MXP-488MD中文资料
- 格式:pdf
- 大小:175.27 KB
- 文档页数:7
BRIEF COMMUNICATIONRheological behaviour of ethylene glycol-titanate nanotube nanofluidsHaisheng Chen ÆYulong Ding ÆAlexei Lapkin ÆXiaolei FanReceived:11July 2008/Accepted:4February 2009/Published online:26February 2009ÓSpringer Science+Business Media B.V.2009Abstract Experimental work has been performed on the rheological behaviour of ethylene glycol based nanofluids containing titanate nanotubes over 20–60°C and a particle mass concentration of 0–8%.It is found that the nanofluids show shear-thinning behaviour particularly at particle concentrations in excess of *2%.Temperature imposes a very strong effect on the rheological behaviour of the nanofluids with higher temperatures giving stronger shear thinning.For a given particle concentration,there exists a certain shear rate below which the viscosity increases with increasing temperature,whereas the reverse occurs above such a shear rate.The normalised high-shear viscosity with respect to the base liquid viscosity,however,is independent of temperature.Further analyses suggest that the temperature effects are due to the shear-dependence of the relative contributions to the viscosity of the Brownian diffusion and convection.The analyses also suggest that a combination of particle aggregation and particle shape effects is the mechanism for the observed high-shear rheological behaviour,which is also supported by the thermal conductivity measure-ments and analyses.Keywords Rheological behaviour ÁEthylene glycol ÁTitanate nanotube ÁNanofluid ÁThermal conductivityNanofluids are dilute suspensions of particles with at least one dimension smaller than about 100nm (Choi 1995).Such a type of materials can be regarded as functionalized colloids with special requirements of a low-particle loading,a high-thermal performance,favourable flow/rheolgocial behaviour,and a great physical and chemical stability over a wide range of process and solution chemistry conditions.Nano-fluids have been shown to be able to enhance heat transfer (Choi 1995;Wang and Mujumdar.2007),mass transfer (Krishnamurthy et al.2006),and wetting and spreading (Wasan and Nikolov 2003),and have been a hot topic of research over the past decade (Wang and Mujumdar 2007;Keblinski et al.2005).Most published studies have focused on the heat transfer behaviour including thermal conduction (Choi 1995;Wang et al.1999;Wang and Mujumdar 2007;Keblinski et al.2005;Eastman et al.2001;He et al.2007;Ding et al.2006),phase change (boiling)heat transfer (Das et al.2003;Pak and Cho 1998),and convective heat transfer (Wang and Mujumdar 2007;Keblinski et al.2005;He et al.2007;Ding et al.2006,Chen et al.2008;Prasher et al.2006a and Yang et al.2005).Only few studies have been devoted to the rheological behaviour ofH.Chen ÁY.Ding (&)Institute of Particle Science and Engineering,University of Leeds,Leeds,UK e-mail:y.ding@pkin ÁX.FanDepartment of Chemical Engineering,University of Bath,Bath,UKJ Nanopart Res (2009)11:1513–1520DOI 10.1007/s11051-009-9599-9nanofluids(He et al.2007;Chen et al.2008;Prasher et al.2006a,b;Kwak and Kim2005;Lee et al.2006), although there is a large body of literature on suspensions rheology;see for example,Russel et al. (1991);Chow(1993);Petrie(1999),Larson(1999); Goodwin et al.(2000)l;Mohraz et al.(2004);Larson (2005);Egres and Wagner(2005);Abdulagatov and Azizov(2006).Particularly,there is little in the literature on the effect of temperature on the rheo-logical behaviour of nanofluids.Clearly,there is a gap in the current rheological literature for this type offluids.Furthermore,recent work has shown that the thermal behaviour of nanofluids correlates well with their rheological behaviour(Prasher et al.2006a, b;Chen et al.2007a;Abdulagatov and Azizov2006). In a recent study,we investigated systemically the rheological behaviour of ethylene glycol(EG)based spherical TiO2nanofluids(Chen et al.2007b).The results show that the nanofluids are Newtonian over a shear rate range of0.5–104s-1and the shear viscosity is a strong function of temperature,particle concentration and aggregation microstructure.This work is concerned about the rheological behaviour of EG based nanofluids containing titanate nanotubes (TNT).The specific objectives of the work are to investigate the effects of particle shape,particle concentration and temperature on nanofluids viscosity, and to understand the relationship between the rheo-logical behaviour and the effective thermal conductivity of nanofluids.It is for thefirst time that the rheological behaviour of a highly viscous EG based TNT nanofluids is investigated in a systematic manner.As will be seen later,the results of this work provide further evidence that the rheological measure-ments could provide information of particle structuring for predicting the effective thermal conductivity of nanofluids.The EG-TNT nanofluids used in this work were formulated by using the so-called two-step method with EG purchased from Alfa Aesar and TNT synthesized in our labs using a method described elsewhere(Bavykin et al.2004).The details of nanofluids formulation can be found elsewhere(Wen and Ding2005;He et al.2007;Chen et al.2007b). The TNT particles have a diameter(b)of*10nm and a length(L)of*100nm,giving an aspect ratio of(r=L/b)of*10.To avoid complications in interpreting the experimental results,no dispersants/ surfactants were used in the formulation.The nanofluids formulated were found stable for over 2months.The rheological behaviour of the nano-fluids was measured by using a Bolin CVO rheometer (Malvern Instruments,UK)over a shear rate range of 0.03–3,000s-1,a nanoparticle mass concentration of w=0–8%,and a temperature range of20–60°C (293–333K).The nanofluids were characterised for their size by using a Malvern Nanosizer(Malvern Instruments,UK)and a scanning electron microscope (SEM).The average effective particle diameter was found to be*260nm for all nanofluids formulated. This size is much larger than the equivalent diameter of the primary nanoparticles due to aggregation;see later for more discussion.Note that the particle size characterisation was performed both before and after the rheological measurements and no detectable changes to particle size were found.Figure1shows the viscosity of pure EG and EG-TNT nanofluids as a function of shear rate at 40°C.The results at other temperatures are similar.It can be seen that the EG-TNT nanofluids exhibit highly shear-thinning behaviour particularly when the TNT concentration exceeds*2%.Such behaviour is different from the observed Newtonian behaviour of EG-TiO2nanofluids containing spherical nanoparti-cles over similar shear rate range(Chen et al.2007b) where the base liquid,EG,is the same as that used in the current wok.The behaviour is similar to the observations of carbon nanotube nanofluids(Ding et al.2006)and CuO nanorod nanofluids(Kwak and Kim2005),although there are important differencesbetween them such as temperature dependence as will be discussed later.The shear-thinning behaviour of well-dispersed suspensions can be interpreted by the structuring of interacting particles(Doi and Edwards1978a,b and Larson1999).In a quiescent state,a rod-like particle has three types of motion due to Brownian diffusion: rotational(end-over-end)motion around the mid-point and translational motion in parallel or perpendicular to the long axis.For dilute suspensions with a number density,c,ranging between0and1/L3or volume fraction,u,ranging between0and1/r2),the average spacing between the particles is larger than the longest dimension of the rod,and zero shear viscosity can be approximated by gð0Þ%g0ð1þAÁcL3Þwith g0the base liquid viscosity and A,a numerical constant(Doi and Edwards1978a).For suspensions with 1/L3\c\1/bL2or1/r2\f/\1/r,the rod-like particles start to interact.The rotational motion is severely restricted,as well as the translational motion perpendicular to the long axis,and the zero shear viscosity can be estimated by gð0Þ%g0ð1þðBcL3Þ3Þ; with B a numerical constant(Doi and Edwards1978b). As a consequence,the zero shear viscosity can be much greater than the base liquid viscosity.The large viscosity is due to the rod-like shape effect and the viscosity is very sensitive to shear,which tends to align particles and hence the shear-thinning behaviour as shown in Fig.1.Note that the above mechanism can give a qualitative explanation for the experimental observations at low-shear rates and the shear-thinning behaviour as shown in Fig.1,it does not explain the high-shear viscosity of the nanofluids,which will be discussed later.It should also be noted that the criteria for classifying nanofluids given above need to be modified due to the presence of aggregates;see later for more discussion.Figure2shows the shear viscosity of4.0%EG-TNT nanofluids as a function of shear rate at different temperatures.The results under other concentrations are similar.It can be seen that the temperature has a very strong effect on the rheological behaviour of nanofluids with higher temperatures giving stronger shear thinning.For shear rates below*10s-1,the shear viscosity increases with increasing temperature, whereas the trend is reversed when the shear rate is above*10s-1.As mentioned above,this behaviour was not observed for carbon nanotube(Ding et al. 2006)and CuO nanorod(Kwak and Kim2005)nanofluids and we have not seen reports on such behaviour for nanofluids in the literature;see later for more discussion on the underlying mechanisms. Figure2also shows that the strongest shear thinning occurs at40–60°C,whereas very weak-shear thinning takes places at20–30°C.It is also noted that the shear viscosity of nanofluids at all temperatures investigated approaches a constant at high-shear rates.If the high-shear viscosity is plotted against temperature,Fig.3is obtained where the shear rate corresponding to the high-shear viscosity is taken as *2,000s-1.An inspection of all the data indicates that theyfit the following equation very well:ln g¼AþBÂ1000=TþCðÞð1Þwhere g is the shear viscosity(mPaÁs),T is the absolute temperature(K),and A,B and C areconstants given in Table1.Equation(1)takes a similar format as that widely used for liquid viscosity (Bird et al.2002)and for EG based nanofluids containing spherical particles(Chen et al.2007b).If the measured high-shear viscosity is normalized with respect to the shear viscosity of the base liquid, the relative increaseðg i¼ðgÀg0Þ=g0Þof the high-shear viscosity is found to be only a function of concentration but independent of temperature over the temperature range investigated in this work.The relative increments in the shear viscosities of nano-fluids containing0.5%,1.0%,2.0%,4.0%and8.0% particles are 3.30%,7.00%,16.22%,26.34%and 70.96%,respectively.Similar temperature indepen-dence of the shear viscosity was also observed for EG-TiO2and water-TiO2nanofluids containing spherical nanoparticles(Chen et al.2007b).The experimentally observed temperature depen-dence can be interpreted as follows.Given the base liquid and nanoparticles,the functional dependence of viscosity on shear rate is determined by the relative importance of the Brownian diffusion and convection effects.At temperatures below*30°C,the contribu-tion from the Brownian diffusion is weak due to high-base liquid viscosity.As a consequence,the shear dependence of the suspension is weak(Fig.2).The contribution from the Brownian diffusion becomes increasingly important with increasing temperature particularly above40°C due to the exponential dependence of the base liquid viscosity on temperature (Fig.3).At very high-shear rates,the Brownian diffusion plays a negligible role in comparison with the convective contribution and hence independent of the high-shear viscosity on the temperature.We now start to examine if the classical theories for the high-shear viscosity predict the experimental measurements(note that there is a lack of adequate theories for predicting the low shear viscosity).Figure4shows the shear viscosity increment as a function of nanoparticle volume concentration together with the predictions by the following Brenner &Condiff Equation for dilute suspensions containing large aspect ratio rod-like particles(Brenner and Condiff1974):g¼g01þg½ uþO u2ÀÁÀÁð2Þwhere the intrinsic viscosity,½g ;for high-shear rates has the following form(Goodwin and Hughes2000):½g ¼0:312rln2rÀ1:5þ2À0:5ln2rÀ1:5À1:872rð3ÞAlso included in Fig.4are the data for EG-TiO2 nanofluids with spherical nanoparticles(Chen et al. 2007b)and predictions by the Einstein Equation (Einstein1906,1911)for dilute non-interacting suspensions of spherical particles,g¼g01þ2:5uðÞ: It can be seen that both the Einstein and Brenner& Condiff equations greatly underpredict the measured data for the EG-TNT nanofluids.The high-shear viscosity of EG-TNT nanofluids is much higher than that of the EG-TiO2nanofluids containing spherical nanoparticles,indicating a strong particle shape effect on the shear viscosity of nanofluids.Although the shear-thinning behaviour of the nanofluids could be partially attributed to the structuring of interacting rod-like particles,the large deviation between the measured high-shear viscosity and the predicted ones by the Brenner&Condiff equation cannot fully be interpreted.In the following,an attempt is made to explain the experimental observations from the viewpoint of aggregation of nanaoparticles,which have been shown to play a key role in thermal behaviour of nanofluids in recent studies(Wang et al. 2003;Xuan et al.2003;Nan et al.1997;Prasher et al. 2006a,b;Keblinski et al.2005).Such an approach is also supported by the SEM and dynamic lightTable1Empirical constants for Eq.(1)a Maximum discrepancies;b Minimum discrepancies Concentration(wt%)A B C MaxD a(%)MinD b(%)0.0-3.21140.86973-154.570.62-1.440.5-3.42790.94425-148.490.93-0.471.0-2.94780.81435-159.14 1.11-0.692.0-2.2930.65293-174.57 1.64-0.694.0-2.63750.7574-165.820.99-0.948.0-2.73140.93156-145.010.88-1.57scattering analyses,which,as mentioned before, show clear evidence of particle aggregation.According to the modified Krieger-Dougherty equation(Goodwin and Hughes2000;Wang et al. 2003;Xuan et al.2003;Nan et al.1997),the relative viscosity of nanofluids,g r,is given as:g r¼1Àu a=u mðÞÀ½g u mð4Þwhere u m is the maximum concentration at which the flow can occur and u a is the effective volume fraction of aggregates given by u a¼u=u ma with u ma the maximum packing fraction of aggregates.As aggre-gates do not have constant packing throughout the structure,the packing density is assumed to change with radial position according to the power law with a constant index(D).As a result,u a is given as u a¼uða a=aÞ3ÀD;with a a and a,the effective radii of aggregates and primary nanoparticles,respectively. The term D is also referred as the fractal index meaning the extent of changes in the packing fraction from the centre to the edge of the aggregates.Typical values of D are given in normal textbook as D= 1.8–2.5for diffusion limited aggregation(DLA)and D=2.0–2.2for reaction limited aggregation(RLA); see for example Goodwin and Hughes(2000).For nanofluids containing spherical nanoparticles,the value of D has been shown experimentally and numerically to be between1.6and1.8(Wang et al. 2003,Xuan et al.2003)and between1.8and2.3, respectively(Waite et al.2001).A typical value of 1.8is suggested for nanofluids made of spherical nanoparticles(Prasher et al.2006a,b).However,little research has been found on the fractal index for nanofluids containing rod-like nanoparticles.The colloid science literature suggests a fractal index of 1.5–2.45for colloidal suspensions depending on the type of aggregation,chemistry environment,particle size and shape and shearflow conditions(Haas et al. 1993;Mohraz et al.2004;Hobbie and Fry2006; Micali et al.2006;Lin et al.2007).In a recent study, Mohraz et al.(2004)investigated the effect of monomer geometry on the fractal structure of colloi-dal rod aggregates.They found that the fractal index is a non-linear function of the monomer aspect ratio with the D increasing from*1.80to*2.3when the aspect ratio of the rod-like nanoparticles increases from1.0to30.6.Based on the above,a value of D=2.1is taken for nanofluids used in this work (Mohraz et al.2004,Lin et al.2007).Although the fractal model may appear to simplify the complexity of microstructures in aggregating systems containing rod-like particles,excellent agreement between the model prediction and experimental measurements exists when a a/a=9.46;see Fig.4.Here the aggregates are assumed to formflow units of an ellipsoidal shape with an effective aspect ratio of r a¼L a=b a;where L a and b a are the effective length and diameter,respectively.In the calculation,a typical value of u m of0.3is taken(Barnes et al.1989),and the intrinsic viscosity[g]is calculated by Eq.(3).It is to be noted that the aggregate size thatfits well to the rheological data(Fig.4)is consistent with the particle size analyses using both the SEM and the Malvern Nanosizer.A comparison between the EG-TNT data (a a/a=9.46,D=2.1,u m=0.30)and the EG-TiO2 data(a a/a=3.34,D=1.8,u m=0.605)(Chen et al. 2007b)in Fig.4suggests that the larger aggregate size in TNT nanofluids be an important factor responsible for the stronger shear-thinning behaviour and higher shear viscosity of TNT nanofluids.An inspection of Eq.(4)indicates that the effec-tive volume fraction u a u a¼u a a=aðÞ3ÀDis much higher than the actual volume fraction(u).This leads to the experimentally observed high-shear viscosity even for very dilute nanofluids,according to the classification discussed before.As a consequence,the demarcations defining the dilute and semi-concen-trated dispersions should be changed by using the effective volume fraction.The model discussed above can also provide a macroscopic explanation for the temperature indepen-dence of the high-shear viscosity.From Eq.(4),one can see that the relative high-shear viscosity depends on three parameters,the maximum volume fraction, u m,the effective volume fraction,u a and the intrinsic viscosity,[g].For a given nanofluid at a temperature not far from the ambient temperature,the three parameters are independent of temperature and hence the little temperature dependence of the relative shear viscosity.Microscopically,as explained before,the temperature-independent behaviour is due to negligi-ble Brownian diffusion compared with convection in high-shearflows.To further illustrate if the proposed aggregation mechanism is adequate,it is used to predict the effective thermal conductivity of the nanofluids by using the following conventional Hamilton–Crosser model(H–C model)(Hamilton and Crosser1962):k=k0¼k pþðnÀ1Þk0ÀðnÀ1Þuðk0Àk pÞk pþðnÀ1Þk0þuðk0Àk pÞð5Þwhere k and k0are,respectively,the thermal conductivities of nanofluids and base liquid,n is the shape factor given by n=3/w with w the surface area based sphericity.For TNT used in this work,the sphericity w is estimated as0.6(Hamilton and Crosser1962).For suspensions of aggregates,the above equation takes the following form:k=k0¼k aþðnÀ1Þk0ÀðnÀ1Þu aðk0Àk aÞa0a0að6Þwhere k a is the thermal conductivity of aggregates.To calculate k a,Eq.