Synthesis of poly(3hexylthiophene) grafted TiO2 nanotube composite
- 格式:pdf
- 大小:550.58 KB
- 文档页数:7
阳离子聚乙烯醇的合成及表征郭乃妮【摘要】本文用三甲胺、环氧氯丙烷水法合成醚化剂缩水甘油基三甲基氯化铵(GTMAC)中间体,再用GTMAC与高分子聚合物聚乙烯醇(PYA)反应制得阳离子聚乙烯醇.研究了GTMAC和PVA的用量比、反应液的pH值、反应温度、反应时间对阳离子聚乙烯醇的合成影响,所得产物阳离子聚乙烯醇的产率高达96.58%,阳离子取代度值w=97.01%.对产物阳离子聚乙烯醇的结构进行了红外表征.%In this paper, the etherifying agent glycidyl trimethyl ammonium chloride (GTMAC) by trimethylamine and epichlorohydrin under water were synthesised, then cationic polyvinyl alcohol by reaction of polyvinyl alcohol (PVA) and GTMAC was prepared. The affecting factors in the synthesis of PVA such as the molar ratio between GTMAC and PVA, the pH of reaction solution, reaction temperature, reaction time were studied. The yield of cationic PVA was 96.58%, and the cationic substitution degree wasw=97.01%. At the same time, the structure of cationic polyvinyl alcohol was characterized by IR.【期刊名称】《皮革与化工》【年(卷),期】2013(030)001【总页数】4页(P13-16)【关键词】GTMAC;PVA;阳离子;合成;表征【作者】郭乃妮【作者单位】咸阳师范学院化学与化工学院,陕西咸阳712000【正文语种】中文【中图分类】O632.31聚乙烯醇(PVA)具有独特化学性质,常用于生产涂料、乳化剂、纸品加工剂、粘合剂、分散剂、薄膜等产品,应用范围涉及纺织、皮革、造纸、建筑、印刷、农业及高分子化工等行业[1-3]。
openmv灰度寻迹使用方法OpenMV是一款基于MicroPython和ARM Cortex-M7处理器的开源视觉开发平台,它可以用于机器视觉应用的开发和实现。
其中,灰度寻迹是OpenMV的一个重要功能,它可以通过识别并跟踪图像中的灰度特征,实现自动化导航、跟踪等应用。
本文将详细介绍OpenMV 灰度寻迹的使用方法,并通过举例说明操作步骤和注意事项。
一、灰度寻迹概述在机器视觉中,灰度图像是指使用灰度值来表示图像亮度的图像。
灰度寻迹是一种基于图像灰度信息的目标追踪方法,通过识别目标的灰度特征,实现目标的跟踪和导航。
OpenMV 提供了丰富的API和功能,使得灰度寻迹变得简单而便捷。
二、OpenMV灰度寻迹的基本步骤1. 初始化摄像头首先,需要引入相应的库文件并初始化摄像头。
通过调用相应的函数,设置摄像头的分辨率、帧率等参数。
2. 设置ROI区域ROI(Region of Interest)是指在图像中选择感兴趣的区域。
对于灰度寻迹来说,通过设置ROI可以提高寻迹的精准度和效果。
通过调用相应的函数,定义ROI的位置和大小。
3. 设置灰度阈值灰度阈值决定了目标灰度特征的范围。
可以通过调用相应的函数,设置灰度阈值的上下限。
4. 图像灰度化处理OpenMV提供了快速灰度化图像的功能,可以将彩色图像转换为灰度图像。
5. 寻找灰度特征在灰度图像中,通过调用相应的函数寻找目标的灰度特征。
OpenMV提供了多种灰度特征识别的算法,如霍夫变换等。
6. 目标追踪与控制通过获取目标的位置信息,可以实现对机器人、小车等设备的追踪与控制。
通过调用相应的函数,实现对目标位置的跟踪、转向等控制操作。
三、使用注意事项1. 灰度阈值的设定要合理,过高或过低都可能导致灰度寻迹的效果不理想。
2. ROI的选择要根据具体应用场景进行合理设置,以提高目标的检测准确度和速度。
3. 灰度特征的识别算法选择要根据目标的具体特征进行合理选择,以获得较好的效果。
收稿:2007年7月,收修改稿:2007年10月 3国家自然科学基金项目(N o.20602012,2053310)和上海市青年科技启明星计划(N o.07QA14017)资助33通讯联系人 e 2mail :hhwu @手性咪唑啉酮类有机催化剂催化的不对称反应3姚成福 孙彩霞 闫少宇 吴海虹33(上海华东师范大学化学系绿色化学与化工过程绿色化重点实验室 上海200062)摘 要 近年来,不对称有机催化过程日趋成熟,用于越来越多的实际应用。
