A .36B .26C .24D .10【答案】C【分析】设甲、乙两人相遇的时间为t ,则乙走了4t 步,甲斜向北偏东方向走了(610)t -步,利用勾股定理即可得出关于t 的一元二次方程,解之即可得出t 值,将其值代入4t 中即可求出结论.【详解】解:设甲、乙两人相遇的时间为t ,则乙走了4t 步,甲斜向北偏东方向走了(610)t -步,依题意得:22210(4)(610)t t +=-,整理得:2201200t t -=,解得:126,0t t ==(不合题意,舍去),∴44624t =⨯=.故乙走的步数是24.故选:C .【点睛】本题考查了一元二次方程的应用以及勾股定理,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(1)BC=三、解答题11.(2023春·安徽六安·八年级校联考期中)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【答案】若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.【分析】本题可设每轮感染中平均一台会感染x 台电脑,则第一轮后共有(1)x +台被感染,第二轮后共有(1)(1)x x x +++即2(1)x +台被感染,利用方程即可求出x 的值,并且3轮后共有3(1)x +台被感染,比较该数同700的大小,即可作出判断.【详解】解:设每轮感染中平均一台电脑会感染x 台电脑,则经过1轮后有()1x +台被染上病毒,2轮后就有()21x +台被感染病毒,依题意,得()2181x +=,解得18x =,210x =-(舍去).所以每轮感染中平均一台电脑会感染8台电脑.由此规律,经过3轮后,有()()33118729x +=+=台电脑被感染.由于729700>,所以若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.【点睛】本题只需仔细分析题意,利用方程即可解决问题.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.12.(2023秋·河南驻马店·九年级统考期末)2022年北京冬季奥运会于2月4日至2月20日在北京市和河北省张家口市联合举行,冬奥会吉祥物为“冰墩墩”.(1)据市场调研发现,某工厂今年二月份共生产500个“冰墩墩”,该工厂连续两个月增加生产量后四月份生产720个“冰墩墩”,求平均每月的增长率是多少?(2)已知某商店“冰墩墩”平均每天可销售20个,每个盈利20元,在每个降价幅度不超过8元的情况下,每下降2元,则每天可多售10件.如果每天要盈利700元,则每个“冰墩墩”应降价多少元?【答案】(1)20%(2)6元【分析】(1)设该工厂平均每月生产量增长率为x ,利用该工厂四月份生产“冰墩墩”的数量=该工厂二月份生产“冰墩墩”的数量⨯(1+该工厂平均每月生产量的增长率)的平方,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设每个“冰墩墩”降价y 元,则每个盈利()20y -元,平均每天可售出(20)5y +个,利用该商店每天销售“冰墩墩”获得的利润=每个的销售利润⨯平均每天的销售量,即可得出关于y 的一元二次方程,解之取其符合(1)DC=___________米(用含(2)若长方形围栏ABCD(3)长方形围栏ABCD面积是否有可能达到(1)用含t 的式子表示线段的长:CQ =__________;PB =__________.(2)当t 为何值时,P 、Q 两点间的距离为13cm ?(3)当t 为何值时,四边形APQD 的形状可能为矩形吗?若可能,求出t 的值;若不可能,请说明理由.【答案】(1)2cm t ,()153cmt -(2)P 、Q 出发0.6和5.4秒时,P ,Q 间的距离是13cm(3)P 、Q 出发3秒时四边形APQD 为矩形【分析】(1)根据题意可直接进行求解;(2)可通过构建直角三角形来求解.过Q 作QM AB ⊥于M ,如果设出发t 秒后,13cm QP =.那么可根据路程=速度⨯时间,用未知数表示出PM 的值,然后在直角三角形PMQ 中,求出未知数的值.(3)利用矩形的性质得出当AP DQ =时,四边形APQD 为矩形求出即可【详解】(1)解:由题意得:2cm,3cm CQ t AP t ==,∵15cm AB =,∴()153cm PB t =-;故答案为2cm t ,()153cm t -;(2)解:设出发t 秒后P 、Q 两点间的距离是13cm .则3AP t =,2CQ t =,作QM AB ⊥于M ,∵四边形ABCD 是矩形,。
专题11三角形常见模型(热考模型)模型一:飞镖模型模型二:8字模型模型三:角平分线模型模型四:裁剪模型模型五:翻折模型【典例分析】【模型一:飞镖模型】【典例1】探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.【解答】解:(1)如图(1),∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.【变式1-1】(2020春•沙坪坝区校级期中)如图,△ABC中,∠A=30°,D为CB延长线上的一点,DE⊥AB于点E,∠D=40°,则∠C为()A.20°B.15°C.30°D.25°【答案】A【解答】解:∵DE⊥AB,∴∠DEB=90°,∵∠D=40°,∴∠ABD=180°﹣∠D﹣∠DEB=50°,∵∠ABD=∠A+∠C,∠A=30°,∴∠C=∠ABD﹣∠A=50°﹣30°=20°.故选:A.【变式1-2】(2017•东昌府区一模)如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A.33°B.23°C.27°D.37°【答案】B【解答】解:如图,延长CD交AB于E,∵∠C=38°,∠A=37°,∴∠1=∠C+∠A=38°+37°=75°,∵∠BDC=98°,∴∠B=∠BDC﹣∠1=98°﹣75°=23°.故选:B.【变式1-3】(2021春•工业园区校级月考)如图,点C是∠BAD内一点,连CB、CD,∠A=80°,∠B=10°,∠D=40°,则∠BCD的度数是()A.110°B.120°C.130°D.150°【答案】C【解答】解:延长BC交AD于E,∵∠BED是△ABE的一个外角,∠A=80°,∠B=10°,∴∠BED=∠A+∠B=90°,∵∠BCD是△CDE的一个外角∴∠BCD=∠BED+∠D=130°,故选:C.【变式1-4】(2021•碑林区校级二模)如图,BE是∠ABD的平分线,CF是∠ACD 的平分线,BE与CF交于G,如果∠BDC=140°,∠BGC=110°,则∠A =.【答案】80°【解答】解:连接BC,∵∠BDC=140°,∴∠DBC+∠DCB=180°﹣140°=40°,∵∠BGC=110°,∴∠GBC+∠GCB=180°﹣110°=70°,∴∠GBD+∠GCD=70°﹣40°=30°,∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABG+∠ACG=∠GBD+∠GCD=30°,在△ABC中,∠A=180°﹣40°﹣30°﹣30°=80°.故答案为:80°.【模型二:8字模型】【典例2】图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).【答案】见试题解答内容【解答】解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B,故答案为:∠A+∠D=∠C+∠B;(2)①线段AB、CD相交于点O,形成“8字形”;②线段AN、CM相交于点O,形成“8字形”;③线段AB、CP相交于点N,形成“8字形”;④线段AB、CM相交于点O,形成“8字形”;⑤线段AP、CD相交于点M,形成“8字形”;⑥线段AN、CD相交于点O,形成“8字形”;故“8字形”共有6个,故答案为:6;(3)∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B,又∵∠D=50度,∠B=40度,∴2∠P=50°+40°,∴∠P=45°;(4)关系:2∠P=∠D+∠B.∠D+∠1=∠P+∠3①∠B+∠4=∠P+∠2②①+②得:∠D+∠1+∠4+∠B=∠P+∠3+∠2+∠P,∵∠DAB和∠DCB的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4∴2∠P=∠D+∠B.【变式2-1】(2020•柯桥区模拟)如图所示,∠α的度数是()A.10°B.20°C.30°D.40°【答案】A【解答】解:∵∠A+∠B+∠AOB=∠C+∠D+∠COD,∠AOB=∠COD,∴∠A+∠B=∠C+∠D∴30°+20°=40°+α,∴α=10°故选:A.【变式2-2】如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=45°,∠P=40°,则∠C的度数为()A.30°B.35°C.40°D.45°【答案】B【解答】解:∵∠A+∠ADG+∠AGD=180°,∠ABC+∠C+∠BGC=180°,∴∠A+∠ADG+∠AGD=∠ABC+∠C+∠BGC.又∵∠AGD=∠BGC,∴∠A+∠ADG=∠C+∠GBC.∴∠A﹣∠C=∠GBC﹣∠ADG.