(6)is combined with the following Nan’s model(Nan et al.2003)for randomly dispersed nanotube-based composites:k a=k0¼3þu in½2b xð1ÀL xÞþb zð1ÀL zÞ3Àu in½2b x L xþb z L zð7Þwhere/in is the solid volume fraction of aggregates, b x¼ðk xÀk0Þ=½k mþL xðk tÀk mÞ and b z¼ðk zÀk0Þ=½k mþL zðk tÀk mÞ with k x,k m and k t being the thermal conductivities of nanotubes along trans-verse and longitudinal directions and isotropic thermal conductivity of the nanotube,respectively. In this work,k x,k m and k t are taken the same value as k p for afirst order of approximation due to lack of experimental data,and L x and L z are geometrical factors dependent on the nanotube aspect ratio given by L x¼0:5r2=ðr2À1ÞÀ0:5r coshÀ1r=ðr2À1Þ3=2 and L z¼1À2L x:Figure5shows the experimental results together with predictions by the original H–C model(Eq.5) and revised H–C model(Eq.6).Here the experiment data were obtained using a KD2thermal property meter(Labcell,UK)(Murshed et al.2005;Chen et al. 2008).One can see that the measured thermal conductivity is much higher than the prediction by the conventional H–C model(Eq.5),whereas the modified H–C model taking into account the effect of aggregation(Eq.6)agrees very well with the exper-imental data.The above results suggest that nanoparticle aggregates play a key role in the enhancement of thermal conductivity of nanofluids. The results also suggest that one could use the rheology data,which contain information of particle structuring in suspensions,for the effective thermal conductivity prediction.In summary,we have shown that EG-TNT nano-fluids are non-Newtonian exhibiting shear-thinning behaviour over20–60°C and a particle mass concen-tration range of0–8%,in contrast to the Newtonian behaviour for EG-TiO2nanofluids containing spher-ical particles.The non-Newtonian shear-thinning behaviour becomes stronger at higher temperatures or higher concentrations.For a given particle concen-tration,there exists a certain shear rate(e.g.*10s-1 for4wt%)below which the viscosity increases with increasing temperature,whereas the reverse occurs above such a shear rate.The normalised high-shearviscosity with respect to the base liquid viscosity, however,is found to be independent of temperature. These observations have not been reported in the literature for nanofluids.Further analyses suggest that the temperature effects are due to the shear-depen-dence of the relative contributions to the viscosity of the Brownian diffusion and convection.The analyses also suggest that a combination of particle aggregation and particle shape effects is the mechanism for the observed high-shear rheological behaviour,which is supported not only by the particle size measurements but also by the thermal conductivity measurements and analyses using a combination of the H–C and Nan’s models.The results of this work also indicate that one could use the information of aggregation from the rheological experiments for predicting the effec-tive thermal conductivity of nanofluids. Acknowledgement The work was partially supported by UK EPSRC under grants EP/E00041X/1and EP/F015380/1.ReferencesAbdulagatov MI,Azizov ND(2006)Experimental study of the effect of temperature,pressure and concentration on the viscosity of aqueous NaBr solutions.J Solut Chem 35(5):705–738.doi:10.1007/s10953-006-9020-6Barnes HA,Hutton JF,Walters K(1989)An introduction to rheology.Elsevier Science B.V.,NetherlandsBavykin DV,Parmon VN,Lapkin AA,Walsh FC(2004)The effect of hydrothermal conditions on the mesoporous struc-ture of TiO2nanotubes.J Mater Chem14(22):3370–3377 Bird RB,Steward WE and Lightfoot EN(2002)Transport Phenomena,2nd edn.Wiley,New YorkBrenner H,Condiff DW(1974)Transport mechanics in sys-tems of orientable particles,Part IV.Convective Transprort.J Colloid Inter Sci47(1):199–264Chen HS,Ding YL,He YR,Tan CQ(2007a)Rheological behaviour of ethylene glycol based titania nanofluids.Chem Phys Lett444(4–6):333–337Chen HS,Ding YL,Tan CQ(2007b)Rheological behaviour of nanofluids.New J Phys9(367):1–25Chen HS,Yang W,He YR,Ding YL,Zhang LL,Tan CQ,Lapkin AA,Bavykin DV(2008)Heat transfer andflow behaviour of aqueous suspensions of titanate nanotubes under the laminar flow conditions.Powder Technol183:63–72Choi SUS(1995)Enhancing thermal conductivity offluids with nanoparticles In:Siginer DA,Wang HP(eds) Developments applications of non-newtonianflows,FED-vol231/MD-vol66.ASME,New York,pp99–105 Chow TS(1993)Viscosities of concentrated dispersions.Phys Rev E48:1977–1983Das SK,Putra N,Roetzel W(2003)Pool boiling characteristics of nano-fluids.Int J Heat Mass Transfer46:851–862Ding YL,Alias H,Wen DS,Williams RA(2006)Heat transfer of aqueous suspensions of carbon nanotubes(CNT nanofluids).Int J Heat Mass Transf49(1–2):240–250 Doi M,Edwards SF(1978a)Dynamics of rod-like macro-molecules in concentrated solution,Part1.J Colloid Sci 74:560–570Doi M,Edwards SF(1978b)Dynamics of rod-like macro-molecules in concentrated solution,Part2.J Colloid Sci 74:918–932Eastman JA,Choi SUS,Li S,Yu W,Thompson LJ(2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles.Appl Phys Lett78:718–720Egres RG,Wagner NJ(2005)The rheology and microstructure of acicular precipitated calcium carbonate colloidal sus-pensions through the shear thickening transition.J Rheol 49:719–746Einstein A(1906)Eine neue Bestimmung der Molekul-dimension(a new determination of the molecular dimensions).Annal der Phys19(2):289–306Einstein A(1911)Berichtigung zu meiner Arbeit:Eine neue Bestimmung der Molekul-dimension(correction of my work:a new determination of the molecular dimensions).Ann der Phys34(3):591–592Goodwin JW,Hughes RW(2000)Rheology for chemists—an introduction.The Royal Society of Chemistry,UK Haas W,Zrinyi M,Kilian HG,Heise B(1993)Structural analysis of anisometric colloidal iron(III)-hydroxide par-ticles and particle-aggregates incorporated in poly(vinyl-acetate)networks.Colloid Polym Sci271:1024–1034 Hamilton RL,Crosser OK(1962)Thermal Conductivity of heterogeneous two-component systems.I&EC Fundam 125(3):187–191He YR,Jin Y,Chen HS,Ding YL,Cang DQ(2007)Heat transfer andflow behaviour of aqueous suspensions of TiO2nanoparticles(nanofluids)flowing upward through a vertical pipe.Int J Heat Mass Transf50(11–12):2272–2281Hobbie EK,Fry DJ(2006)Nonequilibrium phase diagram of sticky nanotube suspensions.Phys Rev Lett97:036101 Keblinski P,Eastman JA and Cahill DG(2005)Nanofluids for thermal transport,Mater Today,June Issue,36–44 Krishnamurthy S,Lhattacharya P,Phelan PE,Prasher RS (2006)Enhanced mass transport of in nanofluids.Nano Lett6(3):419–423Kwak K,Kim C(2005)Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol.Korea-Aust Rheol J17(2):35–40Larson RG(1999)The structure and rheology of complex fluids.Oxford University Press,New YorkLarson RG(2005)The rheology of dilute solutions offlexible polymers:progress and problems.J Rheol49:1–70Lee D,Kim J,Kim B(2006)A new parameter to control heat transport in nanofluids:surface charge state of the particle in suspension.J Phys Chem B110:4323–4328Lin JM,Lin TL,Jeng U,Zhong Y,Yeh C,Chen T(2007) Fractal aggregates of fractal aggregates of the Pt nano-particles synthesized by the polyol process and poly(N-vinyl-2-pyrrolidone)reduction.J Appl Crystallogr40: s540–s543Micali N,Villari V,Castriciano MA,Romeo A,Scolaro LM (2006)From fractal to nanorod porphyrin J-aggregates.Concentration-induced tuning of the aggregate size.J Phys Chem B110:8289–8295Mohraz A,Moler DB,Ziff RM,Solomon MJ(2004)Effect of monomer geometry on the fractal structure of colloidal rod aggregates.Phys Rev Lett92:155503Murshed SMS,Leong KC,Yang C(2005)Enhanced thermal conductivity of TiO2-water based nanofluids.Int J Therm Sci44:367–373Nan CW,Birringer R,Clarke DR,Gleiter H(1997)Effective thermal conductivity of particulate composites with inter-facial thermal resistance.J Appl Phys81(10):6692–6699 Nan CW,Shi Z,Lin Y(2003)A simple model for thermal conductivity of carbon nanotube-based composites.Chem Phys Lett375(5–6):666–669Pak BC,Cho YI(1998)Hydrodynamic and heat transfer study of dispersedfluids with submicron metallic oxide parti-cles.Exp Heat Transf11:150–170Prasher R,Song D,Wang J(2006a)Measurements of nanofluid viscosity and its implications for thermal applications.Appl Phys Lett89:133108-1-3Prasher R,Phelan PE,Bhattacharya P(2006b)Effect of aggregation kinetics on thermal conductivity of nanoscale colloidal solutions(nanofluids).Nano Lett6(7):1529–1534Russel WB,Saville DA,Scholwater WR(1991)Colloidal dispersions.Cambridge University Press,Cambridge Waite TD,Cleaver JK,Beattie JK(2001)Aggregation kinetics and fractal structure of gamma-alumina assemblages.J Colloid Interface Sci241:333–339Wang XQ,Mujumdar AS(2007)Heat transfer characteristics of nanofluids:a review.Int J Therm Sci46:1–19Wang XW,Xu XF,Choi SUS(1999)Thermal conductivity of nanoparticle–fluid mixture.J Thermphys Heat Transf 13:474Wang BX,Zhou LP,Peng XF(2003)A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles.Int J Heat Mass Transf 46:2665–2672Wasan DT,Nikolov AD(2003)Spreading of nanofluids on solids.Nature423(6936):156–159Wen DS,Ding YL(2005)Formulation of nanofluids for natural convective heat transfer applications.Int J Heat Fluid Flow26:855–864Xuan YM,Li Q,Hu J,WF(2003)Aggregation structure and thermal conductivity of nanofluids.AIChE J49(4):1038–1043Yang Y,Zhong ZG,Grulke EA,Anderson WB,Wu G(2005) Heat transfer properties of nanoparticle-in-fluid dispersion (nanofluids)in laminarflow.Int J Heat Mass Transf 48:1107–1116。
Series MXFø8, ø12, ø16, ø2020161281020305075100MXF20MXF16MXF12MXF8MXF8MXF12MXF16MXF2016 x 5818.5 x 6821 x 8027 x 92Low Profile Slide TableLow-profile and compact type, air slide table with the construction of guide and cylinder aligned in parallel.Low-profile and compactness have been achieved with the construction of guide and cylinder aligned in parallel.Model Height x Width (mm)Height comparison to MXS Stronger thread for mounting workHigh rigidityOptional portingReproducibility for mounting and dismountingAuto switch is mountableSlim bodyStandard stroke adjustmentReproducibility for mounting and dismountingNeat appearanceStroke can be adjusted at each stroke end within 5 mm each end and 10 mm is total.Insert thread for mounting work.Cross roller guide allows smooth operation without vibration.Lateral and axial piping from 2 directions is possible.Pin holes for positioning on bottom of slide allows precise and accurate mounting of actuator.Body mounting (Body tapped)Auto switch is recessed in the groove to save space.Low-profile has been achieved with the construction of guide and cylinder aligned in parallel.Body mounting (Body tapped)Protecting stopper section with cover realizes neat appearance.Positioning pin holes on table top allows precise and easy mounting to change workpiece.2. Body through-hole1. Body tappedMounting can be done from 2 directions top side (through-hole) and bottom side (body tapped).Bore size (mm)Auto switchStroke (mm)Series VariationsModelReed auto switch D-A9 , D-A9 V Solid state auto switch D-M9 , D-M9 V 2-color indicationsolid state auto switch D-M9 W, D-M9 WV133MXH MXU MXS MXQ MXF MXW MXJ MXP MXY MTSIndividual -XD- -XC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o m3-13-23-33-4123L 2+A 5L 3L 1Series MXFModel SelectionModel Selection StepFormula/Data Selection ExampleOperating ConditionsKinetic EnergyLoad FactorLoad factor of load massLoad factor of the static momentLoad factor of dynamic momentSum of the load factorsFind the kinetic energy E (J) of the load.Find the allowable kinetic energy Ea (J).Confirm that the kinetic energy of the load does not exceed the allowable kinetic energy.Use is possible if the sum of the load factors does not exceed 1.Enumerate the operating conditions considering the mounting position and workpiece configuration.• Model to be used • Type of cushion• Workpiece mounting position • Mounting orientation • Average speed Va (mm/s)• Load mass W (kg): Fig. (1)• Overhang Ln (mm): Fig. (2)E = -· W (-)2Collision speed V = 1.4 ·Va Ea = K·EmaxWorkpiece mounting coefficient K: Fig. (3)Max. allowable kinetic energy Emax: Table (1)Kinetic energy (E) Allowable kinetic energy (Ea)—∗12V1000∗) Correction factor (Reference values)Cylinder: MXF20-50Cushion: Rubber bumper Workpiece table mounting Mounting: Horizontal wall mounting Average speed: Va = 300 [mm/s]Allowable load: W = 0.5 [kg]L 1 = 10 mm L 2 = 30 mm L 3 = 30 mmRollingYawingPitchingYawing134C o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mSymbolAn (n = 1 to 6)E Ea EmaxLn (n = 1 to 3)M (Mp, My, Mr)Ma (Map, May, Mar)Me (Mep, Mey)Mea (Meap, Meay)Mmax (Mpmax, Mymax, Mrmax)VUnit mm J J J mm N·m N·m N·m N·m N·m mm/sSymbol Va W Wa We WmaxUnit mm/s kg kg kg kg ——————————MXF8MXF12MXF16MXF20100.56——————200.781.65————300.982.223.416.6650——3.345.699.1475————7.9613.70100——————18.271.00.70.50.40.30.2501002003005007001.00.70.50.40.30.250100200300500700MXF8MXF12MXF16MXF20MXF8MXF12MXF16MXF200.61 2 4WWWWK = 1K = 0.6MepWWMpWMpL 1A 1L 1A 2L 3A 2WMrWMrL 3A 5L 3A 6L 2A 3L 2A 4WMyWMyMeyL 2A 4MXF8MXF12MXF16MXF20A 16101011A 210111217A 36101011A 421232834A 521232834A 610111217SymbolTable (4) Maximum Allowable Moment: Mmax (N·m)Fig. (1) Load mass: W (kg)Fig. (2) Overhang: Ln (mm), Correction Values for Moment Center Distance: An (mm)Table (1) Maximum Allowable KineticEnergy: Emax (J)Table (2) Maximum AllowableLoad mass: Wmax (kg)Fig. (3) Workpiece MountingCoefficient: KTable (3) Moment Center Position DistanceCompensation Amount: An (mm)Pitch momentY aw momentRoll momentD y n a m i c m o m e n tS t a t i c m o m e n tNote) Static moment: Moment generated by gravityDynamic moment:Moment generated by impact whencolliding with stopperNote) No need to consider this load factor inthe case of using perpendicularly in a vertical position.T able mountingEnd plate mountingModelAllowable kinetic energyRubber bumper0.0270.0550.110.16ModelMaximum allowable load massNote) 16 mm for MXF8-10 only.ModelMoment center position distance compensation amount (Refer to Fig. (2).)Note)Note)Average speed Va (mm/s)Note) Use the average speed when calculating static moment.Use the collision speed when calculating dynamic moment.Average speed Va (mm/s)Collision speed V (mm/s)DefinitionCorrection values of moment center position distance Kinetic energyAllowable kinetic energyMax. allowable kinetic energy OverhangStatic moment (pitch, yaw, roll)Allowable static moment (pitch, yaw, roll)Dynamic moment (pitch, yaw)Allowable dynamic moment (pitch, yaw)Maximum allowable moment (pitch, yaw, roll)Collision speedDefinitionAverage speed Load massAllowable load mass Mass equivalent to impact Max. allowable load mass Load factorA llowable load mass coefficient Allowable moment coefficient Damper coeficientWorkpiece mounting coefficient ModelStroke (mm)135Low Profile Slide Table SeriesMXFMXHMXU MXS MXQ MXF MXW MXJ MXPMXY MTSIndividual -XD- -XC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o m10, 20, 3020, 30, 5030, 50, 7530, 50, 75, 100ø8ø12ø16ø20Nil S nMXF 1250M9BWø8ø12ø16ø208121620MXF A 16X11Nil X11X125 mm 15 mm 25 mm27∗ Lead wire length symbols: 0.5 m ·················Nil (Example) M9NW 1 m ·················M (Example) M9NWM 3 m ·················L (Example) M9NWL 5 m ·················Z (Example) M9NWZA96V A93V A90VM9NV M9PV M9BV M9NWV M9PWV M9BWV A96A93A90M9N M9P M9B M9NW M9PW M9BW 3-wire (NPN equivalent)—24 V24 V 2-wireN o3-wire (NPN)3-wire (PNP)2-wire 3-wire (NPN)3-wire (PNP)2-wire DC ACPerpendicularIn-line0.5(Nil)5(Z)—100 V 100 V or less ———————1(M)—————Diagnostic indication (2-color indication)5 V 12 V5 V,12 V12 V 5 V,12 V 12 V3(L)How to OrderMade to OrderRefer to page 137 for details.2 pcs. 1 pc. “n” pcs.Number of auto switches∗ For the applicable auto switch model, refer to the table below.Auto switchNilWithout auto switch (Built-in magnet)Bore size/Stroke (mm)How to Order Stroke Adjusting Bolt (Accessory)Applicable bore sizeAdjustment rangeStandard Option∗ -X12 (adjustable range 25 mm) is not available in Series MXF8/MXF12.Applicable Auto Switch /Refer to pages 1719 to 1827 for the detailed specifications of auto switches.Special functionT ype Electrical entry Wiring (Output)Load voltage Auto switch model Lead wire length (m)Applicable load Pre-wiredconnectorI n d i c a t o r l i g h tIC circuit ICcircuit ICcircuit IC circuit Relay,PLC Relay,PLC————Y e sY e s GrommetGrommetR e e d s w i t c hS o l i d s t a t e s w i t c h∗ Solid state auto switches marked with “ ” are produced upon receipt of order.∗ Since there are other applicable auto switches than listed, refer to page 145 for details.∗ For details about auto switches with pre-wired connector, refer to pages 1784 and 1785.∗ Auto switches are shipped together (not assembled).136Low Profile Slide TableSeries MXFLow Profile Slide TableC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mSymbolMXF 8MXF 120.060.040.02102030400.08MXF8-30MXF8-20MXF8-10102030MXF8-10MXF8-20MXF8-300.030.020.01102030400.04MXF8-20MXF8-30MXF8-100.030.020.010000.060.040.02204060MXF12-30MXF12-20MXF12-500.080.10204060MXF12-30MXF12-50MXF12-2020406080MXF12-30MXF12-20MXF12-500.080.060.040.020.060.040.02000Lr = 20 mmLr = 30 mmFAALrTable Deflection (Reference Values)Table displacement due to pitch moment loadTable displacement due to yaw moment loadTable displacement due to roll moment loadT able displacement when loads are applied to the section marked with the arrow at the full stroke.T able displacement when loads are applied to the section marked with the arrow at the full stroke.T able displacement of section A when loads are applied to the section F with the slide table retracted.Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )138Series MXFC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mMXF 16MXF 200.080.160.040.120.2020406080100MXF16-50MXF16-30MXF16-751206004080100MXF16-75MXF16-50MXF16-3020406080100MXF16-75MXF16-50MXF16-300.010.030.050.060.020.040.070.010.030.050.060.020.040.07000.160.240.08MXF20-100MXF20- 75MXF20- 50MXF20- 300.120.200.28MXF20-100MXF20-75MXF20-50MXF20-30MXF20-100MXF20- 30MXF20- 50MXF20- 750.100.080.040.020.060.040.020.0650100150408012024020016020050100150200000Lr = 40 mmLr = 50 mmFAALr200.04Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Load (N)T a b l e d i s p l a c e m e n t a m o u n t (m m )Table displacement due to pitch moment loadTable displacement due to yaw moment loadTable displacement due to roll moment loadTable displacement when loads are applied to the section marked with the arrow at the full stroke.Table displacement when loads are applied to the section marked with the arrow at the full stroke.Table displacement of section A when loads are applied to the section F with the slide table retracted.The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable mass. Refer to the Model Selection for the loadable mass.139Low Profile Slide Table SeriesMXFMXHMXU MXSMXQ MXF MXW MXJ MXPMXYMTSIndividual -XD- -XC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mMXF8-PS MXF12-PS MXF16-PS MXF20-PS8121620MXF-A827MXF-A827-X11MXF-A1227MXF-A1227-X11MXF-A1627MXF-A1627-X11MXF-A1627-X12MXF-A2027MXF-A2027-X11MXF-A2027-X125155155152551525172723.533.526.536.546.53040506781222.534M4 x 0.7M5 x 0.8M6 x 1M8 x 1MXF8MXF12MXF16MXF20ABCMAMCB w!9!8i!5u !7q!0!6t!3!4!2rey o!1No.123456Description Material Note Component PartsDescription Material NoteNo.16171819Component Parts789101112131415Body Table End plate Rail Guide RodPiston assembly Seal support Head capFloating bushing OrificeRoller stopper Cylindrical roller Roller spacer Rod bumperAluminum alloy Aluminum alloy Aluminum alloy Carbon tool steel Carbon tool steel Stainless steel—Brass Resin Stainless steelBrass Stainless steel High carbon chrome bearing steelResin PolyurethaneHard anodized Hard anodized Hard anodized Heat treated Heat treated With magnet Electroless nickel plated Electroless nickel plated Adjust bumper Piston seal Rod seal O-ring PolyurethaneNBR NBR NBRReplacement Parts: Seal KitBore size (mm)Kit no.Set of nos. above !7 to !9∗ Seal kit includes !7, !8, !9. Order the seal kit, based on each bore size.ContentsReplacement Part: Grease PackApplied part GuideCylinderGrease pack part no.GR-S-005 (5 g) GR-S-010 (10 g)GR-S-020 (20 g)GR-S-050 (50 g)GR-L-005 (5 g) GR-L-010 (10 g)GR-L-020 (20 g)GR-L-050 (50 g)Applicable sizeModel Stroke adjustable range (mm)140Series MXFConstructionDimensions: Stroke Adjusting BoltC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o m14618211358F (Equal pitch)A4N x M3 x 0.5 thread depth 6.5(Insert)3H 9 d e p t h 3+0.02503H 9 d e p t h 3+0.0250486A´GH192 x M3 x 0.5 thread depth 6159.54.584.74 x ø6.54.74 x ø3.24 x M4 x 0.70.315M(T able length)8164.5Max. 9J Z ZZ2.4821HG 4ModelMXF8-10MXF8-20MXF8-30F202626G13.514.514.5H222640J212641M495469Z49.554.569.5ZZ586378N446Operating port 2 x M3 x 0.510.5353120.5Note) If long bolts are used, they cantouch the guide block and cause malfunction, etc.Refer to the Specific ProductPrecautions.Stroke adjuster at extension end Stroke adjuster at retraction endWidth across hexagon socket hole 2Width across flats 6ø3H9 +0.0250 depth 3N2( – 1) x F ∗Note)Blanking plug (M-3P 2 points)Possible to use asoperating port 2 x M3 x 0.5N2∗ ( – 1): The number of pitches Section AA´ø3H9 depth 3+0.0250(mm)141Dimensions: MXF8Low Profile Slide Table SeriesMXFMXH MXU MXS MXQ MXFMXWMXJ MXP MXYMTSIndividual -XD- -XC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mModelMXF12-20MXF12-30MXF12-50N446H223065I111213J364580M6575111Z6575111ZZ76861225869.85.52010254A20.5231668A´25H168.5204M(Table length)10J Z ZZ318.55.5H25230.3176.54 x M4 x 0.76.54 x ø6.54 x ø3.2I10.54524.535Stroke adjuster at extension end Stroke adjuster at retraction end Width across hexagon socket hole 2.5Width across flats 72 x M3 x 0.5 thread depth 6ø3H9 +0.0250 depth 3N 2( – 1) x 25∗N x M3 x 0.5 thread depth 5.5(Insert)Note)Blanking plug (M-5P 2 points)Possible to use asoperating port 2 x M5 x 0.83H 9 d e p t h 3+0.0250Max. 10.5Operating port 2 x M5 x 0.83H 9 d e p t h 3+0.025ø3H9depth 3+0.0250(mm)Note) If long bolts are used, they cantouch the guide block and cause malfunction, etc.Refer to the Specific ProductPrecautions.N2∗ ( – 1): The number of pitches Section AA´142Series MXFDimensions: MXF12C o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mModelMXF16-30MXF16-50MXF16-75N466G292939H255545NN446I121213J5080125M83113159Z83113159ZZ94124170243558027.520HG2312.55.511.5182597M(Table length)100.319.5J Z ZZ3HG 27.556876.76.7N N x ø8NN x M5 x 0.8N N x ø4.2IAA´12.55241.528.521Width across hexagon socket hole 3Width across flats 8Stroke adjuster at retraction end Stroke adjuster at extension end2 x M4 x 0.7 thread depth 10ø4H9 +0.0300 depth 4N 2( – 1) x 35∗NN 2( – 1) x H 4H 9d e p t h 4 +0.030 0N x M4 x 0.7 thread depth 6.5(Insert)Note)Blanking plug (M-5P 2 points)Possible to use asoperating port 2 x M5 x 0.8Operating port 2 x M5 x 0.8Max. 9ø4H9+0.030depth 44H 9d e p t h 4 +0.030 0Section AA´N2∗ ( – 1): The number of pitches(mm)Note) If long bolts are used, they cantouch the guide block and cause malfunction, etc.Refer to the Specific ProductPrecautions.143Dimensions: MXF16Low Profile Slide Table SeriesMXFMXHMXU MXS MXQMXF MXWMXJ MXP MXY MTSIndividual-XD- -XC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mModelMXF20-30MXF20-50MXF20-75MXF20-100N4466G29364059H30454560NN4466J5777125175M91113162211Z91113162211ZZ104126175224286069233.525A789HG0.525M(T able length)1227712Z ZZ3HG 33.562230122611.5135.58.58.5N N x ø8NN x M5 x 0.8N N x ø4.2J 641551.537Width across hexagon socket hole 4Width across flats 12Stroke adjuster at retraction end Stroke adjuster at extension end2 x M5 x 0.8 thread depth 12N2( – 1) x 60∗ø5H9 +0.030depth 5NN2( – 1) x H 5H 9d e p t h 5 +0.030 0Note)Blanking plug (M-5P 2 points)Possible to use asoperating port 2 x M5 x 0.8Operating port 2 x M5 x 0.8Max. 9.5Section AA´N2∗ ( – 1): The number of pitches A´Note) If long bolts are used, they cantouch the guide block and cause malfunction, etc.Refer to the Specific ProductPrecautions.ø5H9+0.030depth 55H 9d e p t h 5 +0.030 0(mm)144Series MXFDimensions: MXF20N x M5 x 0.8 thread depth 9.5(Insert)C o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mReed Auto Switch: D-A90, D-A93, D-A96, D-A90V, D-A93V, D-A96VSolid State Auto Switch: D-M9B, D-M9N, D-M9P, D-M9BW, D-M9NW, D-M9PWSolid State Auto Switch: D-M9BV, D-M9NV, D-M9PV, D-M9BWV, D-M9NWV, D-M9PWVEABMXF8MXF12MXF16MXF209.51217.219.41010———20513.1——301013.115.820.750—29.125.822.775——46.846.2100———70.710———20——3050—75——100———BE MXF8MXF12MXF16MXF2013.51621.223.41014———20917.1——301417.119.824.750—33.129.826.775——50.850.2100———74.710———20——3050—75——100———BE MXF8MXF12MXF16MXF2013.51621.223.41014———20917.1——301417.119.824.750—33.129.826.775——50.850.2100———74.7106———2019.1——3069.111.816.750—25.121.818.775——42.342.2100———66.7BE 48(5.5)3(0.5)11.1(8.6)8(5.5)11.1(8.6)13.8(11.3)18.7(16.2)27.1(24.6)23.8(21.3)20.7(18.2)44.8(42.3)44.2(41.7)68.7(66.2)–17.147.19.814.723.119.816.740.840.264.7AAA(mm)(mm)(mm)D-A9 (V)D-M9 , M9 V D-M9 W, M9 WV84.5312531664.52075Tightening Torque of Auto Switch Mounting Screw Tightening torque 0.10 to 0.200.05 to 0.15D-A9 (V)D-M9 (V)D-M9 W(V)(N ·m)Other than the models listed in “How to Order”, the following auto switches are applicable.∗ Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) and solid state auto switch D-F8 are also available.For details, refer to pages 1745 and 1746.Auto Switch Mounting Tool• When adjusting the auto switch mounting screw (included with auto switch), use a watchmaker´s screwdriver with a handle about 5 to 6 mm in diameter.Tightening TorqueStroke StrokeModel Stroke StrokeModel Stroke StrokeModel ∗ ( ): Denotes the values of D-A93.Note) Adjust the auto switch after confirming the operating conditions in the actual setting.Operating RangeApplicable bore size (mm)Auto switch modelAuto switch modelAuto Switch Mounting CautionAuto switch mounting screw (included with auto switch)Watchmaker´s screwdriverAuto switch∗ Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately ±30 dispersion). It may vary substantially depending on an ambient environment.145Low Profile Slide Table SeriesMXFAuto Switch Proper Mounting Position (Detection at Stroke End)MXH MXU MXS MXQMXF MXW MXJ MXP MXYMTSIndividual -XD--XC o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o mSeries MXFSpecific Product PrecautionsBe sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.MXF8MXF12MXF16MXF20M4 x 0.7M4 x 0.7M5 x 0.8M5 x 0.82.12.14.44.44.76.56.78.5MXF8MXF12MXF16MXF20M3 x 0.5M3 x 0.5M4 x 0.7M4 x 0.71.21.22.82.84.76.56.78.5MXF8MXF12MXF16MXF20M3 x 0.5M3 x 0.5M4 x 0.7M5 x 0.80.90.92.14.4661012MXF8MXF12MXF16MXF20M3 x 0.5M3 x 0.5M4 x 0.7M5 x 0.80.90.92.14.46.55.56.59.5LLLLMountingCautionCautionCautionPositioningSelection1.Do not scratch or dent the mounting side of the body, table or end plate. It causes play in the guide section and increases sliding resistance.2.Do not scratch or dent on the forward side of the rail or guide. It will result in looseness of the guide section and increased sliding resistance.3.Keep away from objects which are influenced by magnets.As the piston part has magnets built-in, do not allow close contact with magnetic disks, magnetic cards or magnetic tapes. Data may be erased.4.When mounting the body, use screws with appropriate length and do not exceed the maximum tightening torque.Tightening with a torque above the limit could malfunction. Whereas tightening insufficiently could result in misalignment or come to a drop.5.Be careful when adjusting stroke not to allow cylinder end plate to bottom out against cylinder body.1. The positioning hole on the table and on the bottom of the body does not have the same center. Positioning hole is meant to be for reproducibility for mounting and dismounting.1.If intermediate stop by external stopper is done, avoid ejection.If ejection occurs, it may cause damage.In the case the slide table is stopped at an intermediate position by an external stopper then forwarded to the front, return the slide table to the back for just a moment to retract the stopper, then supply pressure to the opposite port to operate slide table.2.Do not use it in such a way thatexcessive external force or impact force could work on it.This could result in damage.Mounting of BodyMounting of WorkpieceThe slide table can be mounted from 2 directions. Select the best direction according to your application.Work can be mounted on two sides of the body.1. Body Tapped2. Body Through-holeModel Bolt Maximumtightening torque (N·m)Maximum screw-indepth L (mm)Model Bolt Maximumtightening torque (N·m)Maximum screw-indepth L (mm)Model Bolt Maximumtightening torque (N·m)Maximum screw-indepth L (mm)Model Bolt Maximumtightening torque (N·m)Maximum screw-indepth L (mm)0.02 mm or less of flatness is recommended for the body mounting surface.An uneven mounting surface of a workpiece or a base may cause vibration or increase sliding resistance.Caution1. Front Mounting2. Top MountingFixing bolt for guideCautionTo prevent the workpiece holding bolts from touching the guide holding bolts, use bolts that are 0.5 mm or more shorter than the maximum screw-in depth.If the bolts are too long, they hit the end plate and may cause malfunctions.146C o u r t e s y o f C M A /F l o d y n e /H y d r a d y n e ▪ M o t i o n C o n t r o l ▪ H y d r a u l i c ▪ P n e u m a t i c ▪ E l e c t r i c a l ▪ M e c h a n i c a l ▪ (800) 426-5480 ▪ w w w .c m a f h .c o m。
MISSION-CRITICAL CONVERGED TETRA AND LTE PORTABLE DEVICEThe MXP7000 provides versatile communications. It delivers mission-critical TETRA and 4G LTE broadband voice and data communications, in a secure and rugged Android device.It’s easy to use and operate the MXP7000. The large push-to-talk button lets users connect instantly, and the field-swappable battery helps them stay connected longer. Innovative audio technology enables your personnel to hear and be heard clearly, even in noisy and windy conditions. It has a 5-inch touchscreen and the device can run applications for optimal workforce productivity.The MXP7000 is easy to deploy and manage, and it supports Bluetooth® 5.1 for data transfer. It has a GCAI-mini connector, so you can provide your teams with accessories tailored to their needs.No matter their mission, the MXP7000is a device that helps your teams getthe job done.MXP7000TETRA AND LTE PORTABLE DEVICE YOUR APPS. YOUR COMMS. YOUR TEAM. TOGETHERGENERAL SPECIFICATIONSDimensions Height: 210mm (with antenna) Height: 150mm (without antenna) Width: 80mmDepth: 29.85mm (with battery)Weight440g (with battery and antenna) Battery Options5600mAh IMPRES™ 2Housing Colour BlackGreen (selected models)Display 5.0”, 1280 x 720 Capacitive, touch-screen with Corning® Gorilla® glassSupports use with disposable and combat glovesControls Large Push-to-talk button Emergency buttonDual function rotary knob 2 configurable side buttonsMemory 4GB RAM64GB Internal Storage Supports microSDSIM Slots TETRA SIM: 2FF (Mini SIM) LTE: 4FF (Nano SIM)Camera Rear 13MP, with integrated flash Front 8MPVideo Recording Quality1080p at 60 fpsSensors Proximity Ambient Light Accelerometer Barometer GyroscopeE-CompassPorts GCAI-mini USB-CDEVICE SECURIITYUser Authentication PIN or passwordKey Storage Hardware-backed encryption with Trusted Execution Environment (TEE)Trusted Boot Process Included with the use of tamper resistant hardware OS Hardening Android OS hardening and SELinux access controlAuditing Auditing / logging functionality, with security logs captured and stored in a secured mannerData-at-Rest Using Android’s AES256 File Based Encryption Data-in-Transit Encryption with IPSec VPN supportSecured Device Management With the use of Integrated Terminal Management (iTM) solutionRestricted Recovery Mode Included to avoid unauthorised access to features AUDIOAudio Power at Rated2WAudio Distortion at Rated<1%Audio Power at Maximum3WMax loudness99PhonNoise supression Adaptive Multi-Microphone Beam-Forming Number of Microphones3 dedicated + 1 loudspeaker as microphone TETRA SERVICEAuthentication Infrastructure initiated and made mutual by radio terminal Air Interface Encryption- AlgorithmsTEA 1, TEA 2, TEA 3Protocols - Security ClassesClass 1 (Clear)Class 2 (SCK)Class 3 (DCK/CCK, OTAR-CCK, OTAR-SCK)Class 3G (GCK, OTAR-GCK)End-to-End Encryption SIM based encryption including BSIOther Security FeaturesTemporary disable (stun)Permanent disable (either ETSI standard orcustomer restorable)CONNECTIVITYBluetooth Versions Supported Bluetooth 5.1 (data transfer only)Bluetooth Profiles Generic Attribute (GATT)Attribute Protocol (ATT)Generic Access Profile (GAP)Serial Port Profile (SPP)Personal Area Networking Profile (PAN) Object Push Profile (OPP)Headset Profile (HSP)LOCATION SERVICESConstellation Supported GPS, aGPS, Galileo, GLONASS, BDS (BeiDou) GNSS Antenna Internal antennaGNSS Tracking Sensitivity GPS:-158dBm (50% Fix losses) -162dBm (typical)Horizontal Accuracy, 2D <5m (95% probable, -130dBm) TTFF Cold Start<60 sec (95% probable at -130dBm) ProtocolsETSI LIP (short and long), Motorola Solutions LRRP KEY FEATURES & SETTINGSTalkgroup Management User friendly, flexible, fast and efficient interface TalkgroupsTMO folders: up to 256, TMO talkgroups: up to 10000DMO folders: up to 128, DMO talkgroups: up to 2000 Favourite Talkgroup Folders Up to 3Contacts Management Rapid search to find the contact easilyContacts Up to 1000 contactsMultiple Dialling Methods Dialling direct, scroll and select via touchscreenCall Alert Vibrate alert and set ringtones via Android SettingsFall Alert (Man-down)Triggers an emergency alert if the device is continuouslytilted beyond a pre-defined angleMessage ManagementDistinct folders for each message type forflexible message managementText Message ListUp to 200 entries (short messages)At least 20 entries for outbox(long messages up to 1000 characters)At least 10 entries for inbox(long messages up to 1000 characters)Status ListUp to 100 user-defined messagesAssignable to One Touch ButtonsText Entry Touchscreen for ease of useTransmit Inhibit Disables TETRA transmit and puts device into Airplane Mode 1 TETRA communications is still availableDEVICE MANAGEMENT SOLUTIONSIntegrated Terminal Management (iTM)Supports iTM version 8.0 onwardsENVIRONMENTAL SPECIFICATIONSOperating Temperature 2-20°C to + 60°C Storage Temperature -40°C to +85°CHumidity (High) , Low and High Temperature ETSI 300 019-1-7 class 7.3E Shock (bumps & shock), vibration (random)ETSI 300-019 1-7 class 5M3Dust and Water Ingress ProtectionBlack model: IP68 per IEC 60529Green model: IP67 per IEC 60529 Compliance to US Military Standard 810See table to the right2Performance may be limited when operating at extreme temperatures.US MILITARY STANDARD MATRIXMethodProc/CatLow Pressure 500.6II High Temperature 501.7I/A1,II Low Temperature 502.7I,II Thermal Shock 503.7I-C Solar Radiation 505.7I/A1Humidity 507.6II / AggravatedSalt Fog509.7-Blowing Sand 510.7II Vibration 514.8I/Cat 24,II/Cat 5Shock 3516.8I,IV,VI3Drop test is covered as part of Shock Method 516.8 Proc IV, VIMotorola Solutions UK Limited, Nova South, 160 Victoria Street, London, SW1E 5LB.All specifications are subject to change without notice.MOTOROLA, MOTO, MOTOROLA SOLUTIONS and the Stylised M Logo are trademarks or registered trademarks of Motorola Trademark Holdings, LLC and are used under licence. The Bluetooth ® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Motorola Solutions, Inc. is under licence. All other trademarks are the property of their respective owners. © 2023 Motorola Solutions, Inc. All rights reserved. (09-23)For more information, please visit us at /mxp7000。
40V N-Channel MOSFETApplications:● Power Supply I D ● DC-DC Converters 170A● DC-AC InvertersFeatures:● Lead Free● Low R DS(ON) to Minimize Conductive Loss ● Low Gate Charge for Fast Switching Application ● Optimized V (BR)DSS RuggednessOrdering InformationPackage BrandTO220 Pin Definition and Inner CircuitTO263-2L TO263-3LAbsolute Maximum RatingsT C =25℃unless otherwise specifiedSymbolValueUnitV DSS 40V 17080I DM 679P D 231W V GS+/-20V T J and T stg-55 to 175℃Avalanche CharacteristicsT C =25℃unless otherwise specifiedSymbolValueUnitI ASFigure 9AThermal ResistanceSymbolMaxUnitR θJC 0.65℃/W R θJA62℃/WThermal Resistance, Junction-to-AmbientParameter Thermal Resistance, Junction-to-Case Power Dissipation Single Pulse Avalanche CurrentParameter Operating Junction and Storage Temperature RangeR DS(ON)(MAX)Silicon LimitedV DS 40V 3m ΩParameter Drain-to-Source Voltage Continuous Drain CurrentPackage Limited200mJ MXP4004BT I DMXP4004BF MXP4004BEA Pulsed Drain Current @V GS =10V Gate-to-Source VoltagePark Number MXPE AS ①Single Pulse Avalanche Energy(V DS =20V, V GS =10V, Rg=25Ω, L=1mH)40V N-Channel MOSFET OFF CharacteristicsT J =25℃unless otherwise specified SymbolMin Typ Max UnitV (BR)DSS 40--V --1--100--100--100ON CharacteristicsT J =25℃unless otherwise specified SymbolMin Typ Max UnitR DS(ON)- 2.33.0m ΩV GS(th)2-4VDynamic CharacteristicsT J =25℃unless otherwise specified SymbolMin Typ Max UnitCiss -5016-Coss -787-Crss -292-Qg -74-Qgs -23-Qgd -26-Td(on)-18.7-Tr -67.1-Td(off)-48.8-Tf -31-Source-Drain Diode Characteristics T J =25℃unless otherwise specifiedSymbolMinTypMaxUnitV SD -- 1.2V Trr -51.6-ns Qrr-35.1-nCGate-to-Source Charge Total Gate Charge Gate-to-Drain ("Miller") Charge Static Drain-to-Source On-ResistanceI GSSGate-to-Source Forward Leakage nAV GS =+20V Gate-to-Source Reverse LeakageV GS = -20VI DSS Drain-to-Source Leakage Current uA V DS =32V, V GS =0VV DS =32V, V GS =0V, T J =125 ℃I S =80A, V GS =0V nsV DD =20V, I D =40A,V GS =10V, R G =10Ω, R L =0.5ΩV DD =20V, I D =80A, V GS =10VTest ConditionsDrain-to-Source Breakdown VoltageV GS =0V, I D =250uA V GS =0V, V DS =20V,f=1.0MHz Output Capacitance Reverse Transfer Capacitance Parameter pFPublished by MaxPower Semiconductor Inc.V GS =10V, I D =80A ParameterTest ConditionsInput Capacitance Test ConditionsTurn-off Delay Time Fall Time Diode Forward Voltage Reverse Recovery Time Is=80A, di/dt=100A/μsReverse Recovery ChargeParameterTest ConditionsGate Threshold VoltageV GS =V DS , I D =250uATurn-on Delay Time Rise Time Parameter nC40V N-Channel MOSFET40V N-Channel MOSFET40V N-Channel MOSFETTO220Published by MaxPower Semiconductor Inc. UNIT : mm1. Outline DimensionPublished by MaxPower Semiconductor Inc.TO263-2L1. Outline DimensionTO263-3L1. Outline DimensionPublished by MaxPower Semiconductor Inc.UNIT : mmDisclaimers:MaxPower Semiconductor Inc. (MXP) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to MXP's terms and conditions supplied at the time of order acknowledgement.MaxPower Semiconductor Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf, disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.MaxPower Semiconductor Inc. disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify MXP's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.MaxPower Semiconductor Inc. warrants performance of its hardware products to the specifications at the time of sale, testing, reliability and quality control are used to the extent MXP deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.MaxPower Semiconductor Inc. does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using MXP's components. To minimize risk, customers must provide adequate design and operating safeguards.MaxPower Semiconductor Inc. does not warrant or convey any license to any intellectual property rights either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in MXP's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice.MaxPower Semiconductor Inc. is not responsible or liable for such altered documentation. Resale of MXP's products with statements different from or beyond the parameters stated by MaxPower Semiconductor Inc. for that product or service voids all express or implied warrantees for the associated MXP product or service and is an unfair and deceptive business practice. MaxPower Semiconductor Inc. is not responsible or liable for any such statements.Published by MaxPower Semiconductor Inc.。