相对于金属催化过程有机胺催化剂具有许多潜在的优势:相对比较稳定,价格较低,容易得到,没有金属泄露到环境或产品中的风险以及对操作环境要求不高等,有机胺催化已被证明是实现不对称转化的有效手段。
手性咪唑啉酮催化剂是有机胺催化剂中重要的一种类型。
本文总结了手性咪唑啉酮催化剂在Diels 2Alder 反应、1,32偶极环加成、Michael 反应、Friedel 2Crafts 烷基化等不对称催化反应中的应用研究进展,并对未来手性咪唑啉酮在工业中的应用作了展望。
关键词 有机催化 不对称反应 手性咪唑啉酮 亚胺离子 烯胺 中间体中图分类号:O621125;O643136 文献标识码:A 文章编号:10052281X (2008)0620887212Chiral Imidazolidinones 2C atalyzed Asymmetric R eactionsYao Chengf u Sun Caixia Yan Shaoyu Wu Haihong33(Shanghai K ey Laboratory of G reen Chemistry and Chemical Processes ,Chemistry Departmentof East China Normal University ,Shanghai 200062,China )Abstract Enantioselective organocatalytic processes have developed maturely in recent years with an im pressive number of applications now available.Aminocatalysis has proven to be a powerful procedure for the enantioselective trans formations owing to their potential advantages over metal 2catalyzed processes :usually m ore stable ,less expensive ,readily available ,no risk of metal leakage into environment or the product ,and can be applied in less demanding reaction conditions.Chiral imidazolidinones is an im portant s ort of aminocatalysts.The paper summarizes the applications and advances of chiral imidazolidinones in asymmetric catalytic reactions ,such as Diels 2Alder reaction ,1,32dipolar cycloaddition ,Michael reaction ,Friedel 2Crafts alkylation.M oreover ,the future applications of chiral imidazolidinones in the industry manu factures are als o prospected.K ey w ords organocatalysis ;asymmetric reactions ;chiral imidazolidinones ;iminium ions ;enamine ;intermediate1 引言不对称催化反应是当前有机合成和催化科学的前沿研究领域[1—3]。
新型不对称吡喃鎓方酸菁染料的晶体结构(英文)
陈建国;黄德音;黎源
【期刊名称】《感光科学与光化学》
【年(卷),期】2000(18)2
【摘要】通过缓慢挥发溶剂法得到一种不对称吡喃方酸菁染料的单晶 ,测定了其晶体结构 .其晶系为三斜晶系 ,空间群为P1 ,a =0 .92 2 8( 4 ) ,b =1 .41 2 2 ( 6) ,c=0 .61 2 4 ( 3)nm ,α =93.97( 4 ) ,β=98.1 4( 5) ,γ =71 .0 5( 4 ) ,V
=0 .7470 ( 6)nm3,Z =1 .用晶体结构数据解释了此不对称染料的1 H NMR谱 .【总页数】8页(P104-111)
【关键词】吡喃Weng方酸染料;菁染料;晶体结构;^1H-NMR谱
【作者】陈建国;黄德音;黎源
【作者单位】上海交通大学化学化工学院
【正文语种】中文
【中图分类】TQ614.4;O644
【相关文献】
1.新型不对称吡喃鎓方酸菁染料的晶体结构 [J], 陈建国;黄德音;黎源
2.新型吡喃鎓方酸菁染料溶剂效应、聚集行为研究 [J], 陈建国;黎源;黄德音
3.近红外水溶性不对称吲哚方酸菁染料的合成 [J], 宋波;于浩;刘翠翠;马文辉;彭孝军