同理可得,∠A+∠ADE=∠P+∠PBE.∴∠A﹣∠P=∠PBE﹣∠ADE.∵BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,∴∠GBC=2∠PBE,∠ADG=2∠ADE.∴∠A﹣∠C=2(∠A﹣∠P).∴∠A+∠C=2∠P.又∵∠A=45°,∠P=40°,∴∠C=35°.故选:B【变式2-3】已知,如图,线段AD、CB相交于点O,连结AB、CD,∠DAB和∠BCD的平分线AP和CP相交于点P.试问∠P与∠D、∠B之间存在着怎样的数量关系,请说明理由.【答案】2∠P=∠B+∠D.【解答】解:2∠P=∠B+∠D,理由如下:如图,在△AOB和△COD中,∵∠AOB=∠COD,∴∠OAB+∠B=∠OCD+∠D,在△AEP和△CED中,∵∠AEP=∠CED,∴∠1+∠P=∠2+∠D,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠OAB=2∠1,∠OCD=2∠2,∴2∠P﹣∠B=2∠D﹣∠D,整理得,2∠P=∠B+∠D.【变式2-4】在学习并掌握了平行线的性质和判定内容后,数学老师安排了自主探究内容一利用平行线有关知识探究并证明:三角形的内角和等于180°.小颖通过探究发现:可以将三角形的三个内角之和转化为一个平角来解决,也就是可以过三角形的一个顶点作其对边的平行线来证明.请将下面(1)中的证明补充完整:(1)已知:如图1,三角形ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC.(2)如图2,线段AB、CD相交于点O,连接AD、CB,我们把形如图2这样的图形称之为“8字形”.请利用小颖探究的结论直接写出∠A、∠B、∠C、∠D之间的数量关系:;(3)在图2的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,得到图3,请判断∠P与∠D、∠B之间存在的数量关系,并说明理由.【答案】(1)证明见解析;(2)∠A+∠D=∠C+∠B,证明见解析;(3)2∠P=∠D+∠B,证明见解析.【解答】(1)证明:过A作EF∥BC,∴∠EAB=∠B,∠FAC=∠C,又∠EAB+∠BAC+∠FAC=180°,∴∠B+∠C+∠BAC=180°;(2)解:根据(1)得∠A+∠D+∠AOD=∠C+∠B+∠COB=180°,又∠AOD=∠BOC,∴∠A+∠D=∠C+∠B;故答案为:∠A+∠D=∠C+∠B;(3)解:2∠P=∠D+∠B.根据(2)∠D+∠DAP=∠P+∠DCP①,∠P AB+∠P=∠B+∠PCB②,∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,∴①﹣②得:∠D﹣∠P=∠P﹣∠B,∴2∠P=∠D+∠B.【典例3】如图,五角星的五个角之和,即:∠A+∠B+∠C+∠D+∠E=()A.180°B.90°C.270°D.240°【答案】A【解答】解:连接CD,设BD与CE交于点O,由∠BOE=∠COD得:∠B+∠E=∠OCD+∠ODC,在△ACD中,∠A+∠ACD+∠ADC=180°,即∠A+∠ACE+∠OCD+∠ODC+∠ADB=180°,∴∠A+∠ACE+∠B+∠E+ADB=180°,即五角星的五个内角之和为180°.故选:A.【变式3-1】如图所示,∠A+∠B+∠C+∠D+∠E+∠F=度.【答案】360.【解答】解:∵∠B+∠C=∠1,∠A+∠F=∠2,∴∠A+∠B+∠C+∠D+∠E+∠F=∠1+∠2+∠E+∠D=360°.故答案为:360.【变式3-2】如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为【答案】见试题解答内容【解答】解:如图,∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【模型三:角平分线模型】【典例4】在△ABC中,∠A=40°:(1)如图(1)BO、CO是△ABC的内角角平分线,且相交于点O,求∠BOC;(2)如图(2)BO、CO是△ABC的外角角平分线,且相交于点O,求∠BOC;(3)如图(3)BO、CO分别是△ABC的一内角和一外角角平分线,且相交于点O,求∠BOC;(4)根据上述三问的结果,当∠A=n时,分别可以得出∠BOC与∠A有怎样的数量关系(只需写出结论).【答案】见试题解答内容【解答】解:(1)∵∠BOC=180°﹣∠OBC﹣∠OCB,∴2∠BOC=360°﹣2∠OBC﹣2∠OCB,而BO平分∠ABC,CO平分∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴2∠BOC=360°﹣(∠ABC+∠ACB),∵∠ABC+∠ACB=180°﹣∠A,∴2∠BOC=180°+∠A,∴∠BOC=90°+∠A.当∠A=40°,∠BOC=110°;(2)∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.∠BOC=90°﹣∠A.当∠A=40°,∠BOC=70°.(3)∵∠OCD=∠BOC+∠OBC,∠ACD=∠ABC+∠A,而BO平分∠ABC,CO平分∠ACD,∴∠ACD=2∠OCD,∠ABC=2∠OBC,∴2∠BOC+2∠OBC=∠ABC+∠A,∴2∠BOC=∠A,即∠BOC=∠A.当∠A=40°,∠BOC=20°;(4)∠BOC=90°+n;∠BOC=90°﹣n;∠BOC=n.【变式4-1】(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB,求证:∠P=90°+∠A;(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE,猜想∠P 和∠A有何数量关系,并证明你的结论.【答案】(1)证明过程见解答;(2)∠P=A.【解答】(1)证明:∵A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠A,∵BP平分∠ABC,CP平分∠ACB,∴∠PCB=ACB,∠PBC=ABC,∴∠P=180°﹣(∠PCB+∠PBC)=180°﹣(∠ACB+∠ABC)=180°﹣(180°﹣∠A)=90°+A;(2)猜想:证明:∵∠ACE=∠A+∠ABC,∴∠A=∠ACE﹣∠ABC,∵∠PCE=∠P+∠PBC,∴∠P=∠PCE﹣∠PBC,又∵BP平分∠ABC,CP平分∠ACE,∴,∴∠P=ACE﹣ABC=(∠ACE﹣∠ABC)=A.【变式4-2】在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC=α,则∠A=;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC外角∠MBC、∠NCB的角平分线交于点Q,试探究∠Q与∠BPC之间的数量关系,并说明理由.【答案】(1)2α﹣180°;(2)∠BPC+∠Q=180°,证明见解析.【解答】(1)解:如图①∵BP,CP分别平分∠ABC与∠ACB,∴∠PBC=∠ABC,∠PCB=ACB,∵∠BPC=180°﹣(∠PBC+∠PCB)∴∠BPC=180°(∠ABC+∠ACB)∴∠BPC=180°(180°﹣∠A),∴∠BPC=90°∠A,∵∠BPC=α,∴∠A=2α﹣180°.故答案为2α﹣180°.(2)∠BPC+∠Q=180°.证明:如图②∵BQ,CQ分别平分∠MBC,∠NCB,∴∠QBC=∠CBM,∠BCQ=∠BCN,∴∠QBC+∠QCB=(∠CBM+∠BCN)∴∠QBC+∠QCB=(∠A+∠ACB+∠A+∠ABC)=(180°+∠A)∴∠QBC+∠QCB=90°∠A,∴∠Q=180°﹣(90°∠A)=90°∠A,∵∠BPC=90°∠A,∴∠BPC+∠Q=180°.【模型四:裁剪模型】【典例5】如图,将一个三角形剪去一个角后,∠1+∠2=240°,则∠A等于()A.45°B.60°C.75°D.80°【答案】B【解答】解:∵∠1+∠2=240°,∴∠B+∠C=360°﹣(∠1+∠2)=120°,∴∠A=180°﹣(∠B+∠C)=60°,故选:B.【变式5-1】如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=()°.A.90B.135C.180D.270【答案】D【解答】解:∠1+∠2=360°﹣(180°﹣90°)=270°,故选:D.【变式5-2】如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.150°D.270°【答案】D【解答】解:∠CDE=180°﹣∠1,∠CED=180°﹣∠2,在△CDE中,∠CDE+∠CED+∠C=180°,所以,180°﹣∠1+180°﹣∠2+90°=180°,所以,∠1+∠2=270°.故选:D.【变式5-3】如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于.【答案】见试题解答内容【解答】解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故答案为:230°.【模型五:翻折模型】【典例6】我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=,可以发现∠ADC'与∠C的数量关系是;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.