Mini PTZ Controller RM-LP5User ManualParameters & Specs Communication & Control Interface Camera Control or Operation Control Signal FormatPower Supply and ConsumptionPhysical & Others Description of Button & Knob FunctionInterface Function and Connection Diagram Upgrade Interface RS422/RS485 Interface RS232 Interface LAN Interface12V DC Power InterfaceSystem Menu Operation Instructions System Menu Function Explanation Keyboard System Menu System Setting Comm Setting Ethernet SettingPassword SettingSystem Menu Guide Products DimensionsContent2 2 2 2223 7 7788910 10 10 10 11 11 12 12 13④⑤⑪⑮①This Rotation Knob which was to adjustment the Camera Exposure Parameter or Red Gain Value, Turn Right Rotation was to changed the valued Increased, Turn Left Rotation was changed the Valued Decreased.②This Rotation Knob which was to adjustment the Camera Exposure Parameter or Blue Gain Value, Turn Right Rotation was to changed the valued Increased, Turn Left Rotation was changed the Valued Decreased.③This Rotation Knob which was to adjustment the Camera Exposure Parameter, Turn Right Rotation was to changed the valued Increased, Turn Left Rotation was changed the Valued Decreased.④LED Display, Real-time display of items and parameter values of adjusted by " knob ①".⑤LED Display, Real-time display of items and parameter values of adjusted by " knob ②".⑥LED Display, Real-time display of items and parameter values of adjusted by " knob ③".⑦Zoom Bridge KeyIt is used to control the camera to Zoom In/Out, for example, press the TELE end of the bridge key, the camera will Zoom in the TELE direction object, When you Press with more Large Pressure, then the Zoom Speed changed more Faster.⑧ Focus Function ZoonWhen the Backlight of [AUTO]Button is Light up, it means that the current focusing mode is the automatic; When the Backlight of [AUTO] Button is Light Off, it means that Current Focus Mode is changed to Manual. User can Press this button to switch the mode.[OPT key] is used to trigger the single focus of the camera.At the same time, the camera enters the one-shot auto focus mode.⑨PTZ Speed Adjustment KnobThis knob is used to adjust the speed of Camera Pan, Tlit and Zoom, with a total of 7 gears.The Current Gear will be display at Led Display. The Gear Value is more small then the pan/tilt rotation speed or the zoom speed of the camera controlled by the keyboard will be more Slowly.⑩ 2-Aixs JoystickThe joystick supports control camera to Up/Down, Left and Right movement. When the camera or keyboard menu is opened, the joystick is used to control the menu cursor Up/Down,Left/Right movement and modify parameters.⑪ Channel Button Zone[ CAM1 ] to [ CAM5 ] are shortcut keys for camera channels, which can be Freely switched and selected according to your need. When you select any camera channel, the backlight of the corresponding camera channel will be light up in green, and all the parameters and settings of the keyboard will be changed to the current Channel.Note: The communication parameters (address ID, protocol, baud rate, IP address, port number, etc.) of each channel can be set individually.Support mixed use of multiple protocols through different channel.⑫ Presets Function Zone●[ Number Keys ]SETING PRESETS :Long Press and hold the number key for 2 seconds (such as [Number key 1], when the screen displays "Set Preset 1” means that preset 1 has been saved) CALL PRESETS :Short press the preset number to be call Presets, (for example, [Number key 1],when you press the [Number key 1]the screen displays "Show Preset 1", it means that preset 1 has been call).●[ RESET Key ]TO BE CLEAR THE PRESET SETTINGPress[RESET key]+[Number key]to clear the preset position setting. After pressing the [RESET key], the green backlight starts to flash, Then press the preset number that needs to be cleared, (for example,[RESET]+ [Number key 1], at this time, the green Backlight of button of the [RESET key]stops flashing, and at the same time, “Reset Preset 1” is displayed on the screen, which means that preset 1 has been cleared.⑬ FOCUS KnobThis Knobs is using to adjustment camera’s focal length, Rotation right direction is adjustment focus length near, Rotation Left direction is adjustment focus length Far; (When User using this function, the keyboard’s Focus mode will be changed to Manual, It wasn’t available on AUTO Mode).⑭ Function Key Zone●[Menu Key]This key is to Turn ON/OFF Camera Menu, Long Press with 3secs will turn on Keyboard system Menu.●[AE MODE Key]This key is used to change the automatic exposure mode of the camera. Each time is pressed, the camera changes to different exposure mode. Under in difference of exposure mode, the corresponding functions of Knob 1, Knob 2 and Knob 3 are different. It is shown in real time on the display at the right of the knob.● [ WB MODE Key ]This Key is used to changed the White Balance of the camera. Each Time is pressed, the camera will be changed to different WB Mode.Under in difference ofWB mode, the corresponding functions of Knob 1, Knob 2 are different.The specific functions of the knobs are shown in Table 2:●[ Fn Keys ]This key is reserved for adding custom functions.The factory default state is: short press this key to send the command to enter theSub-menu of the camera, long press this key for 3 seconds to back Home Position of Camera.⑮ LED DISPLAYIt is used to display the current status information & Setting information of the keyboard in real time (including IP address, Port number, serial port address, communication protocol, Baud Rate and other information) and keyboard menu,the brightness of the display can be set through the keyboard menu.White Balance ModeKnob 1Knob 2AutoNOT USED NOT USED Manual Red GainBlue GainTable 2The interface is for upgrade of Hardware of keyboard by Laptop. Using Micro USB Cable direct connection with PC, And Upgrade by our upgrade tools software.This Interface is using to Connection with Camera by RS422 or RS485,detail connection diagram as follows pictures:③ RS232 InterfaceThis Interface is using to connection with Camera through RS232, detailThe LAN Interface is using for connection with Network switch or others.Network PTZ Camera, detail connection diagram as follows:●This interface is the Power supply interface, you can direct connection it with Power adapter; please don’t using non-original Power adapter.⑤ DC Power Supply Interface● Connect with multiple cameras by LAN interface detail connection diagram as follows:(When connecting multiple cameras, you need to set the IP of each camera separately1.Long Press [ MENU ] with 3secs will turn on Keyboard system Menu;2.The joystick swings up and down: control the system menu cursor to move up and down / change the parameters of the current menu item;3.The Joystick swings Right: enter the current menu item / save and exit the current menu item;4.The Joystick swings Left: Exist current Menu item/ No Saved and Exit current Menu item;5.Press [ MENU ]to exist System Menu;6.Press the number keys[0]~[9]: input numerical value (only valid for menu items that need to input numerical value). example IP Address or Port number setting.7.When the current value is number input, the green backlight of [CAM1]~[CAM5] is Light on, and at this time [CAM1]~[CAM5] Corresponds to the numbers 6~0 on the silk screen above the buttons.SYSTEM MENU 1.Long Press [ MENU ] with 3 secs will turn on Keyboard system Menu.2.The joystick swings up and down to control the menu cursor to move up and down SYSTEM SETTING The joystick swings up and down the Cursor to [ System Setting ], then Movement right to enter System Setting menu.● [ Language ]The Joystick swings up/down to [Language], then Movement right to enter setting. The Joystick swing up/down can changed the current Parameters setting, Swing the joystick to the right to save the current parameters and exit the language settingstate. The following menus operate setting is same.Optional Language: Chinese, English; other languages can be customized and developed according to customer needs.● [ LED Display Brigtness ]Change the brightness of the LED display: Low, Normal, High.● [ Automatically Standby ]Set the keyboard to automatically enter standby mode without any operation within a limited time.Select-able: Off, 1 minute, 2 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 60 minutes.● [ Itself IP ]To setting Keyboard itself IP Address / Port Number, default IP is 192.168.1.88, default Port 52381.System Menu Operation & Explanation 1. System Setting 2. COMM Setting 3. Ethernet Setting 4. Password Setting1. Language : English2. LED Display Brigtness: Normal3. Automatically Standby: Off4. Itself IP: 192.168.001.0885. Itself Port: 523816. Factory default Setting7. About Keyboard●[ Factory default Setting ]To change the Keyboard restore to Factory default setting.● [ About Keyboard ]To review the relevant information of the keyboard, including: keyboard model, Firmware version, factory S/N and other information.●[ Address ]To set the serial communication address of the corresponding channel.If the current communication protocol is VISCA, the communication address can be selected from 1~7. If the current communication protocol is PELCO-D/P,The communication address can be selected from 1~255.●[ Baud Rate ]To set the serial communication Baud Rate of the corresponding channel.Available in: 2400, 4800, 9600, 19200, 38400bps.●[ Protocol ]To set the Serial communication Protocol of the corresponding channel ( Including Serial Communication Protocol and Internet Communication Protocol).Available in: VISCA, PELCO P/D, UDP .ETHERNET SETTINGTo move the cursor to [ Ethernet Setting ], then Movement right to enter Ethernet Setting:●[ Channel ]The available channels CAM1~5 correspond to the buttons [CAM1]~[CAM5].●[ Cam IP ]To set the Cam IP of the corresponding channel, which can be directly input through the number keys. When the number of input digits reaches 3, the cursor will automatically Jump to the next entry.●[ Port ]To set the UDP Port of the corresponding channel, it depend for the UDP Port 1. Channel: CAM1 2. Cam IP: 192.168.1.1623. Port: 52381PASSWORD SETTINGTo move the cursor to [ Password Setting ], then Movement right to enter Password :●[ Using Password ]How to Using the Password Function:To changed the Password setting is Enable;When the password function is Enable, a password is required to enter the menu.The default password is: 8888●[ Modify Password ]The user can change the password by himself. If the password is not changed, the password is the default password.Warning: Please use this function with caution. If the product cannot be used normally due to the password set by the customer, the manufacturer does not assume any responsibility.1. Using Password: Enabled2. Modify PasswordSYSTEM MENU GUIDE nguage: Chinese, EnglishProducts Dimensions The size for Mini Pro PTZ Controller is as below:(Unit of length: mm)。
第十章WDZ-488双母线测控装置1. 产品用途及特点WDZ-488双母线测控装置(以下简称装置)适用于两组母线的测控。
装置具有如下功能:●多达28路的开入采集、装置遥信变位、事故遥信●8路继电器开出接点,可对4个对象进行遥控跳、合●交流量采集:两组母线的三相电压和零序电压●装置自诊断报警●2路双端直流模拟量输入,支持4~20mA,1~5V,0~5V信号输入●2路脉冲量输入实现外部电度表自动抄表通讯功能:●智能通讯卡:常规配置高速RS485现场总线,通讯速率可达115.2Kbps,并支持双网。
也可选配工业以太网本装置具有如下特点:●采用先进的32位嵌入式微处理器,多CPU结构●汉字液晶显示、操作简便直观●用串行EEPROM存放装置运行及故障信息●带掉电保持的SOE和自检报告●软、硬件冗余设计,抗干扰性能强●完善的软、硬件自检,二级看门狗●全密封嵌入式机箱设计,体积小,重量轻,可直接安装在开关柜上●安全可靠的高速现场总线技术,支持双网和以太网接口●全面、准确、可靠的测控功能2. 主要功能2.1.交流量测量装置采集两组母线的三相电压和零序电压。
2.2.直流模拟量测量装置的直流模拟量输入回路采用了先进的线性光隔离技术,可采集2路双端直流模拟量,并支持4~20mA,1~5V,0~5V信号输入,用于测量温度、压力等。
2.3.开关量输入装置可采集多达28路开关量(空接点输入)。
2.4.开关量输出装置提供8对继电器空接点输出,可控制4个对象的遥控跳、合。
2.5.通信装置的智能通讯卡支持两种现场总线通信,用户可根据工程需要选择高速RS485或工业以太网。
通信内容主要有:●测量值(模拟量,开关量,脉冲量等)●装置状态、故障信息等●遥控●远方复归装置的通信功能请在定货时加以说明。
3. 参数设定3.1.脉冲电度整定3.2.系统参数整定3.3.精度调整4. 背板端子及接线原理背板端子见图10.1 WDZ-488双母线测控装置背板端子排布及定义图所示。
年级编号班号班级名称学籍号民族姓名性别出生日期身份证号3110P06374100281040276汉陈彩云女1995-05-17430281199505175827 3110P06374100281040313汉李梦妮女1994-11-18430281199411182049 3110P06374100281040282汉黄婷女1994-07-04430281199407044065 3110P06374100281040319汉张赛女1995-11-2943028119951129008x 3110P06374100281040315汉袁驰方男1995-01-29430281199501295311 3110P06374100281040298汉金磊男1994-04-06430281199404063316 3110P06374100281040292汉周夏女1994-05-20430281199405206040 3110P06374100281040289汉邓友园男1993-12-15430281199312154050 3110P06374100281040300汉谢璇婵女1995-12-24430281199512240025 3110P06374100281040287汉刘礼平女1995-05-03430281199505035824 3110P06374100281040304汉汤海军男1994-09-12430281199409127913 3110P06374100281040279汉李智男1996-02-08430281199602083617 3110P06374100281040302汉邓明慧女1995-10-13430281199510134667 3110P06374100281040295汉吴莉女1993-06-25430281199306259147 3110P06374100281040311汉曾涛男1994-05-143110P06374100281040274汉黎明男1995-05-12430281199505123613 3110P06374100281040314汉何远哲男1994-08-15430281199408151030 3110P06374100281040306汉张念女1996-02-12430281199602127720 3110P06374100281040305汉罗钰女1995-02-27430281199502272322 3110P06374100281040290汉陈铁龙男1994-11-11430281199411111339 3110P06374100281040294汉丁宇豪男1995-03-19430281199503199112 3110P06374100281040291汉江丹女1994-09-27430281199409274665 3110P06374100281040312汉朱琳女1995-07-09430281199507099223 3110P06374100281040317汉汤旺男1995-08-06430281199508064313 3110P06374100281040296汉刘璐女1994-12-31430281199412310022 3110P06374100281040275汉唐子雄男1995-01-09430281199501090017 3110P06374100281040004汉王志翔男1994-06-23430281199406231010 3110P06374100281040321汉罗一波男1994-10-03430281199410031011 3110P06374100281040309汉梁天添女1995-12-08430281199512081327 3110P06374100281040285汉苏子沙女1995-07-17430281199507174668 3110P06374100281040299汉李亮男1994-03-21430281199403217715 3110P06374100281040288汉胡雅怡女1995-06-133110P06374100281040307汉刘浩男1994-06-04430281199406041313 3110P06374100281040323汉黎自强男1994-10-02430281199410021016 3110P06374100281040284汉陈慧芳女1995-03-11430281199503116022 3110P06374100281040310汉田娅琪女1995-01-06430281199501061347 3110P06374100281040283汉叶鑫文女1995-01-313110P06374100281040272汉周为女1995-08-20430281199508204320 3110P06374100281040278汉朱仕豪男1995-04-16430281199504169118 3110P06374100281040308汉陈妙女1995-06-023110P06374100281040280汉林红梅女1995-03-20430281199503204065 3110P06374100281040301汉钟逸男1995-08-05430219199508051717 3110P06374100281040318汉江健男1994-11-13430281199411130011 3110P06374100281040297汉瞿优利女1994-11-183110P06374100281040281汉曾琴女1993-12-10430281199312105427 3110P06374100281040273汉彭易男1994-10-02430281199410024655 3110P06374100281040286汉吴永和男1994-10-02430281199410027370 3110P06374100281040322汉张子豪男1995-06-28430281199506281314 3110P06374100281040303汉周雨彤女1994-11-19430281199411199246 3110P06374100281040320汉吴永优男1994-08-034302811994080373503110P06374100281040316汉黄玲女1995-04-203110P06374100281040293汉邓本威男1994-06-27430281199406279110 3110P06374100281040277汉杨纬华女1995-04-17430281199504177468 3110P07375100281040335汉陆科强男1994-04-02430281199404023613 3110P07375100281040364汉瞿颖婷女1994-12-18430281199412181021 3110P07375100281040368汉潘斌男1995-09-11430281199509113017 3110P07375100281040367汉张芬玲女1995-09-13430281199509136825 3110P07375100281040328汉邹婷女1995-01-09430281199501091327 3110P07375100281040338汉陈云华女1994-10-03430281199410034669 3110P07375100281040346汉方文秀女1995-11-09430281199511095348 3110P07375100281040342汉刘驰男1995-04-25430281199504252317 3110P07375100281040361汉邓杨清芬女1995-04-05430281199504051320 3110P07375100281040333汉刘秀女1995-03-06430281199503060727 3110P07375100281040329汉匡沙女1994-03-06430281199403065627 3110P07375100281040349汉兰武平男1995-09-25430281199509257010 3110P07375100281040341汉潘婷女1994-12-18430219199412186166 3110P07375100281040357汉黄娟女1994-01-15430281199401153324 3110P07375100281040331汉陈兵男1995-08-25430281199508259153 3110P07375100281040324汉郑涛男1995-06-28430281199506289113 3110P07375100281040332汉陈丽女1994-07-07430281199407079268 3110P07375100281040351汉龙竹英女1994-11-23430281199411230725 3110P07375100281040373汉鲁旺林男1994-08-09430281199408091314 3110P07375100281040359汉陈晶瑶女1995-06-13430281199506133629 3110P07375100281040354汉吴智斌男1994-08-21430281199408219250 3110P07375100281040362汉李鹏辉男1994-11-30430281199411303613 3110P07375100281040353汉李雪男1994-12-04430281199412046014 3110P07375100281040325汉杨敏婷女1995-08-13430281199508135927 3110P07375100281040343汉兰聪林男1993-10-22430281199310226815 3110P07375100281040330汉兰静茹女1993-04-27430281199304276162 3110P07375100281040327汉巫刚沛男1995-01-13430219199501133939 3110P07375100281040365汉张思远男1995-07-2743028119950727161x 3110P07375100281040366汉丁晓倩女1996-05-29430281199605290048 3110P07375100281040360汉钟佳琳女1995-06-06430281199506069225 3110P07375100281040369汉蒋琪男1994-10-12430281199410121316 3110P07375100281040347汉吕昶怡女1995-10-07430281199510071029 3110P07375100281040356汉易桂平女1995-11-03430281199511030720 3110P07375100281040337汉段毅男1995-12-11430224199512115518 3110P07375100281040340汉宋蓓女1993-11-09430281199311095423 3110P07375100281040358汉易伟琪男1995-01-0143028119950101003x 3110P07375100281040334汉朱兴文男1995-05-11430281199505117352 3110P07375100281040363汉兰志勇男1995-01-16430281199501164653 3110P07375100281040348汉周宏男1993-04-043110P07375100281040376汉万锦弘男1994-09-23430281199409232334 3110P07375100281040326汉黄丽佳女1995-04-02430281199504022722 3110P07375100281040345汉易洪女1995-10-04362201199510043425 3110P07375100281040352汉张权男1995-08-10430281199508100011 3110P07375100281040339汉黄瑞芳女1994-11-20430281199411205829 3110P07375100281040355汉黄洁华女1995-07-26430281199507262326 3110P07375100281040350汉陈丹女1995-11-26430281199511263620 3110P07375100281040344汉吴富童男1994-10-2943028119941029361x 3110P07375100281040336汉宋雅玲女1994-11-134302811994111313213110P07375100281040375汉张维男1995-02-07430281199502073315 3110P07375100281040374汉谢浩男1995-06-23430281199506230031 3110P07375100281040371汉周宇阳男1994-08-01430281199408011310 3110P07375100281040370汉何恬恬女1995-06-03430281199506032326 3110P07375100281040372汉梁潇女1995-05-20430281199505201327 3110P08376100281040392汉林旖旎女1995-04-22430281199504227728 3110P08376100281040425汉刘三亚男1994-09-07430281199409079114 3110P08376100281040406汉王宇豪男1994-03-283110P08376100281040418汉文强男1994-07-08430281199407080015 3110P08376100281040399汉黎珂男1995-01-05430281199501056011 3110P08376100281040420汉张可男1995-03-303110P08376100281040387汉帅小满女1995-04-1243028119950412602X 3110P08376100281040378汉张才勇男1993-03-263110P08376100281040384汉王洁纯女1996-01-22430281199601220026 3110P08376100281040381汉刘子豪男1995-07-073110P08376100281040410汉潘裕婷女1995-04-29430281199504299123 3110P08376100281040395汉李志勇男1994-12-03430281199412030055 3110P08376100281040417汉谭由芝女1995-09-0243022419950902392x 3110P08376100281040383汉杨鹏男1996-02-12430281199602129216 3110P08376100281040404汉张敏超男1995-10-20430281199510200759 3110P08376100281040427汉邹佳威男1995-05-25430281199505252319 3110P08376100281040390汉吴禹其女1995-04-3043028119950430202X 3110P08376100281040403汉李铭武男1993-05-0543028119930505465X 3110P08376100281040397汉徐利娟女1995-05-11430281199505117467 3110P08376100281040408汉胡巧莉女1995-03-20430281199503201323 3110P08376100281040419汉邓洋男1995-01-113110P08376100281040393汉林婉女1995-01-13430281199501139183 