4.一种新型含肉桂酸酯结构的螺吡喃光致变色染料的合成与性能研究 [J], 申凯华; 崔东熏
因版权原因,仅展示原文概要,查看原文内容请购买。
聚乙烯醇的合成工艺流程英文回答:Polyvinyl alcohol (PVA) is a synthetic polymer that is widely used in various industries, including textiles, adhesives, and coatings. The synthesis of PVA involves several steps, which are outlined below.1. Vinyl Acetate Hydrolysis: The first step in the synthesis of PVA is the hydrolysis of vinyl acetate. Vinyl acetate is reacted with water in the presence of a catalyst, such as sodium hydroxide or sulfuric acid. This reaction results in the formation of vinyl alcohol.2. Vinyl Alcohol Polymerization: The vinyl alcohol produced in the previous step is then polymerized to form polyvinyl alcohol. This polymerization reaction istypically carried out in the presence of a catalyst, suchas borax or formaldehyde. The reaction conditions,including temperature and pressure, are carefullycontrolled to ensure the desired molecular weight and properties of the PVA.3. Purification: After the polymerization reaction, the PVA is typically purified to remove any impurities. This purification process may involve filtration, precipitation, or solvent extraction. The purified PVA is then dried to remove any residual moisture.4. Granulation: The dried PVA is usually granulated to obtain a more convenient form for further processing. Granulation involves crushing the PVA into small particles or pellets. This step improves the handling and storage properties of the PVA.5. Packaging: The final step in the synthesis of PVA is packaging. The granulated PVA is typically packaged in bags or containers, ready for distribution and use in various applications.In conclusion, the synthesis of polyvinyl alcohol involves the hydrolysis of vinyl acetate, followed bypolymerization, purification, granulation, and packaging. This process results in the production of PVA, which is a versatile polymer used in many industries.中文回答:聚乙烯醇(PVA)是一种合成聚合物,广泛应用于纺织品、粘合剂和涂料等各个行业。