【答案】(1)29°,∠ADC'=2∠C;(2)31°;(3)∠C=x﹣y.【解答】解:(1)∵∠ADC′=58°,∴∠CDC′=180°﹣∠ADC′=122°,由折叠得:∠CDE=∠C′DE=∠CDC′=61°,∠DEC=∠DEC′=×180°=90°,∴∠C=180°﹣∠EDC﹣∠DEC=29°,∴∠ADC'与∠C的数量关系:∠ADC'=2∠C.故答案为:29°,∠ADC'=2∠C;(2)∵∠BEC′=42°,∠ADC′=20°,∴∠CEC′=180°﹣∠BEC′=138°,∠CDC′=180°﹣∠ADC′=160°,由折叠得:∠CDE=∠C′DE=∠CDC′=80°,∠DEC=∠DEC′=∠CEC′=69°,∴∠C=180°﹣∠EDC﹣∠DEC=31°,∴∠C的度数为31°;(3)如图:∵∠BEC′=x,∠ADC′=y,∴∠CEC′=180°﹣x,∠1=180°+∠ADC′=180°+y,由折叠得:∠CDE=∠C′DE=∠1=90°+y,∠DEC=∠DEC′=∠CEC′=90°﹣x,∴∠C=180°﹣∠EDC﹣∠DEC=180°﹣(90°+y)﹣(90°﹣x)=x﹣y,∴∠C与x,y之间的数量关系:∠C=x﹣y.【变式6-1】如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在边AC上点E处,若∠B=65°,则∠ADE的大小为()A.40°B.50°C.65°D.75°【答案】A【解答】解:在△ABC中,∠ACB=90°,∠B=65°,∴∠A=90°﹣65°=25°,根据折叠可得∠CED=∠B=65°,∴∠ADE=65°﹣25°=40°,故选:A.【变式6-2】如图,将△ABC沿着平行于BC的直线DE折叠,点A落在点A'处,若∠B=44°,则∠A'DB的度数是()A.108°B.104°C.96°D.92°【答案】D【解答】解:∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=44°,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°,故选:D.【变式6-3】如图,将△ABC一角折叠,若∠1+∠2=80°,则∠B+∠C=()A.40°B.100°C.140°D.160°【答案】C【解答】解:连接AA′.∵∠1=∠3+∠4,∠2=∠5+∠6,∴∠1+∠2=∠3+∠4+∠5+∠6=∠EAD+∠EA′D,∵∠EAD=∠EA′D,∴∠1+∠2=2∠EAD=160°,∴∠EAD=40°,∴∠B+∠C=180°﹣40°=140°,故选:C.【夯实基础】1.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=125°,则∠A的度数为()A.60°B.80°C.70°D.45°【答案】C【解答】解:在△FBC中,∠BFC=125°.∴∠FBC+∠FCB=180°﹣∠BFC=55°.∵BF平分∠ABC,CF平分∠ACB.∴∠ABC=2∠FBC,∠ACB=2∠FCB.∴∠ABC+∠ACB=2(∠FBC+∠FCB)=110°.∴在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=70°.故选:C.2.如图,点B是△ADC的边AD的延长线上一点,DE平分∠CDB,若∠C=50°,∠BDE=60°,则∠A的度数等于()A.70°B.100°C.110°D.120°【答案】A【解答】解:∵DE平分∠CDB,∴∠CDE=∠BDE,∵∠BDE=60°,∴∠CDE=60°,∴∠ADC=180°﹣∠BDE﹣∠CDE=180°﹣60°﹣60°=60°,∵∠C=50°,∴∠A=180°﹣∠C﹣∠ADC=180°﹣50°﹣60°=70°,故选:A.3.如图,在△ABC中,∠ABC与∠ACB的平分线交于点D,∠A=40°,则∠BDC的度数是()A.110°B.120°C.130°D.140°第6题图【答案】A【解答】解:在△ABC中,∵∠A=40°,∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵∠ABC、∠ACB的平分线交于点D,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=×140°=70°,在△DBC中,∵∠DBC+∠DCB+∠BDC=180°,∴∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣70°=110°.故选:A.4.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC 边上的点E处.若∠A=24°,则∠EDC等于()A.69°B.67°C.66°D.42°【答案】A【解答】解:在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°﹣∠A=66°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=∠EDC=180°﹣∠BCD﹣∠B=69°.故选:A.5.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC 边上的点E处.若∠A=22°,则∠EDA等于()A.46°B.56°C.36°D.77°【答案】A【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∴∠EDA=∠CED﹣∠A=46°,故选:A.6.如图,把△ABC纸片沿DE折叠,点A落在四边形DEBC内部A',当∠A=30°时,∠1+∠2=()A.30°B.40°C.50°D.60°【答案】D【解答】解:在△ADE中,∠A=30°,∠ADE+∠AED=180°﹣∠A=180°﹣30°=150°,由折叠可知:∠A'DE=∠ADE,∠A'ED=∠AED,∴∠1+∠2=360°﹣∠A'DE﹣∠ADE﹣∠A'ED﹣∠AED=360°﹣2(∠ADE+∠AED)=360°﹣2×150°=60°.故选:D.7.在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2=.【答案】见试题解答内容【解答】解:∵∠A+∠B+∠C=180°,∴∠A+∠B=180°﹣∠C=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°.故答案是:270°.8.如图,在△ABC中,∠C=40°,按图中虚线将∠C剪去后,∠1+∠2等于.【答案】见试题解答内容【解答】解:∵△ABC中,∠C=40°,∴∠A+∠B=180°﹣∠C=140°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣140°=220°,故答案为:220°.9.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为°.【答案】见试题解答内容【解答】解:∵∠B=90°,∴∠BDE+∠BED=180°﹣∠B=90°,又∵∠BDE+∠2=180°,∠BED+∠1=180°,∴∠1+∠2=360°﹣(∠BDE+∠BED)=270°.∵∠1=165°,∴∠2=105°.故答案为:105.10.将纸片△ABC沿DE折叠使点A落在点A'处,若∠1=80°,∠2=28°,则∠A的度数为.【答案】26°.【解答】解:如图,由折叠的性质可知∠A'=∠A,∵∠1=∠A+∠AFD,∠AFD=∠2+∠A',∴2∠A+∠2=∠1,∵∠1=80°,∠2=28°,∴∠A=26°,故答案为:26°.11.如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且BA′平分∠ABC,CA′平分∠ACB,若∠BA′C=115°,则∠1+∠2的度数为.【答案】100°.【解答】解:如图,连接AA',∵A'B平分∠ABC,A'C平分∠ACB,∴∠A'BC=∠ABC,∠A'CB=∠ACB,∵∠BA'C=115°,∴∠A'BC+∠A'CB=180°﹣115°=65°,∴∠ABC+∠ACB=130°,∴∠BAC=180°﹣130°=50°,∵沿DE折叠,∴∠DAA'=∠DA'A,∠EAA'=∠EA'A,∵∠1=∠DAA'+∠DA'A=2∠DAA',∠2=∠EAA'+∠EA'A=2∠EAA',∴∠1+∠2=2∠DAA'+2∠EAA'=2∠BAC=2×50°=100°,故答案为:100°.12.如图所示,求∠A+∠B+∠C+∠D+∠E的度数.【答案】见试题解答内容【解答】解:由图可知:∵∠2是三角形的外角,∴∠2=∠A+∠1,同理∠1也是三角形的外角,∴∠1=∠E+∠C,在△BDF中,∠B+∠D+∠2=180°,即∠A+∠B+∠C+∠D+∠E=180°.13.如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.请直接利用(1)中的结论,完成下列各题:①仔细观察,在图2中“8字形”的个数:个;②若∠D=40°,∠B=50°,试求∠P的度数;③若∠D和∠B为任意角,其他条件不变,试问∠P与∠D、∠B之间是否存在一定的数量关系?