3110P08376100281040944汉黄昊媛女1996-12-15430281199612151628 3110P08376100281040421汉邹淳男1995-09-17430281199509172316 3110P08376100281040424汉张琦男1993-11-19430281199311191335 3110P08376100281040396汉黄晚晴女1994-05-15430281199405153321 3110P08376100281040389汉李雁瓷女1995-08-07430281199508077923 3110P08376100281040398汉邹志豪男1995-06-26430281199506267555 3110P08376100281040407汉易娟女1994-03-293110P08376100281040422汉张志豪男1995-03-01430281199503013955 3110P08376100281040401汉陈婉婷女1995-10-25430281199510256023 3110P08376100281040416汉樊玉群女1994-05-21430281199405217364 3110P08376100281040413汉凌巧女1994-11-27430281199411277566 3110P08376100281040409汉杨磊男1994-11-02430281199411020031 3110P08376100281040405汉黄凌颖女1995-09-03430281199509031329 3110P08376100281040377汉廖紫薇女1995-01-25430281199501254667 3110P08376100281040382汉袁柳丹女1995-02-0343028119950203616X 3110P08376100281040423汉丁雨晴女1994-05-1243028119940512132X 3110P08376100281040394汉谢彪男1994-06-29430281199406297714 3110P08376100281040400汉肖婷女1994-07-05430281199407050027 3110P08376100281040428汉谢俊豪男1995-07-05430281199507051035 3110P08376100281040379汉蒋龙男1995-04-05430281199504057351 3110P08376100281040411汉易婷女1995-11-09430281199511095321 3110P08376100281040402汉唐斌女1995-05-05430281199505055729 3110P08376100281040415汉谭亚敏女1995-11-21430281199511211329 3110P08376100281040385汉汤细华男1995-10-114302811995101179123110P08376100281040388汉肖欢女1995-04-08430281199504087729 3110P08376100281040414汉文国庆男1995-10-01430281199510015617 3110P08376100281040380汉胡丰明女1994-11-05430281199411051022 3110P08376100281040386汉周金鑫女1996-10-07430281199610070322 3110P08376100281040426汉徐杨宇男1995-01-17430281199501171319 3110P08376100281040391汉兰阳男1994-06-24430281199406247012 3110P08376100281040412汉夏敏男1995-01-14430281199501147714 3110P09377100281040476汉熊浩男1996-01-253110P09377100281040462汉易璐男1995-08-203110P09377100281040459汉刘力男1994-08-123110P09377100281040441汉康芳女1995-03-153110P09377100281040467汉王茜女1996-01-233110P09377100281040468汉晏得亲女1995-02-243110P09377100281040455汉张柳女1995-01-253110P09377100281040456汉吴自维男1993-01-203110P09377100281040464汉李维进男1995-01-233110P09377100281040451汉江峰男1996-03-293110P09377100281040431汉付磊男1995-07-013110P09377100281040457汉王钰莹女1995-02-133110P09377100281040461汉杨紫依女1995-05-203110P09377100281040447汉汤倩怡女1995-02-213110P09377100281040445汉陈丽女1996-01-103110P09377100281040471汉晏赛女1995-08-013110P09377100281040458汉张丽珍女1905-06-173110P09377100281040463汉杨婷女1995-06-243110P09377100281040437汉王英女1994-04-10430281199404107462 3110P09377100281040473汉陈利恒女1994-12-023110P09377100281040446汉唐志武男1995-07-113110P09377100281040466汉贺钱锋男1995-06-143110P09377100281040440汉吴淼女1995-06-163110P09377100281040472汉周炜龙男1995-07-213110P09377100281040460汉张文女1994-10-123110P09377100281040477汉周慧女1994-10-073110P09377100281040439汉邓晓寒女1994-12-25430281199412250023 3110P09377100281040430汉李衡男1995-04-04430281199504047751 3110P09377100281040448汉陈端喜男1995-09-213110P09377100281040469汉张师与女1994-09-153110P09377100281040436汉陈小青女1994-02-26430281199402263621 3110P09377100281040481汉岳俊良男1994-10-083110P09377100281040432汉王怡武男1995-05-063110P09377100281040442汉潘鸿麒男1994-12-22430281199412224693 3110P09377100281040443汉李亚敏女1995-08-173110P09377100281040454汉张丽波女1994-08-093110P09377100281040475汉李思怡女1994-12-213110P09377100281040444汉汤金娇女1995-11-21430219199511217925 3110P09377100281040434汉江雨莎女1996-04-08430281199604085325 3110P09377100281040452汉刘涛男1995-07-043110P09377100281040480汉张灏男1994-10-13430281199410132314 3110P09377100281040453汉付益玲女1994-02-233110P09377100281040479汉张龙雨男1994-07-17430281199407171312 3110P09377100281040470汉黄顺男1996-08-064302811996080679173110P09377100281040465汉易志超男1996-03-223110P09377100281040429汉汤婷女1995-04-033110P09377100281040474汉邹嘉意女1995-03-2343028119950323132x 3110P09377100281040478汉江华钦男1994-11-123110P09377100281040438汉刘宇明男1993-05-17430281199305173333 3110P09377100281040433汉唐芳女1994-10-053110P09377100281040435汉丁银桥男1995-04-01430281199504014052 3110P09377100281040449汉李江女1992-06-103110P09377100281040450汉张婉婷女1995-09-063110P10378100281040533汉杨天一男1995-05-26430281199505262330 3110P10378100281040532汉彭源盛男1995-02-2343028119950223131x 3110P10378100281040514汉张雅女1996-07-3043028119960730794x 3110P10378100281040529汉肖慧惠女1994-10-09430281199410091364 3110P10378100281040527汉杨瀚波男1994-11-01430281199411011311 3110P10378100281040489汉赖周强男1994-10-30430281199410304059 3110P10378100281040518汉吴龙男1993-11-1243028119931112161x 3110P10378100281040502汉骆晋宇男1994-12-11430281199412112018 3110P10378100281040483汉罗丰武男1994-07-14430281199407147718 3110P10378100281040498汉荣雾女1994-11-21430281199411214063 3110P10378100281040511汉汤九五女1995-08-273110P10378100281040512汉易金成男1995-08-19430281199508190715 3110P10378100281040522汉周思宇女1996-01-24430281199601242022 3110P10378100281040517汉游迪生男1995-01-21430281199501213638 3110P10378100281040497汉唐雅女1996-06-27430281199606274664 3110P10378100281040484汉凌宏男1994-12-03430281199412034056 3110P10378100281040513汉瞿珊珊女1993-06-0243028119930602740x 3110P10378100281040494汉易思女1995-07-20430281199507207722 3110P10378100281040519汉王彪男1995-04-043110P10378100281040504汉丁滔男1994-10-20430281199410202714 3110P10378100281040488汉袁志沙女1995-10-14430281199510147927 3110P10378100281040482汉黄宇玲女1995-08-01430281199508012724 3110P10378100281040500汉朱琳芳女1995-12-05430281199512054660 3110P10378100281040486汉张佳女1995-05-03430281199505031583 3110P10378100281040520汉彭慧敏女1994-10-16430281199410160040 3110P10378100281040531汉黄明江男1994-05-04430281199405044651 3110P10378100281040516汉刘婷女1996-10-233110P10378100281040526汉邹琬婷女1995-08-1143028119950811232x 3110P10378100281040485汉荣宇豪男1995-08-04430281199508040039 3110P10378100281040487汉李练男1995-05-25430281199505253610 3110P10378100281040515汉张旺男1995-08-013110P10378100281040490汉兰雨芝女1995-11-22430281199511227400 3110P10378100281040528汉贺中麟男1994-09-16430281199409161337 3110P10378100281040503汉李维久男1994-07-24430281199407247735 3110P10378100281040507汉张白露女1994-08-03430281199408030028 3110P10378100281040501汉汤迁女1995-08-26430281199508269124 3110P10378100281040492汉易清女1994-11-27430281199411277742 3110P10378100281040530汉黄轩男1994-07-16430281199407160330 3110P10378100281040506汉蒋响玲女1992-07-11430281199207119229 3110P10378100281040524汉邓明女1994-09-23430281199409237960 3110P10378100281040495汉洪利辉女1995-03-19430281199503195824 3110P10378100281040491汉易芳女1994-10-023603121994100220213110P10378100281040525汉易益鹏男1995-01-02430281199501024810 3110P10378100281040508汉唐灏男1994-05-193110P10378100281040499汉周翔男1995-11-12430281199511120056 3110P10378100281040496汉李孟男1995-07-11430281199507117735 3110P10378100281040523汉文振宇男1995-04-12430281199504125617 3110P10378100281040509汉李自粮男1995-09-0243028119950902601x 3110P10378100281040534汉刘志成男1995-07-13430281199507132310 3110P10378100281040493汉张天乐女1995-12-26430281199512262021 3110P10378100281040521汉杨娟女1994-08-09430281199408097927 3110P10378100281040505汉李春燕女1995-02-23430281199502234326 3110P10378100281040510汉杨迷女1994-08-26430281199408265820 3110P11379100281040543汉张新旺男1995-12-09430281199512090012 3110P11379100281040541汉钟琰女1995-02-23430281199502234684 3110P11379100281040568汉张婷女1995-10-08430281199510085324 3110P11379100281040555汉黄昌启男1995-01-02430281199501022719 3110P11379100281040561汉汤婉女1995-12-05430281199512057925 3110P11379100281040573汉张湘都女1993-08-1143028119930811534x 3110P11379100281040583汉李家晰男1994-08-1843028119940818131x 3110P11379100281040565汉温柔女1995-08-13430219199508133309 3110P11379100281040580汉彭增伟男1995-02-02430281199502023318 3110P11379100281040577汉黄庆宇男1995-05-02430281199505020016 3110P11379100281040558汉刘彩霞女1994-11-29430281199411290728 3110P11379100281040556汉林君娴女1996-04-05430281199604053622 3110P11379100281040535汉朱志强男1994-07-17430281199407170010 3110P11379100281040581汉殷小东男1995-02-073110P11379100281040559汉张林根男1993-09-08430281199309083917 3110P11379100281040544汉荣东男1994-06-06430281199406064056 3110P11379100281040546汉刘亚女1994-12-1643028119941216466x 3110P11379100281040586汉叶凯男1994-07-2343028119940723423x 3110P11379100281040537汉阙巧红女1995-11-10430281199511107927 3110P11379100281040566汉邓友情女1995-07-29430281199507292728 3110P11379100281040539汉陈俐女1996-01-29430281199601290024 3110P11379100281040562汉李惠女1994-11-22430281199411224069 3110P11379100281040538汉李锤男1996-05-02430281199605029210 3110P11379100281040579汉杨妮女1994-10-29430281199410299149 3110P11379100281040585汉汤子豪男1995-02-12430281199502120011 3110P11379100281040584汉张敏女1995-02-04430281199502041321 3110P11379100281040569汉熊希女1995-06-23430281199506239247 3110P11379100281040578汉贺智文女1995-05-14430281199505140026 3110P11379100281040563汉邓奇男1994-06-07430281199406073331 3110P11379100281040557汉易琼伶女1995-01-1043028119950110102x 3110P11379100281040576汉周怡君女1995-02-07430281199502072021 3110P11379100281040551汉王娟女1995-09-02430281199509022326 3110P11379100281040560汉郭志维男1995-06-03430281199506033011 3110P11379100281040572汉谢露罗华女1995-08-1743028119950817132x 3110P11379100281040570汉罗威男1996-02-14430903199602140617 3110P11379100281040542汉张潇妮女1995-08-22430281199508226845 3110P11379100281040536汉汪丹女1994-01-03430281199401033322 3110P11379100281040587汉徐雅琴女1995-07-013110P11379100281040567汉彭建男1994-06-24430281199406249034 3110P11379100281040571汉卜亚根女1992-07-014302811992070177403110P11379100281040575汉肖岳斌男1995-08-20430281199508201314 3110P11379100281040548汉刘文琴女1995-09-16430281199509164324 3110P11379100281040553汉付添凤女1995-04-113110P11379100281040547汉李正金男1994-11-12430281199411123612 3110P11379100281040564汉李韬男1994-07-20430281199407202318 3110P11379100281040554汉杨君男1995-04-1143028119950411503x 3110P11379100281040550汉黄市庆男1995-05-05430281199505050012 3110P11379100281040540汉李奇男1994-02-10430281199402107012 3110P11379100281040582汉杨海宇女1995-05-1043028119950510202x 3110P11379100281040545汉蒋文慧女1994-07-27430281199407276165 3110P11379100281040574汉杨海波男1994-09-25430281199409259238 3110P11379100281040549汉孔秋香女1995-08-19430281199508193625 3110P11379100281040552汉陈琴女1994-11-22430281199411223648 3110P12380100281040624汉吴旭女1995-11-18430281199511187381 3110P12380100281040614汉林森男1995-07-06430281199507063618 3110P12380100281040622汉刘雅婷女1995-04-25430281199504251023 3110P12380100281040619汉周文男1994-10-02430281199410029034 3110P12380100281040616汉刘天宇男1995-07-18430281199507181016 3110P12380100281040594汉余广女1996-03-05430281199603056522 3110P12380100281040629汉丁宇骁男1995-06-03430281199506031315 3110P12380100281040609汉黎政文男1994-11-21430281199411214311 3110P12380100281040630汉宋艺女1994-09-29430281199409290024 3110P12380100281040635汉龚飞龙男1995-05-29430281199505291019 3110P12380100281040591汉文佳俊男1995-07-27430281199507273017 3110P12380100281040608汉熊厚芳女1996-02-24431002199602245027 3110P12380100281040607汉张翔女1995-09-10430281199509100021 3110P12380100281040620汉江英杰男1996-03-14430281199603146819 3110P12380100281040589汉甘海丽女1994-05-20430281199405207721 3110P12380100281040612汉田园女1995-06-2743028119950627072x 3110P12380100281040592汉廖婷女1995-07-11430281199507113320 3110P12380100281040615汉李响女1993-12-06430281199312067723 3110P12380100281040636汉曾思文男1994-05-25430281199405252039 3110P12380100281040640汉丁盛男1994-06-17430281199406171310 3110P12380100281040606汉谢那英女1994-09-12430281199409123680 3110P12380100281040638汉杨景女1995-02-08430281199502081323 3110P12380100281040628汉邱礼毅男1994-08-08430281199408082012 3110P12380100281040632汉刘诗瑶女1995-07-28430281199507284189 3110P12380100281040639汉黄源女1994-09-17430281199409171340 3110P12380100281040625汉丁旺男1995-03-12430281199503124655 3110P12380100281040618汉荣昊男1995-05-30430281199505302312 3110P12380100281040596汉李桔华女1994-08-28430281199408283623 3110P12380100281040595汉黄纯女1994-09-13430281199409134662 3110P12380100281040603汉刘瑶女1995-01-173110P12380100281040634汉刘雍男1995-04-29430281199504291316 3110P12380100281040641汉黎青花女1994-11-25500101199411257144 3110P12380100281040588汉罗天龙男1995-06-29430281199506296153 3110P12380100281040627汉宋荣华男1995-05-02430281199505029213 3110P12380100281040601汉钟国洪男1994-12-27430281199412279133 3110P12380100281040605汉王诚男1994-06-273110P12380100281040610汉刘顺女1996-08-20430281199608207924 3110P12380100281040593汉昌建伟男1995-03-234302811995032358143110P12380100281040637汉唐芳女1994-04-12430221199404125621 3110P12380100281040617汉吴雅文女1995-08-23430281199508237763 3110P12380100281040597汉黄家豪男1994-05-303110P12380100281040613汉刘三柳女1995-03-03430281199503032726 3110P12380100281040602汉陈水兵女1995-09-0643028119950906362x 3110P12380100281040633汉黄政男1995-03-09430281199503091339 3110P12380100281040626汉刘雅琪女1995-08-26430281199508266628 3110P12380100281040623汉凌洁女1995-05-08430281199505080043 3110P12380100281040590汉曹鑫女1994-12-24430281199412242023 3110P12380100281040621汉张雅文女1995-08-26430281199508263021 3110P12380100281040604汉钟蝉女1995-08-07430281199508074327 3110P12380100281040631汉赖敏男1994-11-18430281199411184650 3110P12380100281040598汉黄沁女1995-01-15430281199501153620 3110P12380100281040611汉欧阳威男1995-07-15430281199507159134 3110P12380100281040599汉匡鹏男1995-01-03430281199501031316 3110P12380100281040600汉陈云男1995-02-25430281199502256015 3110P13381100281040683汉黄仕豪男1993-09-05430281199309050031 3110P13381100281040671汉陈思颖男1996-01-06430281199601065919 3110P13381100281040649汉管群女1995-05-2043028119950520072x 3110P13381100281040661汉赵宇萌男1995-11-29430281199511291314 3110P13381100281040670汉刘苏其女1993-06-18430281199306184325 3110P13381100281040679汉朱玲英女1994-07-283110P13381100281040690汉吴昕女1995-07-25430281199507259143 3110P13381100281040645汉付都女1994-09-03430281199409036667 3110P13381100281040681汉黎莎女1996-06-26430281199606265821 3110P13381100281040665汉李钰婷女1995-10-24430281199510247725 3110P13381100281040692汉柳思琪女1994-08-31430281199408311321 3110P13381100281040651汉陈雨香女1995-03-0343028119950303772x 3110P13381100281040674汉兰柳女1994-01-2943028119940129002x 3110P13381100281040642汉黄晓男1994-01-12430281199401129017 3110P13381100281040658汉肖娅女1995-08-17430281199508170044 3110P13381100281040652汉刘子铭男1995-06-23430281199506230058 3110P13381100281040673汉易优女1993-06-19430281199306197388 3110P13381100281040685汉罗龙雪男1995-01-11430281199501111017 3110P13381100281040660汉林露女1995-09-12430281199509127742 3110P13381100281040656汉兰张洋男1995-09-08430281199509081035 3110P13381100281040657汉陈程女1994-09-3043028119940930756x 3110P13381100281040672汉郑鹏男1995-05-31430281199505311016 3110P13381100281040006汉唐汝珩男1993-09-2443028119930924133X 3110P13381100281040643汉谢薇女1995-05-20430281199505203023 3110P13381100281040655汉张茜女1995-08-13430281199508133921 3110P13381100281040650汉李汪洋男1994-10-05430281199410054512 3110P13381100281040648汉蔡安女1996-04-06430281199604063644 3110P13381100281040667汉杨许斌女1994-11-03430281199411037466 3110P13381100281040688汉肖晨男1995-11-15430281199511151012 3110P13381100281040668汉易兵男1992-10-14430281199210147378 3110P13381100281040659汉黄李林女1995-08-03430281199508030041 3110P13381100281040680汉李璐男1995-08-053110P13381100281040662汉张洋男1995-04-27430281199504274655 3110P13381100281040647汉苏道军男1994-12-15430281199412150313 3110P13381100281040666汉刘晋男1995-06-044302811995060478193110P13381100281040669汉李志红女1995-10-20430281199510207723 3110P13381100281040678汉何莉女1994-08-263110P13381100281040664汉刘煜荣女1994-09-20430281199409202047 3110P13381100281040646汉张礼成男1994-04-22430281199404224650 3110P13381100281040676汉肖仁清男1994-08-02430281199408021316 3110P13381100281040654汉丁强男1995-03-21430281199503213017 3110P13381100281040684汉漆莹洁女1996-08-20430281199608200327 3110P13381100281040943汉邓逸琪男1994-11-09430281199411097717 3110P13381100281040677汉罗莎女1994-12-233110P13381100281040002汉兰宗裕男1993-10-17430281199310170014 3110P13381100281040689汉邓兴国男1995-03-26430281199503261318 3110P13381100281040682汉李堂男1995-08-113110P13381100281040675汉刘旭男1994-08-17430281199408173037 3110P13381100281040687汉朱婷女1994-11-29430281199411297380 3110P13381100281040686汉罗顺女1996-01-19430281199601194526 3110P13381100281040653汉张欢女1996-02-02430281199602025329 3110P13381100281040644汉刘新婉女1996-06-07430281199606070020 3110P13381100281040691汉匡世杰男1995-04-1143028119950411001x 3110P13381100281040663汉李拼女1995-09-15430281199509157466 3110P14382100281040726汉吴思女1995-06-26430281199506267360 3110P14382100281040741汉曾乐女1994-09-29430624199409297327 3110P14382100281040746汉朱新理男1994-07-28430281199407281351 3110P14382100281040711汉易林英女1995-10-11430281199510117963 3110P14382100281040696汉戴玉宁女1995-08-06430281199508062721 3110P14382100281040719汉谭海洋男1994-10-17430281199410174813 3110P14382100281040733汉陈敏男1994-11-2143028119941121571x 3110P14382100281040724汉黄园女1994-01-12430281199401127724 3110P14382100281040734汉张翔男1995-06-053110P14382100281040707汉钟林香女1993-11-17430281199311179221 3110P14382100281040727汉唐婷女1995-07-09430281199507095425 3110P14382100281040712汉陈容女1995-08-19430281199508195647 3110P14382100281040725汉廖志强男1995-06-13430281199506137451 3110P14382100281040706汉冯柱男1996-01-24430281199601243017 3110P14382100281040716汉沈贤娟女1995-01-14430281199501142729 3110P14382100281040699汉丁莎莎女1995-06-08430281199506084062 3110P14382100281040729汉黄凤姣女1994-06-27430281199406276024 3110P14382100281040704汉易鑫男1995-08-19430281199508194652 3110P14382100281040728汉刘超男1995-03-19430281199503192316 3110P14382100281040731汉曾雪女1994-09-25430521199409252888 3110P14382100281040715汉李珊女1993-10-06430281199310067869 3110P14382100281040730汉骆益红女1994-08-2943028119940829236x 3110P14382100281040732汉易勇男1995-08-2643028119950826071x 3110P14382100281040709汉胡子琴女1995-08-16430281199508169123 3110P14382100281040745汉周维明男1994-10-11430281199410117376 3110P14382100281040700汉邓斌男1995-05-15430281199505152318 3110P14382100281040708汉彭柳女1995-11-22430281199511229123 3110P14382100281040701汉吴丽莹女1995-08-17430281199508173624 3110P14382100281040713汉王幸红男1995-06-04430281199506049216 3110P14382100281040698汉刘胜强男1994-08-22430281199408225714 3110P14382100281040705汉易悠悠女1995-09-29430281199509290726 3110P14382100281040744汉李志男1995-05-284302811995052833183110P14382100281040737汉贺兴男1994-08-30430281199408301318 3110P14382100281040722汉李宇峰男1995-08-13430281199508134676 3110P14382100281040695汉李南英女1995-06-04430281199506043623 3110P14382100281040742汉吴子岑女1994-08-30430219199408301029 3110P14382100281040694汉黎望男1995-07-1043028119950710431x 3110P14382100281040740汉周锋男1994-05-02430281199405027376 3110P14382100281040710汉谢栋男1994-12-23430281199412231316 3110P14382100281040718汉汤鹏男1995-03-19430281199503194311 3110P14382100281040702汉张玉女1994-10-12430281199410126045 3110P14382100281040721汉张琳女1994-06-10430281199406104521 3110P14382100281040736汉邓慧女1995-10-09430281199510091329 3110P14382100281040714汉刘勇男1994-04-27430281199404272716 3110P14382100281040720汉张立女1996-07-16430281199607163325 3110P14382100281040723汉彭涛男1996-01-23430281199601239114 3110P14382100281040697汉刘理平男1994-07-03430281199407037551 3110P14382100281040717汉易雨柔女1994-08-30430281199408300024 3110P14382100281040743汉黄敏女1995-07-31430281199507314528 3110P14382100281040735汉吴丹女1994-12-09430281199412091026 3110P14382100281040703汉刘滔女1993-03-163110P14382100281040739汉张佳琲男1994-08-22430281199408221019 3110P14382100281040738汉汤洋女1995-05-06430281199505061643 3110P15383100281040780汉易春男1995-05-2343028119950523361X 3110P15383100281040755汉温子良男1995-08-08430281199508086619 3110P15383100281040787汉邓婷女1994-08-1843028119940818916X 3110P15383100281040779汉吴谢婷女1995-02-05430281199502057366 3110P15383100281040781汉易红霞女1995-03-153110P15383100281040784汉欧阳晓晴女1994-11-18430281199411185928 3110P15383100281040751汉凌宇女1995-08-04430281199508045622 3110P15383100281040783汉张骁虬男1995-08-07430281199508070035 3110P15383100281040782汉潘益民男1995-09-033110P15383100281040762汉柳敏女1995-10-03430281199510037461 3110P15383100281040768汉许智涛男1994-06-06430281199406061314 3110P15383100281040759汉谢露女1995-08-14430281199508143644 3110P15383100281040770汉易双女1994-03-01430281199403013923 3110P15383100281040788汉曾繁煜男1994-08-04430281199408043312 3110P15383100281040773汉吴惠敏女1995-01-2243028119950122736X 3110P15383100281040790汉钟任兵男1994-11-07430281199411075112 3110P15383100281040786汉孙学琴女1994-02-12500228199402125065 3110P15383100281040758汉邬梦秋女1994-07-06362202199407064021 3110P15383100281040795汉刘顺男1995-01-06430281199501063019 3110P15383100281040003汉钟羽轩男1994-02-13430281199402131311 3110P15383100281040774汉甘妙男1995-05-0243028119950502771X 