聚3-己基噻吩的合成及表征宫玉梅;夏令明;梁青;郭静;张鸿【摘要】采用KCTP(chain growth Kumada catalyst-transfer polycondensation)法合成了头尾相连的聚3-己基噻吩(HT-P3 HT).研究了催化剂1,3-双(二苯基膦)丙烷氯化镍[Ni(dppp)Cl2]的用量和促进剂氯化锂的加入对P3HT 相对分子质量(Mr)及其分布的影响,利用1 H-NMR、GPC对P3HT结构及相对分子质量进行了表征.结果表明,所得P3HT具有高度的有序性.P3HT的相对分子质量及多分散系数(PDI)由单体2,5-二溴-3己基噻吩(1)与催化剂的摩尔比所决定.随着单体与催化剂摩尔比的增大,P3HT的相对分子质量成线性增大而多分散系数呈线性下降;当加入促进剂无水氯化锂而其他条件不变时,所得P3HT的相对分子质量变大而多分散系数变小.【期刊名称】《大连工业大学学报》【年(卷),期】2013(032)006【总页数】4页(P449-452)【关键词】聚3-己基噻吩;有序;相对分子质量【作者】宫玉梅;夏令明;梁青;郭静;张鸿【作者单位】大连工业大学纺织与材料工程学院,辽宁大连 116034;大连工业大学纺织与材料工程学院,辽宁大连 116034;大连工业大学纺织与材料工程学院,辽宁大连 116034;大连工业大学纺织与材料工程学院,辽宁大连 116034;大连工业大学纺织与材料工程学院,辽宁大连 116034【正文语种】中文【中图分类】TQ324.90 引言可溶性共轭聚合物因其良好的溶解性、低成本、易加工、环境稳定性等特点,已被广泛应用于有机薄膜太阳能电池、有机场效应晶体管、有机发光二极管、光学传感器等光电器件中[1-3]。
在众多可溶性共轭聚合物中,有序聚3-己基噻吩(HTP3HT)作为聚噻吩类的一种,由于其烷基侧链的有序排列,使得共轭主链间能够有效地π-π堆积,使其具有较高的电荷载体迁移率而成为制备光伏材料时的首选聚合物。
新型含双酚衍生物三枝氟硼二吡咯染料的合成及其光物理性能丁丽萍;祁欣;王南翔;甄文【摘要】A bis-phenoxy substituted intermediate(1) bearing an aldehyde group was synthesized from cyanuric chloride.A series of tris-phenoxy substituted intermediates(3a~3e) were synthesized by nucleophilic substitution of 1 with phenolic nucleophiles(2a~2e).Five new tripod boron dipyrromethene(BODIPY) dyes(4a~4e) bearing bis-phenolic derivatives were synthesized by condensation, oxidation, and coordination reaction from 3a~3e.The structures were characterized by 1H NMR, 13C NMR and HR-MS(ESI).The maximum absorption wavelength and emission wavelength of 4a~4e located around 499 nm and 508 nm, respectively.And the fluorescent quantum yields were between 0.41~0.55.That indicated the typical photophysical properties of the BODIPY fluorophore.%以三聚氯氰为原料合成含醛基的二酚氧基取代中间体(1);1分别与酚衍生物(2a~2e)经取代反应制得三酚氧基中间体(3a~3e);3a~3e经缩合、氧化和配位等反应合成了5个新型的含双酚衍生物三枝氟硼二吡咯(BODIPY)荧光染料(4a~4e),其结构经1H NMR, 13C NMR和HR-MS(ESI)表征.4a~4e的最大吸收波长和发射波长分别位于499 nm和508 nm,荧光量子产率为0.41~0.55,显示出BODIPY荧光核典型的光物理性能.【期刊名称】《合成化学》【年(卷),期】2017(025)007【总页数】7页(P566-572)【关键词】三聚氯氰;氟硼二吡咯;三酚氧基取代;三枝;合成;荧光染料【作者】丁丽萍;祁欣;王南翔;甄文【作者单位】南京航空航天大学材料科学与技术学院,江苏南京 210016;南京航空航天大学材料科学与技术学院,江苏南京 210016;南京航空航天大学材料科学与技术学院,江苏南京 210016;南京航空航天大学材料科学与技术学院,江苏南京210016【正文语种】中文【中图分类】O626.13;O626.29氟硼二吡咯(BODIPY)具有高消光系数、高荧光量子产率以及对光和化学反应的高稳定性,是近30年中发展起来的一种非常重要的荧光材料[1-2],被广泛应用于荧光标记[3]、化学传感器[4]、太阳能转换[5]及光动力治疗剂[6]等诸多领域。