若存在,请写出推理过程;若不存在,请说明理由;④若∠D和∠B为任意角,∠DAB=3∠2,∠DCB=3∠4,试问∠P与∠D、∠B之间是否存在一定的数量关系?若存在,请直接写出结论;若不存在,请说明理由.【答案】(1)∠A+∠D=∠B+∠C;(2)①6;②45°;③∠B+∠D=2∠P;④2∠B+∠D=3∠P.【解答】解:(1)∵∠A+∠D=180°﹣∠AOD,∠B+∠C=180°﹣∠COB,且∠AOD=∠COB,∴∠A+∠D=∠B+∠C;故答案为∠A+∠D=∠B+∠C;(2)①以M为交点的有1个,为△AMD和△CMP,以O为交点的有4个,为△AOD和△BOC,△AOD和△CON,△AOM和△BOC,△AOM和△CON,以N为交点的有1个,为△ANP和△BNC,故答案为6个;②∵AP平分∠DAB,CP平分∠BCD,∴2∠1=∠OAD,2∠3=∠OCB,由(1)中的结论得:∠1+∠D=∠3+∠P,2∠1+∠D=2∠3+∠B,整理得:∠B+∠D=2∠P,∴∠P==45°;③:∠B+∠D=2∠P,理由如下:∵AP平分∠DAB,CP平分∠BCD,∴2∠1=∠OAD,2∠3=∠OCB,由(1)中的结论得:∠1+∠D=∠3+∠P,2∠1+∠D=2∠3+∠B,整理得:∠B+∠D=2∠P;④2∠B+∠D=3∠P,理由如下:由(1)中结论得:∠2+∠P=∠4+∠B,3∠2+∠D=3∠4+∠B,整理得:2∠B+∠D=3∠P.14.“8字”的性质及应用:(1)如图①,AD、BC相交于点O,得到一个“8字”ABCD,求证:∠A+∠B=∠C+∠D.(2)图②中共有多少个“8字”?(3)如图②,∠ABC和∠ADC的平分线相交于点E,利用(1)中的结论证明∠E=(∠A+∠C).【答案】见试题解答内容【解答】解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,又∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)图②中有:ABCD、BECD、ABED,BFDC、BFDH、ABHD6个“8字”;(3)∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=ABC,∠CDE=∠ADE=∠ADC,∵∠A+∠ABE=∠E+∠ADE,∠C+∠CDE=∠E+∠CBE,∴∠E=(∠A+∠C).15.(1)如图1,在△ABC中,∠ABC,∠ACB的平分线交于点O,过点O作EF∥BC分别交AB,AC于点E,F.直接写出线段EF与BE,CF之间的数量关系:.(2)如图2,若△ABC中∠ABC的平分线BO与三角形外角平分线CO交于点O,过O点作OE∥BC交AB于点E,交AC于点F.则EF与BE,CF之间的数量关系又如何?说明你的理由.【答案】(1)EF=EB+FC;(2)EF=BE﹣CF.【解答】解:(1)∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴EB=EO,FC=FO,∵EF=EO+FO,∴EF=EB+FC,故答案为:EF=EB+FC;(2)EF=BE﹣CF,理由是:∵BO平分∠ABC,∴∠ABO=∠OBC,∵EF∥BC,∴∠EOB=∠OBC,∴∠EBO=∠EOB,∴EB=EO,同理可得:FO=CF,∵EF=EO﹣FO,∴EF=BE﹣CF【能力提升】16.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.【答案】见试题解答内容【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.17.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.利用以上结论解决下列问题:(2)如图2所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.(3)如图3,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD,AB分别相交于点M,N.①若∠B=100°,∠C=120°,求∠P的度数.②若角平分线中角的关系改成“∠CAP=∠CAB,∠CDP=∠CDB”,试直接写出∠P与∠B,∠C之间存在的数量关系,并证明理由.【答案】(1)证明见解析过程;(2)260°;(3)①110°,②4∠P=∠B+3∠C,理由见解析过程.【解答】解:(1)证明:在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D =180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)如图2所示,∵∠DME=∠A+∠E,∠3=∠DME+∠D,∴∠A+∠E+∠D=∠3,∵∠2=∠3+∠F,∠1=130°,∴∠3+∠F=∠2=∠1=130°,∴∠A+∠E+∠D+∠F=130°,∵∠B+∠C=∠1=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=260°.故答案为:260°.(3)①以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;②3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴3(∠C﹣∠P)=∠P﹣∠B,∴4∠P=∠B+3∠C.18.如图①,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠A=40°,则∠BOC=.若∠A=60°,则∠BOC =.若∠BOC=3∠A,则∠BOC=.(2)如图②,在△A′B′C′中的外角平分线相交于点O′,∠A=40°,则∠B′O′C′=(3)上面(1)、(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系?若∠A=∠A′=n°,∠BOC与∠B′O′C′是否有这样的关系?这个结论你是怎样得到的?(4)如图③,△A″B″C″的内角∠ACB的外角平分线与∠ABC的内角平分线相交于点O″,∠BOC与∠B″O″C″有怎样的数量关系?若∠A=∠A′=n°,∠BOC与∠B″O″C″是否有这样的关系?这个结论你是怎样得到的?【答案】(1)110°,60°,108°;(2)70°;(3)∠BOC+∠B′O′C′=180°;(4)∠BOC﹣∠B″O″C″=90°.【解答】解:(1)∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∵∠ABC、∠ACB的平分线相交于点O,∴∠1+∠2=∠ABC+∠ACB=×140°=70°,∴∠BOC=180°﹣(∠1+∠2)=110°,∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵∠ABC、∠ACB的平分线相交于点O,∴∠1+∠2=∠ABC+∠ACB=×120°=60°,∴∠BOC=180°﹣120°=60°;∵设∠A=x°,则∠1+∠2=(∠ABC+∠ACB)=×(180°﹣x°)=90°﹣x°,∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣x°)=90°+x°,∵∠BOC=3∠A,∴3x=90+x,x=36,即∠BCO=3x°=108°;故答案为:110°,60°,108°;(2)如图2,∵∠A′=40°,∴∠A′B′C′+∠A′C′B′=180°﹣40°=140°,∴∠MB′C′+NC′B′=360°﹣140°=220°,∵B′O′、C′O′分别平分∠MB′C′,∠NC′B′,∴∠1=∠MB′C′,∠2=∠NC′B′,∴∠1+∠2=110°,∴∠B′O′C′=180°﹣110°=70°,故答案为:70°;(3)图1和图2的∠BOC+∠B′O′′=180°(当∠A=∠A′时);图1中∠BOC=180°﹣(∠1+∠2)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,图2中∠B′O′′=180°﹣(∠1+∠2)=180°﹣(∠MB′C′+∠NC′B′)=180°﹣[360°﹣(∠A′B′C′+∠A′C′B′)]=(180°﹣∠A′)=90°﹣∠A′,∵∠A=∠A′=n°,∴∠BOC+∠B′O′C′=180°(4)∵∠A″C″M=2∠2=∠A″+∠A″B″C″,∠2=∠O″+∠1,∵C″D″平分∠A″C″M,B″O″平分∠A″B″C″∴∠A″C″M=2∠2,∠A″B″C″=2∠1,∴∠A″=2∠O″=n°,∴∠B″O″C″=∠A″,∵∠BOC=90°+∠A,∠A=∠A′=n°∴∠BOC﹣∠B″O″C″=90°.19.已知△ABC中,∠A=x°(1)如图1,若∠ABC和∠ACB的角平分线相交于点O,则用x表示∠BOC =°(2)如图2,若∠ABC和∠ACB的三等分线相交于点O1、O2,则用x表示∠BO1C=°(3)如图3,若∠ABC和∠ACB的n等分线相交于点O1、O2、…、O n﹣1,则用x表示∠BO1C=°【答案】见试题解答内容【解答】解:(1)∵∠ABC和∠ACB的角平分线相交于点O,∴2∠OBC=∠ABC,2∠OCB=∠ACB,∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠OBC+2∠OCB=180°,∴∠OBC+∠OCB=90°﹣∠A,∵∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A,∵∠A=x°,∴∠BOC=(90+x)°;。