3110P15383100281040775汉钟梓钰女1996-02-01430281199602012325 3110P15383100281040750汉潘志雄男1995-11-10430281199511107038 3110P15383100281040769汉李孝许男1994-05-25430281199405253613 3110P15383100281040756汉喻娟女1995-01-14430281199501140029 3110P15383100281040765汉郭鹏飞女1995-10-2743028119951027466X 3110P15383100281040753汉张强男1995-03-1143028119950311465X 3110P15383100281040761汉李勇男1996-01-14430281199601142718 3110P15383100281040748汉张雅玉女1996-01-0943021919960109616X 3110P15383100281040789汉余敏女1995-05-154302811995051553243110P15383100281040796汉吴驰男1995-02-28430281199502287399 3110P15383100281040749汉陈登男1996-03-01430281199603017750 3110P15383100281040793汉刘鹏琳男1994-08-20360313199408200331 3110P15383100281040763汉张美林女1994-03-26430281199403264060 3110P15383100281040777汉李威明男1995-08-14430281199508142713 3110P15383100281040797汉殷志成男1995-01-25430281199501251319 3110P15383100281040757汉柳英女1996-01-22430281199601224668 3110P15383100281040791汉张羽健女1994-12-18430281199412181320 3110P15383100281040792汉刘飞宇男1994-06-1143028119940611771X 3110P15383100281040767汉刘检男1994-11-17430281199411177717 3110P15383100281040747汉吴锐女1996-02-25430281199602259168 3110P15383100281040752汉陈汝婷女1996-02-21430281199602213629 3110P15383100281040776汉李云珑女1995-02-11430281199502110323 3110P15383100281040760汉侯蓓女1994-11-22430281199411227024 3110P15383100281040754汉李志辉女1994-11-19430281199411194066 3110P15383100281040764汉周威男1994-01-07432503199401077471 3110P15383100281040778汉陈雅琪女1995-07-22430281199507224661 3110P15383100281040794汉丁维男1995-12-24430281199512244050 3110P15383100281040785汉漆子毅男1995-07-1443028119950714133X 3110P15383100281040772汉王玺芳女1995-09-083110P15383100281040766汉汤子峰男1996-04-07430281199604077915 3110P15383100281040771汉陈威男1995-06-02430281199506020018 3110P15383100281040798汉叶雨男1993-08-01430281199308017352 3110P16384100281040839汉黄溪坤男1995-05-26430281199505261610 3110P16384100281040822汉陈莎女1995-05-17430281199505174525 3110P16384100281040835汉曾慧女1995-06-28430281199506289121 3110P16384100281040851汉陈治湘男1994-08-1243028119940812231x 3110P16384100281040830汉文玉霜女1994-07-09430281199407095620 3110P16384100281040814汉钟领女1995-02-01430281199502019220 3110P16384100281040799汉钟磊男1995-03-25430281199503252710 3110P16384100281040832汉钟韶明女1994-08-14430281199408145845 3110P16384100281040834汉宋君男1994-09-03430281199409031014 3110P16384100281040810汉张萍女1994-11-22430281199411223621 3110P16384100281040829汉文鹏程男1994-10-163110P16384100281040820汉李宇成男1994-08-19430281199408191315 3110P16384100281040837汉朱婉琴女1995-11-25430281199511252323 3110P16384100281040800汉徐旭女1995-06-20430281199506207923 3110P16384100281040821汉黄鑫成男1995-03-05430281199503059216 3110P16384100281040808汉张剑男1994-07-09362204199407095111 3110P16384100281040850汉李俊辰男1994-07-21430281199407210035 3110P16384100281040805汉汤慧娟女1996-06-1043028119960610792x 3110P16384100281040818汉郭婷女1995-02-0443028119950204272x 3110P16384100281040843汉吴莎女1995-01-29430281199501297384 3110P16384100281040844汉吴兴新男1995-01-16430281199501163634 3110P16384100281040846汉唐玉蓉女1995-12-10430281199512101324 3110P16384100281040841汉张志豪男1995-09-27430281199509272018 3110P16384100281040852汉赖响男1994-09-24430281199409247915 3110P16384100281040806汉吴峥女1995-10-2843028119951028362x 3110P16384100281040809汉黎云男1996-12-03360313199612031037 3110P16384100281040847汉郭远鹏男1995-02-07430281199502072312 3110P16384100281040804汉吴密男1994-06-06。
■RS-485 or RS-422 Quad Differential Line Receivers■Operates from a single +3.3V supply ■Interoperable with +5.0V logic ■Tri-state Output Control■-7V to +12V Common-Mode Input Voltage Range■Common Driver Enable Control (SP3488)■Independent Driver Enable Controls for each pair of Drivers (SP3489)■Compatibility with LTC488and SN75173 (SP3488)■Compatibility with LTC489and SN75175 (SP3489)DESCRIPTION…The SP3488 and the SP3489 are +3.3V low power quad line receivers that meet the specifications of the RS-485 and RS-422 serial protocols. These devices are pin-to-pin compatible with Sipex's SP488 and SP489 devices as well as popular industry standards.The SP3488 and SP3489 feature Sipex's BiCMOS process allowing low power operation without sacrificing performance. The SP3488 and SP3489 meet the electrical specifications of RS-485 and RS-422 serial protocols up to 10Mbps under load. The SP3488 features a common receiver enable control. The SP3489 provides independent receiver enable controls for each pair of receivers. Both devices feature tri-state outputs and a -7V to +12V common-mode input range. The receivers have a fail-safe feature which forces a logic "1"output when receiver inputs are left floating.ABSOLUTE MAXIMUM RATINGSThese are stress ratings only and functional operation of the device at these or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.V CC .........................................................................................+6.0V Input VoltagesLogic ......................................................................–0.3V to +6.0V Receiver ...............................................................................±14V Receiver Output Voltage..........................................–0.3V to +6.0V Input CurrentsLogic ..................................................................................±25mA Storage Temperature............................................–65°C to +150°C Power DissipationPlastic DIP ........................................................................375mW (derate 7mW/°C above +70°C)Small Outline ....................................................................375mW (derate 7mW/°C above +70°C)Lead Temperature (soldering, 10 sec)...................................300°CSPECIFICATIONSV = +3.3V ±5%; typicals at 25°C; T ≤ T ≤ T unless otherwise noted.元器件交易网Figure 1. Timing Test Circuit Figure 2. Enable/Disable Timing Test CircuitPin 6 — RI 2A — Receiver 2 input A.Pin 7 — RI 2B — Receiver 2 input B.Pin 8 — GND — Digital Ground.Pin 9 — RI 3B — Receiver 3 input B.Pin 10 — RI 3A — Receiver 3 input A.Pin 11 — RO 3 — Receiver 3 Output — If Receiver 3 output is enabled, if RI 3A > RI 3B by 200mV, Receiver 3 output is high. If Receiver 3output is enabled, and if RI 3A < RI 3B by 200mV, Receiver 3 output is low.Pin 12 — EN — Receiver Output Enable. Please refer to SP3488 Truth Table (1).SP3488 PINOUTPin 1 — RI 1B — Receiver 1 input B.Pin 2 — RI 1A — Receiver 1 input A.Pin 3 — RO 1 — Receiver 1 Output — If Re-ceiver 1 output is enabled, if RI 1A > RI 1B by 200mV, Receiver output is high. If Receiver 1output is enabled, and if RI 1A < RI 1B by 200mV,Receiver 1 output is low.Pin 4 — EN — Receiver Output Enable. Please refer to SP3488 Truth Table (1).Pin 5 — RO 2 — Receiver 2 Output — If Re-ceiver 2 output is enabled, if RI 2A > RI 2B by 200mV, Receiver 2 output is high. If Receiver 2output is enabled, and if RI 2A < RI 2B by 200mV, Receiver 2 output is low.PINOUTPin 13 — RO 4 — Receiver 4 Output — If Receiver 4 output is enabled, if RI 4A > RI 4B by 200mV, Receiver 4 output is high. If Receiver 4output is enabled, and if RI 4A < RI 4B by 200mV, Receiver 4 output is low.Pin 14 — RI 4A — Receiver 4 input A.Pin 15 — RI 4B — Receiver 4 input B.Pin 16 — V CC — Positive Supply +3.00V < V CC < +3.60VSP3489 PINOUTPin 1 — RI 1B — Receiver 1 input B.Pin 2 — RI 1A — Receiver 1 input A.Pin 3 — RO 1 — Receiver 1 Output — If Receiver 1 output is enabled, if RI 1A > RI 1B by 200mV, Receiver output is high. If Receiver 1output is enabled, and if RI 1A < RI 1B by 200mV,Receiver 1 output is low.Pin 4 — EN1/EN2 — Receiver 1 and 2 Output Enable. Please refer to SP3489 Truth Table (2).Pin 5 — RO 2 — Receiver 2 Output — If Receiver 2 output is enabled, if RI 2A > RI 2B by 200mV, Receiver 2 output is high. If Receiver 2output is enabled, and if RI 2A < RI 2B by 200mV, Receiver 2 output is low.Pin 6 — RI 2A — Receiver 2 input A.Pin 7 — RI 2B — Receiver 2 input B.Pin 8 — GND — Digital Ground.DIFFERENTIALENABLES OUTPUT A – B EN EN ROV ID ≥ 0.2V H X H X L H –0.2V < V ID < +0.2VH X X X L X V ID ≤ 0.2VH X L X L L XLHHi–ZTable 1. SP3488 Truth Table Pin 9 — RI 3B — Receiver 3 input B.Pin 10 — RI 3A — Receiver 3 input A.Pin 11 — RO 3 — Receiver 3 Output — If Receiver 3 output is enabled, if RI 3A > RI 3B by 200mV, Receiver 3 output is high. If Receiver 3output is enabled, and if RI 3A < RI 3B by 200mV, Receiver 3 output is low.Pin 12 — EN3/EN4 — Receiver 3 and 4 Output Enable. Please refer to SP3489 Truth Table (2).Pin 13 — RO 4 — Receiver 4 Output — If Receiver 4 output is enabled, if RI 4A > RI 4B by 200mV, Receiver 4 output is high. If Receiver 4output is enabled, and if RI 4A < RI 4B by 200mV, Receiver 4 output is low.Pin 14 — RI 4A — Receiver 4 input A.Pin 15 — RI 4B — Receiver 4 input B.Pin 16 — V CC — Positive Supply +3.00V < V CC < +3.60VTable 2. SP3489 Truth TableDIFFERENTIALENABLESOUTPUT A – B EN 1/EN 2 or EN 3/EN 4ROV ID ≥ 0.2V H H –0.2V < V ID < +0.2VH X V ID ≤ 0.2VH L XLHi–ZFEATURES...The SP3488 and the SP3489 are +3.3V low power quad line receivers that meet the specifications of the RS-485 and RS-422 serial protocols. These devices are pin-to-pin compatible with Sipex's SP488 and SP489devices as well as popular industry standards.The SP3488 and SP3489 devices feature Sipex's BiCMOS process allowing low power operation without sacrificing performance.The RS-485 standard is ideal for multi-drop applications or for long distance interfaces.RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the元器件交易网cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accomodate ground potential differences. Because the RS-485 protocol is a differential interface, data is virtually immune to noise in the transmission line.Receiver...The SP3488and the SP3489receivers have differential inputs with an input sensitivity as low as +100mV. Input impedance of the receivers is typically 15KΩ (12KΩ minimum).A wide common mode range of -7V to +12V allows for large ground potential differences between systems.The SP3488 features active HIGH and active LOW common receiver enable controls. Refer to SP3488 Truth Table in Table 1. The SP3489 provides independent, active high receiver enable controls for each pair of receivers. Refer to SP3489 Truth Table in Table 2. Both devices feature tri-state outputs and a -7V to +12V common-mode input range permitting a +7V ground difference between devices on the communication bus. The SP3488and the SP3489 are equipped with a fail-safe feature which forces a logic HIGH at the receiver output when the input is left floating. The SP3488 and SP3489 receivers meet the electrical specifications of RS-485 and RS-422 serial protocol data rates up to 10Mbps under load.AC PARAMETERSV = +3.3V±5%; typicals at 25°C; T = 25°C unless otherwise noted.元器件交易网Figure 3. Receiver Propagation DelaysFigure 4. Receiver Enable/Disable TimingORDERING INFORMATIONQuad RS485 Receivers:Model....................................Enable/Disable...........................................................Temperature Range................................................Package mon; active Low and Active High......................0°C to +70°C...........................................16–pin Plastic DIP mon; active Low and Active High......................0°C to +70°C....................................................16–pin SOIC mon; active Low and Active High......................–40°C to +85°C.......................................16–pin Plastic DIP mon; active Low and Active High......................–40°C to +85°C................................................16–pin SOICSP3489CP...........................One per driver pair; active High.................................0°C to +70°C...........................................16–pin Plastic DIP SP3489CT............................One per driver pair; active High.................................0°C to +70°C....................................................16–pin SOIC SP3489EP............................One per driver pair; active High.................................–40°C to +85°C.......................................16–pin Plastic DIP SP3489ET............................One per driver pair; active High.................................–40°C to +85°C................................................16–pin SOICPlease consult the factory for pricing and availability on a Tape-On-Reel option.CorporationSIGNAL PROCESSING EXCELLENCESipex CorporationHeadquarters andSales Office233 South Hillview DriveMilpitas, CA 95035TEL: (408) 934-7500FAX: (408) 935-7600Sales Office22 Linnell CircleBillerica, MA 01821TEL: (978) 667-8700FAX: (978) 670-9001e-mail: sales@Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.。
ICC UNIFORM CUSTOMS AND PRACTICE FOR DOCUMENTARYCREDITSUCP 600英文FOREWORD (3)INTRODUCTION (5)ARTICLE 1 APPLICATION OF UCP (12)ARTICLE 2 DEFINITIONS (12)ARTICLE 3 INTERPRETATIONS (14)ARTICLE 4 CREDITS V. CONTRACTS (16)ARTICLE 5 DOCUMENTS V. GOODS, SERVICES OR PERFORMANCE (16)ARTICLE 6 AV AILABILITY, EXPIRY DATE AND PLACE FOR PRESENTATION (17)ARTICLE 7 ISSUING BANK UNDERTAKING (17)ARTICLE 8 CONFIRMING BANK UNDERTAKING (19)ARTICLE 9 ADVISING OF CREDITS AND AMENDMENTS (20)ARTICLE 10 AMENDMENTS (22)ARTICLE 11 TELETRANSMITTED AND PRE-ADVISED CREDITS AND AMENDMENTS23 ARTICLE 12 NOMINATION (24)ARTICLE 13 BANK-TO-BANK REIMBURSEMENT ARRANGEMENTS (24)ARTICLE 14 STANDARD FOR EXAMINATION OF DOCUMENTS (26)ARTICLE 15 COMPLYING PRESENTATION (28)ARTICLE 16 DISCREPANT DOCUMENTS, W AIVER AND NOTICE (29)ARTICLE 17 ORIGINAL DOCUMENTS AND COPIES (31)ARTICLE 18 COMMERCIAL INVOICE (32)ARTICLE 19 TRANSPORT DOCUMENT COVERING AT LEAST TWO DIFFERENT MODES OF TRANSPORT (32)ARTICLE 20 BILL OF LADING (35)ARTICLE 21 NON-NEGOTIABLE SEA W AYBILL (37)ARTICLE 22 CHARTER PARTY BILL OF LADING (40)ARTICLE 23 AIR TRANSPORT DOCUMENT (41)ARTICLE 24 ROAD, RAIL OR INLAND W ATERW AY TRANSPORT DOCUMENTS (43)ARTICLE 25 COURIER RECEIPT, POST RECEIPT OR CERTIFICATE OF POSTING (45)ARTICLE 26 "ON DECK", "SHIPPER'S LOAD AND COUN T", “SAID BY SHIPPER TO CONTAIN”AND CHARGES ADDITIONAL TO FREIGHT (46)ARTICLE 27 CLEAN TRANSPORT DOCUMENT (46)ARTICLE 28 INSURANCE DOCUMENT AND COVERAGE (47)ARTICLE 29 EXTENSION OF EXPIRY DATE OR LAST DAY FOR PRESENTATION (49)ARTICLE 30 TOLERANCE IN CREDIT AMOUNT, QUANTITY AND UNIT PRICES (49)ARTICLE 31 PARTIAL DRA WINGS OR SHIPMENTS (50)ARTICLE 32 INSTALMENT DRA WINGS OR SHIPMENTS (51)ARTICLE 33 HOURS OF PRESENTATION (52)ARTICLE 34 DISCLAIMER ON EFFECTIVENESS OF DOCUMENTS (52)ARTICLE 35 DISCLAIMER ON TRANSMISSION AND TRANSLATION (52)ARTICLE 36 FORCE MAJEURE (53)ARTICLE 37 DISCLAIMER FOR ACTS OF AN INSTRUCTED PARTY (54)ARTICLE 38 TRANSFERABLE CREDITS (55)ARTICLE 39 ASSIGNMENT OF PROCEEDS (58)UCP600中文版UCP600第一条UCP的适用范围 (58)第二条定义 (59)第三条解释 (60)第四条信用证与合同 (61)第五条单据与货物、服务或履约行为 (61)第六条兑用方式、截止日和交单地点 (61)第七条开证行责任 (62)第八条保兑行责任 (62)第九条信用证及其修改的通知 (63)第十条修改 (64)第十一条电讯传输的和预先通知的信用证和修改 (65)第十二条指定 (65)第十三条银行之间的偿付安排 (65)第十四条单据审核标准 (66)第十五条相符交单 (67)第十六条不符单据、放弃及通知 (68)第十七条正本单据及副本 (69)第十八条商业发票 (69)第十九条涵盖至少两种不同运输方式的运输单据 (69)第二十条提单 (71)第二十一条不可转让的海运单 (72)第二十二条租船合同提单 (74)第二十三条空运单据 (74)第二十四条公路、铁路或内陆水运单据 (75)第二十五条快递收据、邮政收据或投邮证明 (77)第二十六条“货装舱面”、“托运人装载和计数”、“内容据托运人报称”及运费之外的费用。
488aa篇一:服务介绍服务介绍? 服务一、为什么电梯需要保养一台由数以千计的零部件在现场组装的电梯,由于它的高强度运转,在经过一段时间的运行后,某些零部件的间距就会发生变化,部分部件发生磨损,电/扶梯的安全性能和运行质量就得不到有效保障,因此要对电/扶梯进行定期的检查、调试、润滑和部件的修理和更换,这样可减少停梯的故障;消除安全隐患减少事故的发生;大幅度节省大修费用的产生;保证电/扶梯运行平稳舒适的运行;延长电/扶梯使用寿命;提高用户声誉;保证客户的投资。
电/扶梯制造商是保证您的电/扶梯高水准运行的唯一选择。
因为他最了解电/扶梯的性能,备有专门的检测装置和专门的零配件,拥有精通电梯技术的专门人才和庞大的支持机构和服务网络。
二、西子奥的斯服务承诺? 显著的降低召修次数和停梯时间? 使电梯的运行时间最大化? 提高业主/租户的满意度? 有效地控制总成本? 降低客户的责任? 延长电梯/部件的使用寿命XIZI OTIS 拥有全国最大的行业服务网络,各服务机构为您提供销售、安装、维修保养一条龙服务及旧梯改造技术升级服务,有千余名一线专业技术员工真诚为您服务。
对于其日常维护保养有着电梯专业的规范要求,我公司郑重承诺,对您的电梯提供以下服务:维修保养服务质量、服务承诺条款1、坚持执行国务院《特种设备安全监察条例》规定,以及相关政府部门对电梯的管理规章制度。
2、确保电梯每月保养不低于两次例行检查保养,保养符合行业安全运行标准。
3、当项目有重大活动或有重要领导人或重要参观团来访时,驻场人员提前对要使用的电梯进行安全方面的检测和确认,并可根据甲方的要求在活动期间派专人对电梯进行现场监护。
4、召修服务:维保期间内,为您免费提供365天24小时的应急故障处理服务;及时排除故障,进行必要的修理;5、充分做好电梯年检之前的自检工作,确保电梯一次性通过年检。
6、西子奥的斯每次检查保养和紧急修理完成后,认真填写电梯保养、维修记录,并通报甲方监督确认,保养任务的完成与否,以保养单为准。
Mx3000p 定量PCR 仪器操作说明Mx 3000P荧光定量PCR仪中文操作说明吉泰生物科技有限公司制2006 年1 Mx3000p 定量PCR 仪器操作说明目录MX 3000P荧光定量PCR 仪...........................................................1 中文操作说明................................................................................1 前言..............................................................................................1 简介.......................................................................................................................1 MX3000P仪器的使用.............................................................................................2 仪器状态指示LED 灯......................................................................................................... 2 使用注意事项................................................................................................................... 2 实验样品上样和取出......................................................................................................... 3 多台Mx3000P仪器安装:多台仪器的使用控制................................................................. 6 化学检测方法和试验类型的选择.......................................................................... 11 QPCR和化学检测方法介绍............................................................................................ 11 Mx3000p系统试验类型概述........................................................................................... 14 MX3000P软件导航.....................................................................16 命令菜单.............................................................................................................16 文件菜单........................................................................................................................ 17 编辑菜单........................................................................................................................ 30 仪器操作菜单................................................................................................................. 31 工具菜单........................................................................................................................ 35 选项菜单........................................................................................................................ 36 选项-光学配置................................................................................................................ 37 选项-实时检测分析参数设定........................................................................................... 42 选项-只读板检测分析参数设定....................................................................................... 53 选项—一般参数设定....................................................................................................... 54 页面菜单........................................................................................................................ 64 视图菜单........................................................................................................................ 65 窗口菜单........................................................................................................................ 66 帮助菜单........................................................................................................................ 67 工具栏.................................................................................................................68 快捷键.................................................................................................................72 快速实验方法..............................................................................74 快速板设置方法...................................................................................................74 循环程序设定快速方法........................................................................................75 运行实验快速方法...............................................................................................76 定量PCR快速分析方法........................................................................................77 相对定量快速分析方法........................................................................................78 REAL-TIME等位基因辨别快速分析方法.................................................................80 分子信标融解曲线快速分析方法..........................................................................81 定量板读取快速分析方法....................................................................................82 1 Mx3000p 定量PCR 仪器操作说明目录细节实验方法..............................................................................84 怎样设置一个新的实验........................................................................................84 板设置............................................................................................................................ 85 温度设置介绍............................................................................................................... 