以氨基磺酸为磺化剂制备樟脑磺酸的新工艺研究林韦康; 江晓明; 钱程良; 赵蕊萍【期刊名称】《《浙江化工》》【年(卷),期】2019(050)011【总页数】4页(P19-22)【关键词】樟脑磺酸; 氨基磺酸; 磺化; 釜残【作者】林韦康; 江晓明; 钱程良; 赵蕊萍【作者单位】浙江云涛生物技术股份有限公司浙江绍兴 312369【正文语种】中文樟脑磺酸(Camphor sulfonic acid)是一种用途广泛的专用化学品,除可应用于心血管药物(S)-alpha-(2-氯苯基)-6,7-二氢噻吩并(3,2-c)吡啶-5(4H)-乙酸甲酯(1R)-7,7-二甲基-2-氧代双环(2.2.1)庚烷-1-甲磺酸盐(1)、卵巢癌靶向药8-氟-1,3,4,5-四氢-2-[4-[(甲基氨基)甲基]苯基]-6H-吡咯并[4,3,2-EF][2]苯并氮杂卓-6-酮樟脑磺酸盐(2)、日化领域重要原料亚苄基樟脑磺酸(3)[1]、具有光电特性的纳米薄膜或纤维[2-3]、环保型固态对称超电容器器件[4]、对映体纯分子笼[5]、海洋防腐涂料聚苯胺[6]、激活人类精子Cat SperCa2+通道[7]外,还可用于伏立康唑樟脑磺酸盐(4)、(-)-四氢黄连素D-樟脑磺酸盐(5)、(+)-N-去乙酰基秋水仙碱樟脑磺酸盐(6)、(2S,3S)-4-溴-顺式-2,3-环氧丁基樟脑磺酸酯(7)等活性物质的合成,上述部分樟脑磺酸下游产品的化学结构式见表1。
自Reychler[8]发现樟脑磺酸120 年来,樟脑磺酸的生产工艺并未发生大的改进与变动,仍是以合成樟脑粉或天然樟脑粉为原料,在乙酸酐或乙酸稀释的乙酸酐溶剂中,经浓硫酸或发烟硫酸或三氧化硫磺化制得,其中合成樟脑粉制得的为DL-樟脑磺酸,天然樟脑粉制得的为D-樟脑磺酸,DL-樟脑磺酸可经拆分制得D-樟脑磺酸和L-樟脑磺酸。
Bartlett P D 等[9]以合成樟脑粉为原料,在乙酸酐溶剂中经浓硫酸磺化制得DL-樟脑磺酸,收率:38%~42%,熔点:202 ℃~203 ℃。
研究与开发CHINA SYNTHETIC RESIN AND PLASTICS合 成 树 脂 及 塑 料 , 2023, 40(4): 19聚噻吩及其衍生物具有良好的导电性、掺杂型的优越环境稳定性,以及作为薄膜使用时的透光性等,在有机太阳能电池[1-2]、电致发光二极管[3]、场效应晶体管[4]、生物传感器[5]等光电器件中广泛应用。
但是聚(3-己基噻吩)(P3HT)的不对称结构,高分子链中的结合位置处会由于烷基的立体排斥而形成扭曲的结构,使共轭变弱,整体导电性变差[6]。
另一方面,在聚合过程中发生了2-5′耦合(头尾相连结构)连接,在同一平面中形成了具有规则立体构象的P3HT,可以获得具有低带隙的高度共轭的聚合物[7]。
因此,基于P3HT的高分子结构改造引起关注[7-15]。
其中,在高分子一侧引入非导电高分子聚苯乙烯(PS),形成嵌段共聚物可以产生较好的改善效果[13-14]。
目前,制备P3HT与PS的嵌段共聚物(P3HT-b-PS),一般通过Suzuki反应和分阶段聚合的方法[13-14]。
前者需要P3HT一端的溴与PS一端的硼酸烷基团发生反应,所以对反应物分子的处理比较复杂;后者由于PS和P3HT使用同一催化剂进行聚合,反应活性会受影响,最终嵌段共聚物中P3HT片段和PS片段的相对分子质量及其分布控制较难。
有报道[15]在制备P3HT与PS“刷子”共聚物的研究时,提出了在PS苯环上引入部分催化剂Ni活性中心,通过这些活性中心催化P3HT与PS的DOI:10.19825/j.issn.1002-1396.2023.04.05聚(3-己基噻吩)-聚苯乙烯嵌段共聚物的一锅法制备樊亚娟,刘承先,李东升,刘长春(常州工程职业技术学院 化工与制药工程学院,江苏 常州 213164)摘要:采用具有聚苯乙烯高分子链为配位基团的聚合催化剂,催化2,5-二溴-3-己基噻吩单体进行Kumada 缩聚反应,利用一锅法制备了聚(3-己基噻吩)-聚苯乙烯嵌段共聚物。
art-template的使用方法 art-template是一款高效、简洁的JavaScript模板引擎,具有较高的性能和灵活的用法。
本文将详细介绍art-template的使用方法,包括安装依赖、模板语法、数据绑定以及常用功能的实现。
一、安装依赖 在使用art-template之前,我们首先需要安装依赖。
打开终端或命令行工具,通过npm 全局安装art-template:npm install art-template -g二、模板语法 art-template的模板语法非常简洁易懂,下面是一些常用的语法:1. 变量输出通过双大括号{{}},我们可以输出变量的值。
例如:{{ name }}2. 条件判断通过if语句实现条件判断。
例如:{{ if (score > 90) { }} {{ } else if (score > 60) { }}{{ } else { }}3. 循环遍历通过each语句实现对数组或对象的循环遍历。
例如:{{ each list }} {{ $index }} - {{ $value }}{{ /each }}通过注释语法实现对模板的注释。
例如:{{! 这是一个注释}}三、数据绑定 我们可以通过art-template进行数据绑定,将数据与模板进行结合。