飞镖模型经典例题飞镖模型经典例题一、问题描述飞镖模型是数学中常见的应用题之一,它涉及到物体在空中受到力的作用而做抛射运动的情况。
通过研究飞镖模型,我们可以深入理解平抛运动的特点,探索抛体在不同条件下的运动轨迹。
下面我们将介绍一个经典的飞镖模型例题,希望通过解答这个例题,能对飞镖模型有一个更加清晰的认识。
二、例题描述假设一架飞机以恒定的速度水平飞行,这架飞机每秒钟向下抛出一个飞镖。
飞镖的初速度为10 m/s,抛出的角度为30°,重力加速度取9.8 m/s^2。
现在我们来解答以下问题:1. 飞镖的水平速度是多少?2. 飞镖的垂直速度是多少?3. 飞镖的飞行时间是多少?4. 飞镖的最大高度是多少?5. 飞镖的最大水平飞行距离是多少?三、解答过程1. 飞镖的水平速度是多少?由于飞机以恒定的速度水平飞行,因此飞镖与飞机垂直于地面的位移也是以恒定的速度进行。
根据初速度和抛出角度,我们可以将飞镖的水平速度表示为:水平速度 = 初速度× cos(抛出角度)代入已知数据,可以计算得到:水平速度= 10 m/s × cos(30°) ≈ 8.66 m/s所以,飞镖的水平速度约为8.66 m/s。
2. 飞镖的垂直速度是多少?飞镖的垂直速度受到重力的影响,在运动过程中逐渐减小。
根据初速度和抛出角度,我们可以将飞镖的垂直速度表示为:垂直速度 = 初速度× sin(抛出角度)代入已知数据,可以计算得到:垂直速度= 10 m/s × sin(30°) ≈ 5 m/s所以,飞镖的垂直速度约为5 m/s。
3. 飞镖的飞行时间是多少?飞镖的飞行时间可以通过垂直速度和重力加速度来计算。
由于飞镖的初速度和加速度都是垂直向下的,我们可以利用以下公式:时间= 2 × 垂直速度 / 重力加速度代入已知数据,可以计算得到:时间= 2 × 5 m/s / 9.8 m/s^2 ≈ 1.02 s所以,飞镖的飞行时间约为1.02秒。
中考数学71个模型中考数学常见的题型包括选择题、填空题、计算题和应用题。
以下是一些出现的数学模型题:1.几何模型:包括求解图形面积、周长、体积等几何题目,如计算矩形、三角形、圆的面积、周长等。
2.暗盒模型:通过给定条件,使用代数建模解决问题,如解方程、组织代数式等。
3.比例模型:涉及到比例关系的问题,如长、宽、高的比例、速度、时间、距离的比例等。
4.函数模型:涉及到函数关系的问题,如函数的定义、求最值、函数图像的性质等。
5.利益模型:涉及到利益、利率、本金、时间的关系,如求解利息、本金、时间的问题。
6.速度模型:涉及到速度、时间、距离的关系,如求解两车相遇的时间、相遇的地点等。
7.图表模型:通过描述、解读和分析图表数据来回答相关问题,如求解平均数、中位数、众数等问题。
8.张弛模型:涉及到加减乘除的问题,如商与余数的关系、面积和周长的关系等。
9.综合模型:将多个数学知识点结合起来综合运用,解决实际问题。
1.比例模型:甲乙两人的身高比例是3:4,甲的身高是150厘米,那么乙的身高是多少厘米?2.几何模型:一个长方形花坛的长是6米,宽是4米,如果要用正方形的花砖铺满整个花坛,每块花砖边长是0.2米,需要几块花砖?3.张弛模型:一个数的四倍加上7等于27,求这个数是多少?4.几何模型:一个直径为16厘米的圆形花坛需要修建一个环形边界,内径是10厘米,外径是14厘米,这个环形边界的周长是多少厘米?5.利益模型:小明存入银行1000元,按年利率5%,一年后可以得到多少利息?6.函数模型:某商品的销售价格为x元,根据销售量的不同,价格和销售量之间的关系可以表示为y = 2x + 15,如果销售量是100,那么商品的销售价格是多少元?7.比例模型:小红通过比例尺绘制了一幅图,比例尺是1:5000,她测量了图上两个点之间的距离为2厘米,实际的距离是多少米?8.图表模型:根据一张成绩表格,某班级30名学生的数学考试成绩的平均分为85分,如果其中一名学生的成绩被记作90分,那么班级的新平均分是多少?9.综合模型:小明骑自行车从A点出发,速度是12千米/小时,小红从相同的地点出发,速度是16千米/小时,A点到B点的距离是30千米,小明和小红同时出发,他们几点钟在B点相遇?10.图表模型:根据某市最近10天的气温数据,制作了一份折线图,可以看出温度的最高值是35摄氏度,最低值是15摄氏度,那么这10天内的平均温度是多少摄氏度?11.综合模型:小明爬上一座山峰,开始时他离山脚1000米,每10分钟他爬升200米,那么他爬到山顶需要多少时间?12.暗盒模型:一个数字x加上7的一半等于15,求这个数字x是多少?13.比例模型:小明以每分钟30个字的速度打字,如果他打了20分钟,他一共打了多少个字?14.几何模型:一个正方形花坛的周长是20米,求花坛的面积是多少平方米?15.函数模型:某商品的原价是x元,经过打折后销售价为原价的80%,如果现在的销售价是96元,那么原价x是多少元?16.利益模型:小明存入银行2000元,按年利率2.5%,存款一年后可以得到多少利息?17.速度模型:一个人以每小时5千米的速度骑自行车,另一个人以每小时8千米的速度骑自行车,如果他们分别从同一地点出发,两人相距40千米,他们相遇需要多少小时?18.图表模型:某班级有30名学生,根据最近一次考试成绩,制作了一张成绩表,表中A的人数是10人,B的人数是12人,C的人数是8人,D的人数是0人,那么没有得到D的学生所占的百分比是多少?19.比例模型:小红和小明一起放风筝,小红放了6个风筝,小明放了9个风筝,那么他们两个人放风筝的总数和小红放的风筝数量的比是多少?20.几何模型:一个三角形的两边长分别是4厘米和6厘米,夹角的正弦值是多少?21.综合模型:一个管道开关一分钟可以注满1/5的水池,那么这个水池需要多少分钟才能被注满?22.利益模型:小明借给小红200元,小红答应每月还50元,那么小红还完这笔借款需要多少个月?23.函数模型:某商品的售价与进价的关系是y = 0.8x + 5,如果进价是100元,那么售价是多少元?24.暗盒模型:一个数减去12的两倍等于4,求这个数是多少?25.比例模型:一个长方形花坛的长是8米,宽是4米,如果要用正方形的花砖铺满整个花坛,每块花砖边长是0.5米,需要几块花砖?26.图表模型:根据一份成绩单,某班级40名学生的数学考试平均成绩是80分,如果班级再加入一名学生,这名学生的分数是70分,那么新的平均分是多少?27.几何模型:一个圆形花坛的半径是5米,求花坛的周长是多少米?28.张弛模型:一个数的四分之一加上3等于7,求这个数是多少?29.函数模型:某商品的销售价格为x元,根据销售量的不同,价格和销售量之间的关系可以表示为y = 3x + 20,如果销售量是200,那么商品的销售价格是多少元?30.比例模型:小华通过比例尺绘制了一张图,比例尺是1:1000,她测量了图上两个点之间的距离为2厘米,实际的距离是多少米?31.综合模型:小明骑自行车从A点出发,速度是10千米/小时,小红从相同的地点出发,速度是15千米/小时,A点到B点的距离是50千米,小明和小红同时出发,他们几点钟在B 点相遇?32.暗盒模型:一个数的四分之一加上6等于18,求这个数是多少?33.几何模型:一个圆形花坛的直径是10米,求花坛的面积是多少平方米?34.张弛模型:一个数的三倍减去2等于16,求这个数是多少?35.几何模型:一个长方形花坛的周长是28米,如果宽是6米,求花坛的长度是多少米?36.比例模型:小明和小红一起种葡萄,小明种了10棵葡萄藤,小红种了15棵葡萄藤,他们两个人种了多少棵葡萄藤?37.函数模型:某商品的原价是x元,通过打折后销售价为原价的75%,如果现在的销售价是120元,那么原价x是多少元?38.利益模型:小明存入银行5000元,按年利率4%,存款一年后可以得到多少利息?39.速度模型:一个人以每小时6千米的速度骑自行车,另一个人以每小时9千米的速度骑自行车,如果他们分别从同一地点出发,两人相距30千米,他们相遇需要多少小时?40.比例模型:一个班级有36名男生和24名女生,男生和女生的比例是多少?41.图表模型:根据某市最近7天的气温数据,制作了一份线形图,可以看出气温的最高值是28摄氏度,最低值是18摄氏度,那么这7天内的平均温度是多少摄氏度?42.利益模型:小明借给小红1000元,小红答应每月还利息5%,每个月还300元,那么小红还完这笔借款需要多少个月?43.综合模型:小明骑自行车从A点出发,速度是15千米/小时,小红从相同的地点出发,速度是10千米/小时,A点到B点的距离是50千米,小明和小红同时出发,他们几点钟在B 点相遇?44.函数模型:某商品的售价与进价的关系是y = 0.9x + 10,如果进价是200元,那么售价是多少元?45.张弛模型:一个数的五倍减去4等于16,求这个数是多少?46.比例模型:一根绳子,一半的长度等于全长的四分之三,求这根绳子的长度是多少?47.几何模型:一个圆形花坛的直径是8米,求花坛的周长是多少米?48.综合模型:一个管道每分钟可以灌满1/6的水池,那么这个水池需要多少分钟才能被灌满?49.图表模型:某班级有40名学生,根据一份成绩单,平均成绩是80分,如果其中一名学生成绩被记为90分,那么新的平均分是多少?50.函数模型:某商品的销售价格为x元,根据销售量的不同,价格和销售量之间的关系可以表示为y = 5x + 50,如果销售量是300,那么商品的销售价格是多少元?51.