100 怎么运行一个实验............................................................................................. 116 准备运行...................................................................................................................... 116 开始运行...................................................................................................................... 116 监控运行...................................................................................................................... 117 在运行过程中分析数据................................................................................................. 119 取消运行...................................................................................................................... 119 观察温度曲线状态........................................................................................................ 120 观察原始数据............................................................................................................... 121 观察扩增曲线............................................................................................................... 123 如何运行一个读板实验......................................................................................125 开始运行...................................................................................................................... 125 运行监控...................................................................................................................... 126 终止定量程序的运行..................................................................................................... 127 为读板实验设置读板属性............................................................................................. 127 观察读板实验中的原始数据.......................................................................................... 128 观察读板原始数据图..................................................................................................... 129 怎样分析数据....................................................................................................131 分析数据...................................................................................................................... 131 Analysis Selection/Setup ............................................................................................. 132 指定数据分析设置........................................................................................................ 134 MX3000P系统试验操作:定量PCR ........................................ 143 定量PCR试验类型.............................................................................................143 定量PCR板的设定.............................................................................................143 绝对定量PCR热循环参数的设定.......................................................................147 绝对定量PCR 数据分析...................................................................................149 分析设置部分............................................................................................................... 149 绝对定量PCR 扩增曲线图.......................................................................................... 150 绝对定量PCR板样本值................................................................................................. 152 绝对定量PCR的标准曲线............................................................................................. 154 定量PCR起始模板的量................................................................................................. 158 绝对定量PCR双色散点图............................................................................................. 159 绝对定量PCR的文本报告............................................................................................. 162 MX3000P系统试验操作:相对定量......................................... 165 相对定量PCR试验类型......................................................................................165 相对定量实验的设定..........................................................................................169 相对定量PCR热循环参数的设定.......................................................................173 相对定量PCR 数据分析............................................................................................. 175 相对定量PCR 扩增曲线图.......................................................................................... 177 2 Mx3000p 定量PCR 仪器操作说明目录相对定量融解曲线........................................................................................................ 179 相对定量实验的样本值. (180)相对定量PCR的标准曲线............................................................................................. 183 比较结果的相对定量图................................................................................................. 188 相对定量试验样本的相对值.......................................................................................... 190 相对定量试验的文本报告............................................................................................. 192 MX3000P实验:SYBRGREEN(做融解曲线)..................... 196 SYBR GREEN实验类型......................................................................................196 SYBR GREEN板设置..........................................................................................197 SYBR GREEN温度曲线设定...............................................................................199 SYBR GREEN数据分析......................................................................................200 分析设置...................................................................................................................... 200 SYBR Green扩增曲线.................................................................................................. 202 SYBR Green融解曲线.................................................................................................. 204 SYBR Green样品板值.................................................................................................. 207 SYBR Green标准曲线.................................................................................................. 209 SYBR Green起始模板的量........................................................................................... 213 SYBR Green的文本报告.............................................................................................. 214 MX3000P实验:等位基因分型/SNP分析................................ 217 等位基因分型/SNP’S 等位基因分型/SNP’S 等位基因分型/SNP’S 等位基因分型/SNP’S 实时荧光定量实验类型....................................................217 实时荧光定量设定...........................................................218 实时荧光定量热循环程序设定.........................................220 实时荧光定量数据分析. (222)分析设定...................................................................................................................... 222 等位基因分型/SNP’s 实时荧光定量扩增曲线............................................................... 223 等位基因分型/SNP’s 实时荧光定量样品值................................................................... 225 等位基因分型/SNP’s 实时荧光定量散点分布图........................................................... 227 等位基因分型/SNP’s 实时荧光定量最终结果判定........................................................ 231 等位基因分型/SNP’s 实时荧光定量文本报告............................................................... 233 MX3000P实验:分子信标(MOLECULAR BEACON)融解曲线................................................................................................. 236 分子信标融解曲线实验类型...............................................................................236 分子信标融解曲线实验板设定...........................................................................238 分子信标融解曲线实验热循环程序设定.............................................................240 分子信标融解曲线实验数据分析......................................................................241 分析设定...................................................................................................................... 241 分子信标融解曲线实验退火温度范围............................................................................ 243 分子信标融解曲线实验融解曲线/温度........................................................................... 245 MX3000P 实验: 只读板定量实验........................................... 246 只读板定量实验.................................................................................................246 3 Mx3000p 定量PCR 仪器操作说明目录只读板定量实验板设定......................................................................................247 只读板定量实验数据分析..................................................................................250 分析设定...................................................................................................................... 250 只读板定量实验-板样品值............................................................................................ 251 只读板定量实验标准曲线............................................................................................ 253 只读板定量实验起始模板定量..................................................................................... 256 只读板定量实验双色散点分布图................................................................................. 258 只读板定量实验荧光强度值........................................................................................ 260 只读板定量实验最终结果判定..................................................................................... 263 只读板定量实验文本报告............................................................................................ 265 MX3000P实验:只读板等位基因分型实验类型....................... 268 只读板等位基因分型实验类型...........................................................................268 只读板等位基因分型实验-板设定....................................................................269 只读板等位基因分型实验-数据分析.................................................................270 分析设定...................................................................................................................... 270 只读板定量实验-板样品值............................................................................................ 272 只读板等位基因分型-双色散点分布图...................................................................... 274 只读板/等位基因分型实验-荧光强度值....................................................................... 278 只读板/等位基因分型实验-最终结果判定................................................................... 281 只读板等位基因分型实验文本报告............................................................................. 283 系统的维护及注意事项............................................................ 286 硬件信息...........................................................................................................286 更换部件...........................................................................................................286 更换保险丝........................................................................................................286 卤钨灯的更换....................................................................................................287 仪器的清洁........................................................................................................287 常见故障及排除....................................................................... 288 4 Mx3000p 定量PCR 仪器操作说明前言前言简介Mx3000p?实时荧光定量PCR仪是一款性能优越的一体式定量PCR检测系统。
产品编号2100203-0003/2019.05DMX-i主要功能和控制• 气动控制。
• 使用模拟输入或数字接口 (RS-232) 的电气控制• 系统变量参数如下:- 转速范围100 - 40,000转/分 (在整个转速范围内,可用最大扭矩超过3.0 Ncm)-步进或开/关模式转速调节-最大扭矩从10%至100%可调,以1%为增量 - 亮度控制 (16级设置) 或光纤开/关 - 反向旋转 (顺时针/逆时针)描述图表 规格 备注参考值DMX-i产品编号1501397-001电压 输入 - 32 Vdc +/- 10%速度参考值 输入 0 - 5 Vdc (线性)下拉输入旋转 (顺时针/逆时针)输入 0或5 Vdc (TTL) 下拉输入 亮度输入 0 - 5 Vdc上拉输入(16个输出级)气压 输入 0 - 3 bar (0 - 300 kPa , 参考值 0 - 43.5 psi)马达电源输出 相位A 、B 和C 光纤马达输出 L+ / L-RS-232 数字接口DIP开关操作模式选择系统使用4个DIP 开关进行配置,特别是选择操作模式 (参见下表)。
关于更多信息和技术支持,请联系瑞士-彼岸公司牙科经销商。
模式3的串联模式协议可向瑞士-彼岸公司牙科经销商索取。
0 = 关 1 = 开模式DIP 开关描述12 3 4000X X 电气模式,100 rpm 至40 000 rpm 101X X 气动模式,100 rpm 至40 000 rpm 210X X 带电流限制的气动模式 311X X 串行模式 (RS232)全部X X 1 X状态帧自动发送 (1 = 启用,0 = 禁用) 除3以外的所有模式X X X 1光纤照明延时 (1 = 启用,0 = 禁用) 仅模式311X 1帧检测 (0 = 校验和, 1 = 循环冗余校验)说明书简体中文 在本使用说明中,“设备”一词指“类型”标题下描述的产品,例如涡轮机、弯机头、手机、微型马达、套管、电子系 统、接头、综合治疗机等。
PX0408DMX512/RDM RGBW DecoderSummary·Meets DMX512/1990,RDM /2009 protocol ·Supported RDM parameters:DISC_UNIQUE_BRANCH DISC_MUTE DISC_UN_MUTE DEVICE_INFOSOFTWARE_VERSION_LABEL DMX512/RDM_START_ADDRESS IDENTIFY_DEVICE MANUFACTURER_LABEL SUPPORTED_PARAMETERSIn DMX mode set the DMX address manually by switch; in RDM mode, the host computer address allocationProduct FeaturesTechnical Parameter 1. The product has 4 channels output. The maximum 8A current per channel and the total power up to 768W.2. Set the address with the dial switch, and the operation is simple and quick.3. Euro terminal blocks and RJ45 two DMX interfaces are provided to improve signal transmission efficiency and anti-interference capability.4. With the RDM remote management protocol, the RDM master can browse and set the parameters, the DMX address modification, the device identifica-tion and other operations through the RDM master control.5. It has the functions of short-circuit, over-temperature, overload automatic protection and recovery.6. Fast self-test function.Product model:Input signal:DMX interface:Input voltage:Output:Output power: Working temperature:product size :packing measurement :Weight (net weight):Dimension(mm)Short Circuit Welcome to the PX series DMX512/ RDM decoding drive. The PX series adopts advanced microcomputer control technology, and converts the widely adopted DMX-512/1990 and RDM/2009 standard digital control signals into analog control signals. 1-4 output channels can be selected, and 256-level control levels can be implemented for each channel. The invention can be used for the connection of the computer digital output light-adjusting table and the analog silicon box, and the use occa sions of the control of the LED lamp for the building and the lamp decoration.PX0408DMX512/ RDM RJ45, green terminal 12-24VDC 8 A *4 CH.384W (12V)MAX / 768W (24V)MAXOFF ON1248163264128256FUNOFFONOFFONOFFONDIP Switch Setting···DMXRDM DMXRGBW LEDMAXDIP1~9: sets the address of the first channel of DMX decoder, and the corresponding table of dialing switch shows that the sum of numbers is the first channel address of DMX decoder. The valid address in DMX mode is 1 ≤ 511, (address 511 is self-test mode, output RGBW gradient). When the address is set to 0, the default is RDM mode.DIP10:FUN represents the end resistance of 120 ohms.(1) RJ45 Signal input and output interfaces(2)Signal light(The normal signal indicator is green flashing, but if the signal is abnormal, the indicator light is not on.)(3)Euro terminal blocks (4)Address setting interface (5)Power input interface (6)Output interface DIP1000000000DIP2DIP3DIP4DIP5DIP6DIP7DIP8DIP9DIP10NA·····Interface DescriptionConnection diagramSystem connection diagramThe Setting Of The Dmx First Address:RDM mode:when the code extraction switch 110 is fully turned upward.DMX mode: FUN = OFF (when the 10th pull-out switch is up), The DMX address can now be set by the 1-9 dial switchSelf-test mode: FUN = OFF (address 511 is self-test mode, output RGBW gradienHookup(1)The DMX512/ RDM is directly connected, and the DMX512/ RDM signal has positive and negative signals. Pay attention to the polarity when wiring. A positive signal, a negative signal, and a ground signal are connected to an interface corresponding to the device(2)Refer to "DMX series address dial code table" to set DMX address by dial code switch.(3) The tail of the whole wiring needs to be connected to the signal Terminator at the end of the connection.PX0408概述产品尺寸(mm)·符合DMX512/1990,RDM/2009国际标准协议·支持RDM 参数:DISC_UNIQUE_BRANCH DISC_MUTE DISC_UN_MUTE DEVICE_INFOSOFTWARE_VERSION_LABEL DMX512/RDM_START_ADDRESS IDENTIFY_DEVICE MANUFACTURER_LABEL SUPPORTED_PARAMETERS在DMX 模式下通过拨码开关手动设置DMX 地址; 在RDM 模式下,上位机分配地址产品特点技术参数欢迎使用PX 系列DMX512/RDM 解码驱动器。
Video SwitchMAX4886EYE DIAGRAM(V DD = 3.3V, f = 2.6GHz600mV P-P PRBS SIGNAL+)* PRBS = PSUEDORANDOM BIT SEQUENCEUI = 606ps________________________________________________________________Maxim Integrated Products1For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at1-888-629-4642, or visit Maxim’s website at .M A X 4886Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All voltages referenced to GND.)V DD ...........................................................................-0.3V to +4V SEL (Note 1)...............................................-0.3V to (V DD + 0.3V)COM_, NC_, NO_.......................................-0.3V to (V DD + 0.3V)Continuous Current Through Any Switch.......................±120mA Peak Current Through Any Switches(Pulsed at 1ms, 10% duty cycle).................................±240mAContinuous Power Dissipation (T A = +70°C)42-Pin Thin QFN-EP (derate 35.7mW/°C above+70°C).....................................................................2857.1mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Junction Temperature ....................................................+150°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V DD = +3.0V to +3.6V, T A = T MIN to T MAX . Typical values are at V DD = +3.3V, T A = +25°C, unless otherwise noted.) (Note 2)Note 1:Signal exceeding V DD or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.MAX4886Quad, High-Speed HDMI/DVI 2:1 DigitalVideo Switch_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V DD = +3.0V to +3.6V, T A = T MIN to T MAX . Typical values are at V DD = +3.3V, T A = +25°C, unless otherwise noted.) (Note 2)Note 2:Maximum and minimum limits over temperature are guaranteed by design and characterization. Device is production testedat T A = +25°C.Note 3:Negative current is going into COM_ and out of NO_ or NC_.Note 4:Guaranteed by design.M A X 4886Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch 4_______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)110100010010,000FREQUENCY RESPONSEFREQUENCY (MHz)O N -L O S S (d B )-8-1-2-3-4-5-6-7M A X 4886 t o c 05LEAKAGE CURRENT vs. TEMPERATURETEMPERATURE (°C)L E A K A G E C U R R E N T (n A )M A X 4886 t o c 04-40-15103560850.1110ON-RESISTANCE vs. V COM_V COM_ (V)O N -R E SI S T A N C E (Ω)0.61.21.82.43.0 3.67.27.37.47.57.67.77.87.98.08.18.2ON-RESISTANCE vs. TEMPERATUREV COM_ (V)O N -R E S I S T A N CE (Ω)00.30.60.