下面是一个简单的示例:1. 准备模板:<h1>{{ title }}</h1>{{ each list }}<li>{{ $value }}</li>{{ /each }}2. 准备数据:```javascriptconst templateData = {title: '商品列表', list: ['商品1', '商品2', '商品3']3. 渲染模板:```javascript const template = require('art-template'); const html = template(__dirname + '/template.art', templateData);console.log(html); 通过以上步骤,我们可以将数据绑定到模板中的相应位置,并输出渲染后的HTML。
bufferreader的read方法BufferedReader的read方法是Java中用于从输入流中读取数据的方法之一。
它提供了逐行读取文本数据的功能,并且可以一次读取多个字符。
在本文档中,将详细介绍BufferedReader的read方法的使用方法和注意事项。
二、BufferedReader的read方法简介BufferedReader是Java中的一个字符输入流类,它继承自Reader类。
BufferedReader的read方法是其提供的一个重要方法,它的功能是从输入流中读取数据。
读取数据是程序开发中非常常见的操作,常用于读取文本文件、网络数据等。
BufferedReader的read方法提供了一种高效的方式来读取大量数据。
三、BufferedReader的read方法的基本使用方法1. 创建BufferedReader对象在使用BufferedReader的read方法之前,首先需要创建一个BufferedReader对象。
可以使用其构造方法来实现,例如:FileReader fr = new FileReader("data.txt");BufferedReader br = new BufferedReader(fr);上述代码创建了一个BufferedReader对象br,并将其初始化为从文件"data.txt"中读取数据。
2. 调用read方法读取数据调用BufferedReader的read方法,可以从输入流中读取数据。
read方法有几种重载形式,可以根据需要选择合适的方法。
例如,可以使用read()方法一次读取一个字符,也可以使用read(char[] cbuf)方法一次读取多个字符。
以下是使用read方法读取数据的示例代码:char[] cbuf = new char[1024];int length;while ((length = br.read(cbuf)) != -1) {// 处理读取的数据上述代码中,首先创建了一个字符数组cbuf 用于存储读取到的数据。
印染废水排放量大、有机污染物含量高、水质变化大、有毒有害物质含量高,对水环境污染日益加剧。
太阳能光催化被认为是解决日益严重的水污染问题最有前途的方法[1-2]。
二氧化钛(TiO 2)因成本低、光化学稳定性好、无毒等优点,是最具吸引力的光催化剂[3-4]。
因此,利用TiO 2进行环境修复(包括对水、空气和土壤进行净化)得到广泛研究[5-8]。
然而,TiO 2半导体能隙为3.2eV ,只能被波长不超过387nm 的光波激发,吸收的太阳光不足5%,利用率低[9-10]。
为了将TiO 2的应用范围拓宽到可见光区域,对其进行适当的掺杂或表面改性。
常用方法有表面光敏化、复合半导体、贵金属沉积、离子掺杂修饰、导电高聚物掺杂等[11-12]。
导电共轭聚合物在可见光区吸收效率高、易于制备及掺杂,引起科研人员的广泛关注[13-16]。
本研究采用具有共轭环状结构、类似导电聚合物的预氧化PAN 对纳米TiO 2进行改性,减少光生电子-空穴张杰(衡水学院应用化学系,河北衡水053000)摘要:采用水相沉淀法合成聚丙烯腈(PAN ),并将其复合到纳米二氧化钛(TiO 2)表面,制备PAN/TiO 2复合微粒。
PAN/TiO 2经预氧化得到共轭结构的复合微粒,拓宽了纳米TiO 2的光响应范围。
采用FTIR 和DTA-TG 对PAN/TiO 2进行表征,结果表明,纳米TiO 2上附着有预氧化的PAN ,PAN/TiO 2热稳定性较好。
改变n (AN )∶n (TiO 2)制备不同的PAN/TiO 2,并用于太阳光下罗丹明B 的降解。
结果表明,n (AN )∶n (TiO 2)为1∶120时,PAN/TiO 2光催化性能较好。