暗盒模型:一个数加上4的一半等于10,求这个数是多少?52.比例模型:一个三角形的顶角是60度,底边长度是8厘米,求三角形的高是多少厘米?53.几何模型:一个长方形花坛的周长是18米,如果长度为4米,求花坛的宽是多少米?54.张弛模型:一个数的五分之一加上6等于14,求这个数是多少?55.几何模型:一个长方形花坛的长是10米,宽是6米,如果要用正方形的花砖铺满整个花坛,每块花砖边长是0.5米,需要几块花砖?56.函数模型:某商品的原价是x元,通过打折后销售价为原价的70%,如果现在的销售价是168元,那么原价x是多少元?57.利益模型:小明存入银行3000元,按年利率3%,存款一年后可以得到多少利息?58.速度模型:一个小汽车以每小时50千米的速度行驶,行驶了4个小时后,它行驶的距离是多少千米?59.图表模型:某商店商品的售价打9折后是120元,原售价是多少元?60.比例模型:一次活动中,男生和女生的比例是2:3,如果男生有24人,那么女生有多少人?61.张弛模型:一个数的三分之一减去4等于8,求这个数是多少?62.应用模型:某超市购买3件衣服可以打7折,原价是200元的一件衣服,现在买3件需要支付多少元?63.函数模型:某商品的售价与进价的关系是y = 0.85x + 15,如果进价是400元,那么售价是多少元?64.平均数模型:某班级有40名学生,某次考试的平均成绩是85分,如果其中一名学生的成绩被记作100分,那么新的平均分是多少?65.几何模型:一个直径为12米的圆形花坛需要修建一条围墙,围墙的高度是1.5米,这个围墙的周长是多少米?66.暗盒模型:一个数的三倍减去5等于13,求这个数是多少?67.比例模型:小明准备用金字塔形的玻璃瓶摆放石头,每层石头的数量是前一层的2倍,如果金字塔共有4层,一共需要多少块石头?68.函数模型:某商品的销售价格为x元,根据销售量的不同,价格和销售量之间的关系可以表示为y = 10x + 100,如果销售量是500,那么商品的销售价格是多少元?69.张弛模型:一个数的四倍加上3等于27,求这个数是多少?70.几何模型:一个长方形花坛的长是12米,宽是8米,求花坛的面积是多少平方米?71.综合模型:小明骑自行车从A点出发,速度是12千米/小时,小红从相同的地点出发,速度是18千米/小时,A点到B点的距离是60千米,小明和小红同时出发,他们几点钟在B 点相遇?请注意,这是一些常见的数学模型题的示例,具体的题目形式和难度可能会根据不同的考试和教材有所变化。
蝴蝶模型简单练习题蝴蝶模型是一种常见的数学模型,在数学教学中经常用于应用题的解答。
通过练习蝴蝶模型相关题目,可以帮助我们深入理解模型的应用及解题技巧。
本文将为您提供一些简单的蝴蝶模型练习题,希望对您的学习有所帮助。
1. 题目一一只蝴蝶每秒钟可以用翅膀摆动32次,问它一分钟内用翅膀摆动了多少次?解答: 题目中已经给出了每秒钟的摆动次数为32次,而一分钟有60秒,所以蝴蝶一分钟内用翅膀摆动的次数为32次/秒 × 60秒/分钟 = 1920次。
2. 题目二在一个蝴蝶繁殖基地,一只母蝴蝶每天产卵量为200枚,假设这些卵都能成功孵化,孵化出的幼虫继续产卵。
问经过5天后,基地中共有多少只幼虫?解答: 第一天,母蝴蝶产下的卵孵化出200只幼虫。
第二天,这200只幼虫成为成年蝴蝶,每只蝴蝶也产下200枚卵,共计200只幼虫。
第三天,这400只幼虫又将成为成年蝴蝶,每只蝴蝶产下200枚卵,共计400只幼虫。
以此类推,第四天有800只幼虫,第五天有1600只幼虫。
因此,经过5天后,基地中共有1600只幼虫。
3. 题目三一只蝴蝶从地面起飞,垂直上升高度为20米,然后水平飞行一段距离,再下降25米,最后水平飞行一段距离到达目的地。
已知蝴蝶每秒钟垂直上升的速度为2米,水平飞行的速度为5米。
问蝴蝶水平飞行的距离是多少?解答: 蝴蝶从地面起飞到最高点的垂直上升距离为20米,每秒钟上升2米,所以上升20米共需10秒钟。
接着蝴蝶垂直下降25米,每秒钟下降2米,所以下降25米共需12.5秒钟。
根据题意,垂直上升和下降的时间共计为10+12.5=22.5秒钟。
剩下的时间用于水平飞行,根据题意,水平飞行的速度为5米/秒。
所以蝴蝶水平飞行的距离为水平飞行速度乘以剩下的时间,即5米/秒 × (60秒 - 22.5秒) = 5米/秒 × 37.5秒 = 187.5米。
通过以上简单练习题,我们对蝴蝶模型的应用题解法和思维方式有了更加深入的了解。
数列应用题常见模型数列应用题常见模型银行储蓄单利公式为:利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+rx).银行储蓄复利公式为:按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x(x∈N 且x>1).产值模型为:原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p)x(x∈N且x>1).分期付款模型为:设某商品一次性付款的金额为a元,以分期付款的形式等额地分成n次付清,每期期末所付款是x元,每期利率为r,则x=ar(1+r)n/((1+r)n-1)(n∈N且n>1).案例分析:某企业在第1年初购买一台价值为120万元的设备M,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%。
1)求第n年初M的价值an的表达式;解:当n≤6时,数列{an}是首项为120,公差为-10的等差数列,因此an=130-10n;当n≥7时,数列{an}是以a6为首项,公比为3/4的等比数列,又a6=70,所以an=70×(3/4)^(n-6)。
因此,第n年初,M的价值an的表达式为130-10n,n≤6;70×(3/4)^(n-6),n≥7.2)设XXX。
若An大于80万元,则M继续使用,否则须在第n年初对M进行更新。
证明:须在第9年初对M进行更新。
证明:设Sn表示数列{an}的前n项和,由等差及等比数列的求和公式得:当1≤n≤6时,Sn=120n-5n(n-1),An=120-5(n-1)=125-5n;当n≥7时,由于S6=570,故Sn=S6+(a7+a8+…+an)=570+70×(1-(3/4)^(n-6))/(1-3/4)。
因为{an}是递减数列,所以{An}是递减数列。
又A8=82>80,A9=79<80,所以M须在第9年初进行更新。
小学数学五大模型练习题在小学数学教学中,五大模型是教师经常使用的一种教学方法。
它包括了常见的五种问题解决模型,即归纳模型、演绎模型、类比模型、建模模型和解决问题的启发模型。
通过学习和练习这些模型,学生可以提高对数学问题的分析和解决能力。
本文将针对小学数学五大模型进行一系列练习题的介绍和解析。
一、归纳模型归纳模型强调观察事物,找出其中的规律,由此推广到更一般的情况。
下面是一道归纳模型的练习题:练习题1:阿明用2元钱买了4个苹果,那么他用8元钱可以买几个苹果?解析:观察题目中的数据,可以发现钱和苹果的数量存在一定的倍数关系。
根据归纳模型的思路,我们可以得出苹果数量是钱数的2倍的规律。
因此,阿明用8元钱可以买8个苹果。
二、演绎模型演绎模型强调从已知条件出发,进行推理和演绎,得出问题的结论。
下面是一道演绎模型的练习题:练习题2:有一个数,它是3的倍数,它加上4得到的和还是3的倍数,那么这个数是多少?解析:根据演绎模型的思路,我们从已知条件出发进行推理。
设这个数为x,根据题目条件,得到以下两个等式:1)x是3的倍数:x = 3n (n为自然数)2)x加上4得到的和是3的倍数:(x + 4) = 3m (m为自然数)将第一个等式代入第二个等式,得到 3n + 4 = 3m。
整理等式,得到3n + 1 = 3m。
由于3n是3的倍数,所以3n + 1不可能是3的倍数。
因此,不存在满足条件的数。
三、类比模型类比模型强调将问题与已经熟悉的情境进行类比,找到相似之处,利用已有的知识解决问题。
下面是一道类比模型的练习题:练习题3:班级里有30个男生和18个女生,请问男生人数是女生人数的几倍?解析:根据类比模型的思路,我们可以用一个已知的情境进行类比:小明抓了30只蚂蚁和18只蜘蛛,请问蚂蚁的数量是蜘蛛数量的几倍?从直观上来看,蚂蚁和蜘蛛数量的比例应该与男生和女生的比例相同。
因此,男生人数是女生人数的 $\frac{30}{18}$ 倍。
例谈初中数学有关三角函数应用题的四个模型
1.求正弦定理:利用正弦定理可以解决三角形对边求角的问题,同
时也常用来求三角形内角与外角之和的问题,如:已知ABC三角形,
A = 105°,
B = 30°,求C角的度数。
解:由正弦定理:
A:B:C=sinA:sinB:sinC,可得:C = 45°。
2.求余弦定理:余弦定理可以用来求三角形的面积,如果知道三条边的长度,则可以求出三角形的面积。
如:已知ABC三角形的两条边的长
度分别为a = 8cm、b = 9cm,夹角C的度数为30°,求ABC三角形的
面积。
解:利用余弦定理,即a² = b² + c²– 2bc⁺cosC,得出:c = 8.11cm,三角形ABC的面积S = ab/2 sinC = 63.07cm²。
3.求正切定理:正切定理常用于求夹角的正切值。
如:已知ABC三角形,A = 30°,∠B = 60°,求tanB的值,解:由正切定理:
tanA:tanB:tanC = a:b:c,可以得出tanB = 1/√3∶1.