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.312345678910SUPPLY CURRENT vs. SUPPLY VOLTAGEV DD (V)S U P P L Y C U R R E N T (μA )3.0 3.1 3.23.3 3.4 3.5 3.6400450500550600650700MAX4886Quad, High-Speed HDMI/DVI 2:1 DigitalVideo Switch_______________________________________________________________________________________5M A X 4886Detailed DescriptionThe MAX4886 high-speed analog switch is ideal for H DMI/DVI switching applications, permitting 2:1 or 1:2switching. The MAX4886 contains four differential pairs for HDMI or DVI switching. The MAX4886 connects either one monitor to one of two digital video signals or one HDMI/DVI output to one of two connectors or loads.The MAX4886 differential switches are based on an nFET architecture with an internal charge pump for gate overdrive. This advanced architecture results in an extremely low capacitance and on-resistance needed for an excellent returns loss.The MAX4886 features an 8Ω(typ) on-resistance and 2.5pF on-capacitance switches for routing RGB and CLK video signals.switches can be used to route RGB and CLK video signals.The device will also be useful in other high-speed switching applications such as LVDS and LVPECL.Analog-Signal LevelsSignal inputs over the full voltage range (0V to V DD ) are passed through the switch with minimal change in on-resistance (see the Typical Operating Characteristics section). The switches are bidirectional. Therefore,COM_, NC_, and NO_ can be either inputs or outputs.Logic Inputs (SEL)The MAX4886 has a logic input that controls the switch on/off function. Use SEL to switch COM_ to NO_ or COM_ to NC_. Table 1 and the Functional Diagram illustrate the MAX4886 Truth Table.Applications InformationPower-Supply Bypassing and SequencingProper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device.Always sequence V DD on first, followed by the switch inputs and the logic inputs. Bypass at least one V DD input to ground with a 0.1µF capacitor as close to the device as possible. Use the smallest physical size pos-sible for optimal performance.It is also recommended to bypass more than one V DD input. A good strategy is to bypass one V DD input with a 0.1µF capacitor and at least a second V DD input with a 1nF to 10nF capacitor. (Use 0603 or smaller physical size ceramic capacitor).PC Board (PCB) LayoutH igh-speed switches such as the MAX4886 require proper PCB layout for optimum performance. Ensure that impedance-controlled PCB traces for high-speed signals are matched in length, and as short as possi-ble. Connect the MAX4886 exposed paddle to a solid ground plane.Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch 6_______________________________________________________________________________________Functional DiagramMAX4886Quad, High-Speed HDMI/DVI 2:1 DigitalVideo Switch_______________________________________________________________________________________7Figure 1. Switching TimeFigure 2. Propagation DelayTiming Circuits/Timing DiagramsM A X 4886Additional ApplicationsInformationIn a typical application (see Figure 5), the MAX4886and MAX4929 are used to route the TMDS signals and low-frequency signals between two HDMI inputs.In another application (see Figure 6), the MAX4886 is used in a notebook to route high-frequency DVI port on the computer or to the connector on the docking sta-tion. The MAX4886 routes four differential signals (RGB and CLK) either to the DVI connector or to the docking station port. The switch is inherently bilateral and may be used as a 2:1 or 1:2 mux without penalties.Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch 8_______________________________________________________________________________________Timing Circuits/Timing Diagrams (continued)Figure 3. Skew MeasurementsChip InformationPROCESS: BiCMOSConnect exposed paddle to GND.MAX4886Quad, High-Speed HDMI/DVI 2:1 DigitalVideo Switch_______________________________________________________________________________________9Timing Circuits/Timing Diagrams (continued)Figure 4. On-Loss, Off-Isolation, and CrosstalkFigure 5. TV/Monitor ApplicationTypical Application DiagramsM A X 4886Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch 10______________________________________________________________________________________Typical Application Diagrams (continued)Pin ConfigurationMAX4886Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch______________________________________________________________________________________11Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 4886Quad, High-Speed HDMI/DVI 2:1 Digital Video SwitchMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages.)。
SPECIFICATIONFORLCD MODULECustomer :Product Model:Designed byChecked byApproved by※The specification of “TBD” should refer to the measured value of sample . If there is difference between the design specification and measured value, we naturally shall negotiate and agree to solution with customer.Sample code:宇华国际科技有限公司YuHua INT,L Technology Co., LIMITEDYH043MD40-00Record of RevisionVersion Revise Date Page ContentPre-spec .01 2014/10/14 Initial Release.Contents1. General Specifications (1)2. Pin Assignment (2)2.1. T FT LCD Panel Driving Section (2)3. Operation Specifications (4)3.1. A bsolute Maximum Ratings (4)3.2. T ypical operation conditions (5)3.3 Backlight Driving Conditions (5)3.4. P ower Sequence (6)3.5. T iming Characteristics (7)3.5.1. Timing Conditions (7)3.5.2.Timing Diagram (8)4. Optical Specifications ................................................................................. (9)5. Reliability Test Items (13)6. General Precautions (14)7.1. Safety (14)7.2. Handling (14)7.3. Static Electricity (14)7.4. Storage (14)7.5. Cleaning (14)7. Mechanical Drawing (15)9. Package Drawing (16)9.1. Packaging Material Table (16)9.2. Packaging Quantity (16)9.3. Packaging Drawing (17)1. General SpecificationsNo. Item Specification Remark1 LCD size 4.3 inch(Diagonal)2 Driver element a-Si TFT active matrix3 Resolution 480 × 3 (RGB) × 2724 Display mode Normally White, Transmissive5 Dot pitch 0.066(W) × 0.198(H) mm6 Active area 95.04(W) × 53.856(H) mm7 Module size 101.7(W) × 63.5(H) ×1.43(D) mm Note 18 Surface treatment Anti-Glare9 Color arrangement RGB-stripe10 Interface Digital11 Backlight Power consumption TBD W(Typ.)12 Panel Power consumption TBD W (Typ.)13 Weight TBD (Typ.)Note 1: Refer to Mechanical Drawing.2. Pin Assignment2.1. T FT LCD Panel Driving SectionFPC Connector is used for the module electronics interface. The recommended model is YH043MD40-00 ” manufactured by HIROSE.Pin No. Symbol I/O Function Remark1 V LED-P Power for LED backlight cathode2 V LED+P Power for LED backlight anode3 GND P Power ground4 V DD P Power voltage5 R0 I Red data (LSB)6 R1 I Red data7 R2 I Red data8 R3 I Red data9 R4 I Red data10 R5 I Red data11 R6 I Red data12 R7 I Red data (MSB)13 G0 I Green data (LSB)14 G1 I Green data15 G2 I Green data16 G3 I Green data17 G4 I Green data18 G5 I Green data19 G6 I Green data20 G7 I Green data (MSB)21 B0 I Blue data (LSB)22 B1 I Blue data23 B2 I Blue data24 B3 I Blue data25 B4 I Blue data26 B5 I Blue data27 B6 I Blue data28 B7 I Blue data (MSB)29 GND P Power ground30 CLK I Pixel clock31 DISP I Display on/off32 NC - No connection33 NC - No connection34 DE I Data Enable35 NC - No connection36 GND P Power ground37 NC - No connection38 NC - No connection39 NC - No connection40 NC - No connectionI: input, O: output, P: PowerPage : 3/223. Operation Specifications3.1. Absolute Maximum Ratings(Note 1)ValuesItem SymbolMin. Max.UnitRemark Power voltage V DD -0.55.0 VInput signal voltage Logic input-0.5 5.0 VOperation temperature T OP -10 70 ℃Note 3, 4 Storage temperature T ST -20 80 ℃ Note 3, 4 LED Reverse Voltage V R Each LEDNote 2LED Forward Current I FNote 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. A module should be used with any of the absolutemaximum ratings exceeded, the characteristics of the module may not berecovered, or in an extreme condition, the module may be permanentlydestroyed.Note 2: V R Conditions: Zener Diode 20mANote 3: 90% RH Max. (Max wet temp. is 60℃)Maximum wet-bulb temperature is at 60℃ or less. And No condensation (nodrops of dew)(℃)Note 4: In case of temperature below 0℃,the response time of liquid crystal (LC) becomes slower and the color of panel darker than normal one.+60℃, 90%RH3.2. Typical operation conditionsValuesUnit Remark Item SymbolMin. Typ. Max.Power voltage V DD 3.1 3.3 3.5 VCurrent for Driver IV DD - TBD 25 mA V DD = 3.3VInput logic high voltage V IH 0.8V DD - V DD VNote 1Input logic low voltage V IL GND - 0.2V DD VNote1: CLK, DE, R0~ R7, G0~ G7, B0~ B7.3.3 Backlight Driving ConditionsValuesItem SymbolUnit RemarkMin. Typ. Max.Voltage for LED Backlight V L Note 2Current for LED Backlight I LLED life time - - Hr Note 1Note 1: The “LED life time” is defined as the module brightness decrease to 50% original brightness that the ambient temperature is 25℃ and I L =20mA. TheLED lifetime could be decreased if operating I L is lager than 20 mA.Note 2: The LED Supply Voltage is defined by the number of LED at Ta=25℃ andI L =20mA.Page : 5/223.4. Power SequenceTo prevent a latch-up or DC operation of the LCD module, the power on/off sequence should be as the diagram below.Symbol Specification Symbol Specification T1 0≦T1≦10 msec T4 160 msec ≦T4 T2 0≦T2≦100 msec T5 160 msec ≦T5 T30≦T3≦200 msecT61 msec ≦T63.5. Timing Characteristics3.5.1. Timing ConditionsParallel DE mode RGB input timing tableValueUnit Parameter SymbolMin. Typ. Max.CLK frequency fclk 7 9 12 MHz DEV period time Tv 277 288 400 H DEV display area Tvd 272HDEV blanking Tvb 5 16 128 HDEH period time Th 520 525 800 CLK DEH display area Thd 480 CLKDEH blanking Thb 40 45 320 CLK CLK cycle time Tclk83 110 143 ns Clock width of high level Tcwh 40 50 60 % Clock width of low level Tcwl 40 50 60 % Clock rising time t rck- 9 ns Clock falling time t fck- 9 ns Data Setup Time t desu10 - - nsData Hold Time t dahd10 - - nsDE Setup Time t desu10 - - nsDE Hold Time t dehd10 - - ns3.5.2. Timing Diagram4. Optical SpecificationsValuesItemSymbolConditionMin.Typ. Max. UnitRemarkθL Φ=180°(9 o’clock) 60 70 - θR Φ=0°(3 o’clock) 60 70 -θT Φ=90°(12 o’clock) 40 50 - Viewing angle (CR≥ 10) θB Φ=270°(6 o’clock)60 70 - degree Note 1T ON-1020msecNote 3Response timeT OFF- 15 30 msec Note 3 Contrast ratioCR 400 500 - - Note 4 W X0.260.310.36-Color chromaticityW Y0.280.330.38-Note 2 Note 5 Note 6Luminance L Luminance uniformityY UNormal θ=Φ=0°Test Conditions:1. V DD =3.3V2. The test systems refer to Note 2.Note 1: Definition of viewing angle rangeFig. 4-1 Definition of viewing angleNote 2: Definition of optical measurement system.The optical characteristics should be measured in dark room. After 30 minutesoperation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)Fig. 4-2 Optical measurement system setupNormal lineθ=Φ=0°Normal line θ=Φ=0°Photo detectorΦ=90°12 o’clock directionΦ=270° 6 o’clock direction Φ=0°Φ=180°Active Area500mmΦ=90°12 o’clock directionΦ=270°6 o’clock directionΦ=0°Φ=180°Active AreaθL θTθBθRNote 3: Definition of Response timeThe response time is defined as the LCD optical switching time intervalbetween “White” state and “Black” state. Rise time (T ON ) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T OFF ) is the time between photo detector output intensity changed from 10% to 90%.Fig. 4-3 Definition of response timeNote 4: Definition of contrast ratiostate Black"" the on LCD when measured Luminance stateWhite"" the on LCD when measured Luminance (CR) ratio Contrast =Note 5: Definition of color chromaticity (CIE1931)Color coordinates measured at center point of LCD.Note 6: All input terminals LCD panel must be ground while measuring the center area of90%10% 0%P h o t o d e t e c t o r o u t p u t (R e l a t i v e v a l u e )ONT White (TFT OFF)Black (TFT ON)White (TFT OFF)Note 7: Definition of Luminance UniformityActive area is divided into 9 measuring areas (Refer to Fig. 4-4 ).Everymeasuring point is placed at the center of each measuring area.max minB B (Yu)Uniformity Luminance =L-------Active area length W----- Active area widthWW /3W /3W /6L/3L/3L/6LFig. 4-4 Definition of measuring pointsB max : The measured maximum luminance of all measurement position. B min : The measured minimum luminance of all measurement position.5. Reliability Test Items(Note3)Item Test Conditions Remark High Temperature Storage Ta = 80℃240 hrs Note 1,Note 4 Low Temperature Storage Ta = -20℃240hrs Note 1,Note 4 High Temperature Operation Ts = 70`℃240hrs Note 2,Note 4 Low Temperature Operation Ta = -10℃240hrs Note 1,Note 4 Operate at High Temperatureand Humidity+60℃, 90%RH 240 hrs Note 5Thermal Shock -20℃/30 min ~ +70℃/30 min for a total100 cycles, Start with cold temperatureand end with high temperatureNote 4Vibration Test Frequency range:10~55Hz Stroke:1.5mmSweep:10Hz~55Hz~10Hz2 hours for each direction of X. Y. Z.(6 hours for total)Mechanical Shock 100G 6ms,±X, ±Y, ±Z 3 times for each directionPackage Vibration Test Random Vibration :0.015G*G/Hz from 5-200HZ,-6dB/Octave from 200-500HZ2 hours for each direction of X. Y. Z.(6 hours for total)Package Drop Test Height:60 cm1 corner, 3 edges, 6 surfacesElectro Static Discharge ± 2KV, Human Body Mode, 100pF/1500ΩNote 1: Ta is the ambient temperature of samples.Note 2: Ts is the temperature of panel’s surface.Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but doesn’t guarantee all the cosmetic specification.Note 4: Before cosmetic and function tests, the product must have enough recovery time, at least 2 hours at room temperature.6. General Precautions7.1. SafetyLiquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.7.2. Handling1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or toexcessive force on its surface.2. The polarizer attached to the display is easily damaged. Please handle itcarefully to avoid scratch or other damages.3. To avoid contamination on the display surface, do not touch the module surfacewith bare hands.4. Keep a space so that the LCD panels do not touch other components.5. Put cover board such as acrylic board on the surface of LCD panel to protectpanel from damages.6. Transparent electrodes may be disconnected if you use the LCD panel underenvironmental conditions where the condensation of dew occurs.7. Do not leave module in direct sunlight to avoid malfunction of the ICs.7.3. Static Electricity1. Be sure to ground module before turning on power or operating module.2. Do not apply voltage which exceeds the absolute maximum rating value.7.4. Storage1. Store the module in a dark room where must keep at 25±10℃ and 65%RH orless.2. Do not store the module in surroundings containing organic solvent or corrosivegas.3. Store the module in an anti-electrostatic container or bag.7.5. Cleaning1. Do not wipe the polarizer with dry cloth. It might cause scratch.2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals mightpermanent damage to the polarizer.9. Package Drawing9.1. Packaging Material TableNo. ItemModel(Material)Dimensions(mm)UnitWeight(kg)Quantity(pcs)Remark1 LCM FOGModuleYHW043TN01 101.7 × 63.5 × 1.43 TBD 1002 Partition BC Corrugated paper3 CorrugatedBarBC Corrugatedpaper349 × 173 0.030 84 Dust-ProofBagPE 700 × 530 0.060 15 CorrugatedBoard-1BC CorrugatedPaper510 × 343 0.130 26 CorrugatedBoard-2BC CorrugatedPaper1152 × 512 0.260 17 A/S Bag PE 132 × 117 0.002 1608 Carton Corrugatedpaper511 × 296 × 135 1.100 19 Total weight TBD9.2. Packaging Quantity(1) LCM quantity per Partition: 2Rows x 50quantity per Row = 100 pcs(2) Total LCM quantity in Carton: 1 layer x 100 pcs pe r Partition = 100 pcs Page : 16/22SPEC NO.: C043-25-TT-01505 × 290 × 130 1.102 2-40NM00。
Transmitter Optical, Electrical CharacteristicsParameter Symbol Min Typ Max Unit Note Input differential impedance R in100ΩDifferential data input swing V in PP 1001200mVTransmit Disable Input High V oltage 2.0VTransmit Disable Input Low V oltage 0.8 VTransmit Fault OutputHighV oltage 2.0VTransmit Fault Output LowV oltage 0.8 VTransmit Disable Assert Time 0.14 5 µsOptical Transmit Power P O-9.5-3 dBm Average Power Extinction Ratio ER 9 dBOutput Spectrum Width(RMS) ∆λ 4 nmReceiver Optical, Electrical CharacteristicsParameter Symbol Min Typ Max Unit Note Single ended data output swing V out PP 200 800 mVReceiver Loss of Signal Output2 VV oltage -highReceiver Loss of Signal Output0.8 VV oltage -lowSensitivity Sen -20 dBm BER<1E-10 Maximum Input Power P inMAX-3 dBmSignal detect Range -30 -21 dBmSignal detect-Hysteresis 0.5 dBAbsolute Maximum RatingsParameter Symbol Min Max Unit Note Storage Temperature T S-40 +85 ℃Operating Temperature T O0 +70 ℃Power Supply V oltage V CC-0.5 6.0 VTop of board Bottom of boardPin Assignment:Pin NameDescription1 VEET Transmitter Ground2 TXFAULT Transmitter Fault.3 TXDIS Transmitter Disable.4 MOD_DEF(2) SDA Serial Data Signal5 MOD_DEF(1) SCL Serial Clock Signal6 MOD_DEF(0) Grounded within the module.7 Rate SelectNo connection required8 LOS Loss of Signal indication. Logic 0 indicates normal operation. 9 VEER Receiver Ground 10 VEER Receiver Ground 11 VEER Receiver Ground 12 RD- Receiver Inverted DATA out. 13 RD+ Receiver Non-inverted DATA out. 14 VEER Receiver Ground 15 VCCR Receiver Power Supply 16 VCCT Transmitter Power Supply 17 VEET Transmitter Ground18 TD+ Transmitter Non-Inverted DATA in. 19 TD- Transmitter Inverted DATA in. 20VEETTransmitter GroundTransmitter SectionThe transmitter sectionconsists of 1310nm FPlaser in an eye safe opticalsubassembly (OSA) whichmates to the fiber cable.The laser OSA is driven bya LD driver IC whichconverts differential inputLVPECL logic signals intoan analog laser drivingcurrent.TX-FAULTTX Fault is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩ resistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.When sensing an improper power level in the laser driver, the SFP sets this signal high and turns off the laser. TX-FAULT can be reset with the TX-DISABLE line. The signal is in TTL level.TX-DISABLETX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7 – 10 KΩ resistor. Its states are: Low (0 – 0.8V): Transmitter on; (>0.8, < 2.0V): Undefined; High (2.0 – 3.465V): Transmitter Disabled; Open: Transmitter Disabled. The TX-DISABLE signal is high (TTL logic “1”) to turn off the laser output. The laser will turn on when TX-DISABLE is low (TTL logic “0”).TD-/+These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 – 2400 mV (250 – 1200 mV single-ended), though it is recommended that values between 500 and 1200 mV differential (250 – 600 mV single-ended) be used for best EMI performance.Receiver SectionThe receiver utilizes an InGaAs PIN photodiode mounted together with a trans-impedance preamplifier IC in an OSA. This OSA is connected to a circuit providing post-amplification quantization, and optical signal detection.RX-LOSLOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩresistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.The RX-LOS is high (TTL logic “1”) when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.RD-/+These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100 Ω(differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 2000 mV differential (185 – 1000 mV single ended) when properly terminated.Recommended Interface CircuitDimensions are in millimeters. All dimensions are ±0.1mm unless otherwise specified. (unit:mm).Statement:Genuine-optical company has the ultimate explanation authority to the content of the product material, if there have some modifies, we’re sorry for can’t give a notice.Users should for our company on their one's own uses performance should having prove going on of products, our company is not responsible for performance of user's products . Any standard , agreement that this text quotes are only for referential use, do not do the basis of examining the quality of the products , whether the products are qualified to produce factory's test stone to fix with our company.Version: V2.1Publishing Date: 2005-04-28Contact Information:Address: Huagong Tech BDG, Science &Technology Region of Hust,Donghu High-Tech Zone, Wuhan Hubei, P.R.ChinaPost Code: 430223Tel: +86-27-87180097Website: 。