关键词:二氧化钛;聚丙烯腈;复合微粒中图分类号:X791文献标志码:B文章编号:1004-0439(2021)04-0037-03Photocatalytic activity of preoxidized PAN/TiO 2composite particles under sunlightZHANG Jie(Department of Applied Chemistry,Hengshui University,Hengshui 053000,China)Abstract:Polyacrylonitrile (PAN)was prepared by precipitation method,and PAN/TiO 2composite particleswere prepared by compounding PAN onto the surface of nano-TiO 2.PAN/TiO 2composite particles were preox⁃idized to obtain composite particles with conjugated structure,so as to broaden the light response range of na⁃no-TiO 2.PAN/TiO 2were characterized by FTIR and DTA-TG.The results showed that the preoxidized polyacry⁃lonitrile attached to nano-titanium dioxide,and the thermal stability of PAN/TiO 2was good.PAN/TiO 2of differ⁃ent ratio were prepared by changing the molar ratio of AN and TiO 2,and it was applied to the degradation of Rhodamine B under sunlight.When the molar ratio of AN and TiO 2was 1∶120,the photocatalytic properties were better.Key words:TiO 2;PAN;composite particles收稿日期:2020-09-21基金项目:2021年河北省高等学校科学技术研究项目(ZC2021238);衡水市科技局项目(2020011008Z );衡水学院校级科研课题(2020ZR21)作者简介:张杰(1982—),女,河北人,讲师,硕士,E-mail :********************。
nnunet数据增强方法对于神经网络的训练而言,数据量和数据质量的优化是至关重要的。
然而,在某些任务中,难以收集到充足的真实数据,这就需要利用数据增强方法来生成更多高质量的训练数据。
本文将介绍nnUNet数据增强方法,旨在提升神经网络模型的训练效果和泛化能力。
一、数据增强的意义与作用数据增强是一种通过对原始数据进行变换和扩充的方式,生成更多、更丰富的训练样本,从而改善模型的泛化能力。
数据增强有助于解决训练数据不足的问题,减少模型的过拟合风险,并提高网络对于不同场景和变形的鲁棒性。
二、基本的数据增强方法1. 数据翻转数据翻转是最简单和常用的数据增强方法之一。
在医学图像领域,可以通过水平翻转、垂直翻转、沿对角线翻转等方式增加数据的多样性。
例如,在脑部MRI分割任务中,对原始图像进行水平翻转,可以生成与原始图像左右对称的训练样本。
2. 随机缩放和裁剪随机缩放和裁剪是常用的数据增强方法之一。
通过对图像进行随机的缩放和裁剪操作,可以模拟不同尺寸和位置的实际场景,从而提高模型的鲁棒性。
例如,在肺部CT图像分割任务中,可以对原始图像进行随机裁剪,以模拟肺部病灶在不同位置的情况。
3. 强度变换强度变换是基于图像像素值的操作,可以引入不同的图像亮度和对比度。
例如,通过随机调整图像的亮度和对比度,可以增加训练样本的多样性。
在乳腺癌分割任务中,这种方法可以模拟不同扫描设备的亮度和对比度变化,增加算法的稳定性。
4. 弹性变形弹性变形是一种通过对图像进行弹性变换来模拟不同形状和变形的数据增强方法。
通过引入变形场或网格,可以对图像进行形变,增加训练样本的多样性。
在心脏MRI图像分割任务中,使用弹性变形可以模拟不同心脏形状和位置的情况。
5. 随机旋转和平移随机旋转和平移可以模拟目标在不同角度和位置的情况,增加训练样本的多样性。
例如,在眼底图像分割任务中,通过随机旋转和平移图像,可以有效解决不同拍摄角度和位置的问题。
6. 噪声添加噪声添加是一种常见的数据增强方法,可以引入不同强度和类型的噪声,提高模型对于噪声环境下的鲁棒性。