4.求正割定理应用:正割定理常用于夹角的正割值的求解,如:已知ABC三角形,A = 45°,B = 60°,求cosA的值,解:由正割定理:cosA:cosB:cosC = a:b:c,可以得出cosA = √3∶2.。
函数模型在实际生活中的应用函数应用题涉及的题型比较多,下面谈谈函数模型在实际生活中的应用:一、一次函数模型例1 假如你计划买一部手机,而你的朋友给你推荐手机消费有三种可供选择,如下表:从经济角度考虑,哪一种手机卡更为合适?分析:这道题目的背景是消费问题,用表格的形式给出了已知条件,其中存在的数学等量关系为:月消费金额=月租费+每分钟通话费×月通话时间,从而建立月通话时间与月消费金额之间的一次函数关系式.解:设月通话总时间为x 分钟,则三种手机卡的月消费金额分别:连通卡:36.012+=y ()0≥x神州卡:x y 6.0=)0(≥x都市卡:x y 2.024+=)0(≥x 由 ⎩⎨⎧=+=x y x y 6.036.012 解得: ⎩⎨⎧==3050y x 由 ⎩⎨⎧+==x y x y 2.0246.0 解得: ⎩⎨⎧==3660y x 由 ⎩⎨⎧+=+=x y x y 36.0122.024 解得:⎩⎨⎧==3975y x 由图可知:①当500<≤x 时,选用神州行卡;② 当50=x 时,选用神州行卡或连通卡更为经济合适;③ 当7550<<x 时,选用连通卡更为经济合适;④ 当75=x 时,选用都市卡或连通卡;⑤ 当75>x 时选用都市卡更为经济合适.评注:在求解该问题时要注意找出其中数学量之间的关系,从而建立一定的函数关系式来求解.二、分段函数模型例2:某旅行社组团去风景旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到每张降为450元为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行设可获得最大利润?分析:注意价格与人数之间的关系,从而确定函数的解析式.解:(1)设旅行团人数为x 人,由题得075x <≤飞机票价格为y 元,则90090010(30)y x ⎧=⎨--⎩0303075x x <≤<≤即900120010y x ⎧=⎨-⎩0303075x x <≤<≤ (2)设旅行社获利S 元则90015000(120010)15000x S x x -⎧=⎨--⎩0303075x x <≤<≤ 即29001500010(60)21000x S x -⎧=⎨--+⎩0303075x x <≤<≤故当60x =时,旅行设可获得最大利润. 评注:在对分段函数进行求最值时,一定要注意分析自变量的范围.三、二次函数模型二次函数是出现的比较多的函数模型,求解此类问题常常通过对其单调区间的讨论来求解.例3:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(I )写出图一表示的市场售价与时间的函数关系P=f(t);写出图二表求援 种植成本与时间的函数关系式Q=g(t); (II )认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?注:市场售价和种植成本的单位:元/102kg ,时间单位:天)分析:这是一个分段函数与二次函数相结合的应用题,可以根据函数图象写出解析式,从而利用二次函数来确定函数的最值问题.解:(1)由图可得市场售价与时间的函数关系为: f (t )=⎩⎨⎧≤<-≤≤-;300200,3002,2000,300t t t t 由图2可得种植成本与时间的函数关系为:g (t )=2001(t -150)2+100,0≤t ≤300. (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,21025272001,2000,217521200122t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-2001(t -350)2+100, 所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.评注:求本题的最值时一定要注意先求出每一定义域中每一段上的最值,然后来加以比较.四、函数()xb ax x f +=()0,>b a 模型 这类函数的模型常常是通过均值定理或者函数的单调性求最值,此时要注意等号能否取到.例4:甲、乙两地相距120千米,汽车从甲地以速度v (千米/时)匀速行驶到乙地,速度不得超过100千米/时.已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成:固定部分为64元;可变部分与速度 v 的平方成正比,比例系数为0.01. (1)求汽车每小时的运输成本w(元)(2)把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出函数的定义域;(3)为了使全程运输成本最小,汽车应以多大速度行驶?分析:本题可以先根据题意写出全程的运输成本,观察函数式的特点可以知道结合基本不等式来求解. 解:((1)分析可以得到6401.02+=v w ; (2)全程运输成本y (元)表示为速度v (千米/时)的函数关系式是:vv y 120)6401.0(2⋅+=,其中函数的定义域是]100,0(∈v ; (3)整理函数有)6401.0(120120)6401.0(2vv v v y +⋅=⋅+=, 根据基本不等式, 1926401.02120)6401.0(120=⋅⋅≥+⋅=v v v v y , 当且仅当]100,0(806401.0∈==v vv 即时,取等号成立, 故汽车应以80千米/时的速度行驶,全程运输成本最小为192元.评注:对基本不等式的应用要注意“一正二定三相等”的特点.当然,涉及函数的应用问题还有很多,关键是确定用哪种类型的函数.。
初中数学解题模型汇总1. 一元一次方程模型例题:某商店减价出售一批商品,原价每件15元,现在每件8元,如果买够10件,再加送5件商品,那么买25件要花多少钱?解法:设买了x件商品,那么原价一共要花费15x元,现在每件8元,所以现在一共只要花费8x元,因为买够10件,所以原价要花费10×15=150元,现在只要花费10×8=80元,所以减少的费用为150-80=70元。
再加送5件商品,相当于买了25件,因此要花费的钱数为15×25-70=305元。
2. 一元二次方程模型例题:某户外俱乐部为鼓励会员进行户外运动,举行攀岩比赛。
比赛中,参赛选手从A点出发,攀登一根直径为6m的柱子到达顶端B点。
已知选手在攀登过程中,以相同的速度依次过了距离A、B两点1m,求选手从A点出发到B点的时间。
解法:设选手在攀岩过程中,攀登的高度为x米,则根据勾股定理可知,选手距离柱底的距离为√(6²-x²),设选手攀岩速度为v,则选手攀登整个柱子的时间为t=(√(6²-x²)+√(6²-(1-x)²))/v。
又因为选手过的距离相同,所以t=(x+1)/v。
将上述两个等式联立起来,可得到一个一元二次方程x²-12x+15=0。
解方程可得,x=3或x=5,由于选手要攀登整个柱子,所以最后的答案为t=(3+1)/v=4/v或t=(5+1)/v=6/v。
3. 应用问题模型例题:高亮在X月份中用工资的一半购买了价值800元的礼物,其余部分存入银行,当年年末,高亮发现存款的本金与利息之和是1000元,那么高亮的年利率是多少?解法:设高亮的年利率为r,则应用复利公式可得,800(1+r/12)^(12×X/12)+(1/2×800)=(1+r)×(1000-(1/2×800))。
将式子等号两边展开,可得一个一元一次方程,解出r即可。
初中数学66个常考几何模型50个应用题答题公式摘要:1.初中数学几何模型的重要性2.66个常考几何模型分类及解析3.50个应用题答题公式归纳4.总结与建议正文:众所周知,初中数学中的几何部分是许多学生的难点,而掌握几何模型及应用题解题公式则是解决这一问题的关键。
本文将为大家梳理66个常考几何模型,并提供50个应用题答题公式,以帮助大家在考试中取得更好的成绩。
一、初中数学几何模型的重要性几何模型是在数学几何知识的基础上进行归纳和总结出来的,它们对于相关知识的基础性要求较高。
掌握几何模型有助于提高同学们解决实际问题的能力,尤其是在考试中,熟练运用几何模型可以迅速找到解题思路,从而提高答题效率。
二、66个常考几何模型分类及解析1.基本几何图形:包括点、线、面、角、三角形、四边形等;2.几何变换:平移、旋转、对称等;3.几何性质:角度、边长、周长、面积等;4.几何问题:直线与圆、圆与圆、几何最值、几何构造等。
三、50个应用题答题公式归纳1.三角形面积公式:S = 1/2 * bc * sinA;2.勾股定理:a = b + c;3.相似三角形判定:有两角相等或两边成比例的两个三角形相似;4.相似三角形面积比:面积比等于相似比的平方;5.圆的周长公式:C = 2πr;6.圆的面积公式:S = πr;……四、总结与建议1.熟练掌握各类几何模型及答题公式;2.加强基础知识的巩固,提高解题灵活性;3.多做练习,积累经验,提高解题速度;4.善于总结,归纳解题思路和方法。
通过以上内容的学习,相信大家对初中数学几何模型及应用题答题公式有了更深入的了解。
初中数学66个常考几何模型50个应用题答题公式(一)初中数学66个常考几何模型及50个应用题解答公式一、直线和角1. 直线的斜率公式斜率公式用于计算直线的斜率,即直线上两点的纵坐标之差与横坐标之差的比值。
斜率公式为:k = (y2 - y1) / (x2 - x1)例如,已知两点A(2, 4)和B(5, 9),则直线AB的斜率为:k = (9 - 4) / (5 - 2) = 5 / 32. 同位角公式同位角公式用于计算同位角的性质。
当两条直线被一条截线相交时,同位角相等。
例如,直线l1和直线l2被直线l相交,角1和角2为同位角,则有:角1 = 角23. 对顶角公式对顶角公式用于计算对顶角的性质。
当两条直线被一条截线相交时,对顶角互为补角。
例如,直线l1和直线l2被直线l相交,角1和角2为对顶角,则有:角1 + 角2 = 180°二、平行线和三角形1. 平行线的性质公式平行线的性质公式包括平行线定理和平行线的判定定理。
平行线定理表示若两条直线与一直线交叉,使得同位角或内错角互为补角,则这两条直线平行。
平行线的判定定理表示若两条直线的斜率相等且至少有一对对应角相等,则这两条直线平行。
2. 三角形的内角和公式三角形的内角和公式表示三角形三个内角的和等于180°。
例如,对于任意三角形ABC,其内角A、B和C满足:角A + 角B + 角C = 180°三、相似三角形和勾股定理1. 相似三角形的性质公式相似三角形的性质公式包括AAA相似定理、AA相似定理和SAS相似定理。
AAA相似定理表示若两个三角形的对应角相等,则这两个三角形相似。
AA相似定理表示若两个三角形的两个对应角相等,则这两个三角形相似。
SAS相似定理表示若两个三角形的一个角相等,两个对边比值相等,则这两个三角形相似。
2. 勾股定理勾股定理用于计算直角三角形的边长关系。
设直角三角形的两条直角边长度分别为a和b,斜边长度为c,则有:c^2 = a^2 + b^2例如,已知直角三角形的一条直角边长度为3,另一条直角边长度为4,则斜边的长度为:c = sqrt(3^2 + 4^2) = 5以上是初中数学66个常考几何模型和50个应用题的一些解答公式的列举和说明。
一元一次方程的应用学习内容和要求:1、了解一元一次方程这条内容的知识系统,理解等式、方程、方程的解、解方程、一元一次方程的标准形式和解的情况2、掌握解一元一次方程的方法步骤3、掌握列一元一次方程解应用题的一般步骤4、认识到用代数方法解决数字问题的优越性。
学习重点:有关一元一次方程的概念及解一元一次方程的基本方法学习难点:灵活运用解方程的变形步骤及解应用题1、行程问题:[解题指导](1)行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型有1)相遇问题;2)追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向.相背.同向等的含义,弄清行驶过程。
故可结合图形分析。
(1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。
解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480解这个方程,230x=390∴ x=1答:快车开出1 小时两车相遇。
(2)分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。
解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴ x=答:小时后两车相距600公里。
(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
解:设x小时后两车相距600公里,由题意得,(140-90)x+480=60050x=120∴ x=2.4答:2.4小时后两车相距600公里。
(4)分析;追及问题,画图表示为:等量关系为:快车的路程=慢车走的路程+480公里。
解:设x小时后快车追上慢车。
由题意得,140x=90x+480解这个方程,50x=480∴ x=9.6答:9.6小时后快车追上慢车。
(5)分析:追及问题,相等关系与(4)类似。
解:设快车开出x小时后追上慢车。
由题意得,140x=90(x+1)+48050x=570∴ x=11.4答:快车开出11.4小时后追上慢车。
例2:甲、乙二人同时从A地去往相距51千米的B地,甲骑车,乙步行,甲的速度比乙的速度快3倍还多1千米/时,甲到达B地后停留1小时,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好6个小时,求二人速度各是多少?分析:本题属于相遇问题,用图表示(甲用实线,乙用虚线表示)。
注意:甲在B地还停留1 小时。
A、B两地相距51千米。
等量关系为:甲走路程+乙走路程=51×2。
解:设乙速为x千米/小时,则甲速为(3x+1)千米/小时,由题意得,6x+(3x+1)(6-1)=51×2解这个方程,6x+(3x+1)×=10212x+27x+9=20439x=195∴3x+1=15+1=16答:甲速为16千米/时,乙速为5千米/时。
例3:某船从A码头顺流而下到达B码头,然后逆流返回,到达A、B两码头之间的C码头,一共航行了7小时,已知此船在静水中的速度为7.5千米时,水流速度为2.5千米/时。
A、C两码头之间的航程为10千米,求A、B两码头之间的航程。
分析:这属于行船问题,这类问题中要弄清(1)顺水速度=船在静水中的速度+水流速度,(2)逆水速度=船在静水中的速度-水流速度。
相等关系为:顺流航行的时间+逆流航行的时间=7小时。
解:设A、B两码头之间的航程为x千米,则B、C间的航程为(x-10)千米,由题意得,+=7解这个方程,+=7,3x=90∴答:A、B两码头之间的航路为30千米。
例4:环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度。
分析:这是环形问题,本题类似于追及问题,距离差为环城一周20千米。
相等关系为:最快的人骑的路程-最慢人骑的路程=20千米。
解;设最慢的人速度为x千米/时,则最快的人的速度为x千米/时,由题意得,x×-x×=20解这个方程,×x=20∴ x=10x=35答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时。
8、配套问题:[解题指导]:这类问题的关键是找对配套的两类物体的数量关系。
例5:某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?分析:这个问题的等量关系为:小齿轮个数=3倍大齿轮个数解:设应安排x个工人加工大齿轮,则有(85-x)个工人加工小齿轮,由题意得,(85-x)×10=3×8x解这个方程,850-10x=24x34x=850∴ x=2585-x=85-25=60答:应安排25个工人加工大齿轮,其余60人加工小齿轮,才能使生产的产品刚好成套。
第二阶段9、其他实际应用问题:[解题指导]这类问题的关键是理解所给问题中的实际关系例7:某商品的进价为1600元,原售价为2200元因库存积压需降价出售,若每件商品仍想获得10%的利润需几折出售。
分析:等量关系为:原价×折扣=进价×(1+10%)解:设需x折出售,由题意得,2200×=1600(1+10%)220x=1600×1.10x=8答:需8折出售。
例8:已知甲、乙两种商品的原单价和为100元。
因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少?分析:甲原单价×(1-10%)+乙原单价×(1+5%)=100×(1+2%)。
解:设甲商品原单价为x 元,则乙商品原单价为(100-x)元。
由题意得,(1-10%)x+(1+5%)(100-x)=100×(1+2%)解这个方程,0.9x+1.05(100-x)=10290x+10500-105x=1020015x=300∴100-x=80答:甲商品原单价20元,乙商品原单价为80元。
注意:实际生活中的问题是千变万化的,因此我们要想学好列方程解应用题,就要学会观察事物,关心日常生产生活中的各种问题,如市场经济问题等等,要会具体情况具体分析,灵活运用所学知识,认真审题,适当设元,寻找等量关系,从而列出方程,解出方程,使问题得解。
列方程解应用题是初一代数学习的重点和难点,受小学算术解法的影响,同学们习惯于题目中求什么就设什么,即直接设未知数,这给有些问题的解决带来了不便,下面向同学们介绍“设间接未知数”解应用题的一般思路与方法。
一、求整体时,可设其中的某部分为未知数例9一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。
分析此题若直接设原来两位数为未知数,显然不易求解,对这种求整体的问题可设其中的某部分为未知数,这样可使问题获得简便的解答。
略解设原来的两位数个位上的数字为x,则十位上的数字为11-x,由题意有:10x+ll-x=10(11-x)+x+63,解得x=9。
答:所求两位数为29。
第三阶段二、若求其中的某部分时,可设其整体为未知数例10 某三个数中每两个数之和分别为27、28、29,求这三个数。
分析这是求部分的问题,如果直接设这三个数分别x、y, z,就要列出一个三元一次方程组,但若采用间接设元法设这三个数的和为未知数,问题就变得异常简捷。
略解设这三个数的和为x,则这三个数分别为x-27、x-28、x-29,由题意有:(x-27)+(x-28)+(x-29)=x,解得x=42。
答:这三个数分别为15、14、13。
三、当题设条件中含有“比”时,通常可设其中的一份为x例11 甲、乙、丙三数的比为7:9:12,甲、乙两数的和减去丙数的差等于20求此三数。
分析因为7+9+12=28,说明三数的和为28份,甲、乙、丙分别占7份、9份、12份,这样,可设每份为x,则甲、乙、丙三数分别为7x、9x、12x,由题意得:7x+9x-12x=20,以下略。
四、设而不求,巧用间接未知数“过渡”解应用题必须对题目的条件和关系进行深入的分析,认真的思考,然后合理地选择未知数,并注意发挥未知数的桥梁“过渡”作用,才能使复杂的问题变得简单,从而促成问题的解决。
例12 有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需3.15元;若购甲4件、乙10件、丙1件共需4.20元。
问购甲、乙、丙各1件共需多少元?分析若直接设购甲、乙、丙各1件共需n元,则列方程较为繁难,而若设甲、乙、丙三种货物的单价分别为x、y、z元,则由题意有:由于本题的要求是求出x+y+z,因此我们可以不去求x、y、z的具体值(设而不求),而采用整体化的数学思想,直接求出结果:将方程组变形为,解之得x+y+z=1.05。
(注:本题有点难)五、直难则间,妙用间接未知数“转换”解决较为复杂的应用题,在直接设元布列方程感到困难时,应及时变换思考的角度,调整和转变原有的思想和方法,合理地设置间接未知数设法进行转化,以寻求新的解决问题的途径和方法。
例13 四盘苹果共100个,把第一盘的个数加上4,第二盘的个数减去4,第三盘的个数乘以4,第四盘的个数除以4,所得的数目一样,问原来四盘苹果各多少个?分析本题若从四盘苹果考虑直接设未知数,需要列出四元一次方程组,解起来不胜繁难。
如果由“所得的数目一样”这个条件逆想,则由此可推出四盘苹果的数目,因此,设间接未知数x表示这个数目,则容易得到四盘苹果原来的个数分别为x-4, x+4, , 4x, 于是很方便地列出方程:(x-4)+(x+4)+ +4x=100。
以下略。
设间接未知数解应用题,当然不限于上述几种情况,但由上足见选择适当的间接未知数在列方程解应用题中的重要作用,同学们应给以足够的重视。
专题辅导典型应用题练习1.某车间原计划每周装配36台机床,预计若干周完成任务。
在装配了三分之一以后,改进操作技术,工效提高了一倍,结果提前一周半完成任务。