第49卷第10期2021年5月广㊀州㊀化㊀工Guangzhou Chemical Industry Vol.49No.10 May.2021甲氧基乙酸甲酯的合成及应用进展陈春玉,王少楠,胡㊀迎(西南化工研究设计院有限公司,四川㊀成都㊀610225)摘㊀要:甲氧基乙酸甲酯不仅是一种合成维生素B6㊁周效磺胺等药物的重要原材料,而且还是更经济合理合成乙二醇的重要原材料㊂当前制备工艺主要包括甲醛和甲酸甲酯偶联法㊁氯乙酸类和甲醇钠取代法㊁乙二醇单甲醚氧化法和甲缩醛羰基法㊂分析了制备甲氧基乙酸甲酯的方法的优缺点,综述了甲氧基乙酸甲酯在应用领域的研究进展,并对其发展趋势和应用前景作了展望㊂关键词:甲氧基乙酸甲酯;合成;应用㊀中图分类号:O622.5㊀文献标志码:A文章编号:1001-9677(2021)010-0014-02 Synthesis and Application of PolymethylmethacrylateCHEN Chun-yu,WANG Shao-nan,HU Ying(Southwest Research&Design Institute of the Chemical Industry Co.,Ltd.,Sichuan Chengdu610225,China)Abstract:Methyl methoxyacetateis not only an important raw material for vitamin B6,sulfanilamide and other drugs, but also an important even more economical and reasonable raw material for ethylene glycol.Current productions include mainly formaldehyde and methyl formate coupling method,chloroacetic acid and sodium methoxide substitution method, ethylene glycol monomethyl ether oxidation method and methylal carbonyl method.The advantages and disadvantages of eachmethods,the research progress on application of methyl methoxyacetate and the developing trend,as well as prospects for future application of methyl methoxyacetate,were presented.Key words:methyl methoxyacetate;synthetic;application甲氧基乙酸甲酯(下简称MMAc)是一种非常重要的精细化学品,具有酯的性质,常用于水解反应或加成反应,应用面广,比如:是手性胺类化合物的拆分剂,也是多种化工产品的中间体,同时在医药方面也具有很大用途,例如合成维生素B6㊁周效磺胺等药物;此外它也是高效合成下游产品乙二醇重要的前驱体原料㊂1㊀MMAc的合成方法MMAc的合成方法比较多,按照原料划分,有甲醛和甲酸甲酯偶联法㊁氯乙酸类和甲醇钠取代法㊁乙二醇单甲醚氧化法和甲缩醛羰基法等㊂(1)甲醛和甲酸甲酯偶联法甲醛和甲酸甲酯在酸催化剂条件下反应生成MMAc,此法分三步进行,第一步是甲酸甲酯在酸催化剂条件下分解成甲醇和一氧化碳;第二步是甲醇在酸催化剂条件下,醇羟基与氢离子结合生成佯盐的过渡态,甲醛在酸催化剂条件下,醛基与氢离子结合形成质子化的过渡态;第三步是两种过渡态分别与CO结合,发生羰基化反应,最终生成目标产物㊂基于此合成机理,2006年,王克冰等[1]报道了以三聚甲醛和甲酸甲酯为原料,在CF3SO3H酸催化条件下,110ħ反应2h,MMAc的收率为42.72%,由于此反应副产物多,所以收率很低㊂(2)氯乙酸类和甲醇钠取代法氯乙酸类化合物和甲醇钠反应生成MMAc,是卤代烃与醇钠反应制备混合醚的威廉姆逊合成法,反应机理为醇羟基在碱性条件下形成醇负离子,进攻卤代烃的碳正中心,卤代烃脱去卤素形成醚键㊂1989年,中国专利[2]报道了一种制备甲氧基乙酸的方法,采用氯乙酸和甲醇钠为原料,在40ħ条件下反应,得到甲氧基乙酸收率为91%;然后甲氧基乙酸与甲醇酯化后生成MMAc㊂CH3ONa+ClCH2COOHңCH3OCH2COOH+NaCl CH3OOH+CH3OCH2COOHңCH3OCH2COOCH3+H2O 2002年,徐志珍等[3]报道以氯乙酸甲酯和甲醇钠为原料,在80ħ条件下反应4h,合成的MMAc收率为96.2%㊂CH3ONa+ClCH2COOCH3ңCH3OCH2COOCH3+NaCl此法中使用的甲醇钠,价格比较昂贵,而且容易与空气中的水蒸气反应,不易保存,故不是一条经济合理的工业化合成路线㊂(3)乙二醇单甲醚氧化法以乙二醇单甲醚为原料合成MMAc,分两步完成,第一步是乙二醇单甲醚氧化生成甲氧基乙酸,第二步是甲氧基乙酸与甲醇发生酯化反应,生成目标产物㊂第49卷第10期陈春玉,等:甲氧基乙酸甲酯的合成及应用进展15㊀2015年,中国专利[4]报道以Pt/C为催化剂,O2为氧化剂,水为溶剂,在70ħ下反应7h,则乙二醇单甲醚氧化制得甲氧基乙酸,收率为91%;然后甲氧基乙酸再与甲醇酯化,生成MMAc㊂3CH3CO(CH2)2OH+3O2ң4CH3OCH2COOHCH3OCH2COOH+CH2OHңCH3OCH2COOCH3+H2O此氧化法中虽然反应收率较高,但是反应中使用了贵金属,成本高,同时反应时间较长,不是一条合适的工业化路线㊂(4)甲缩醛羰基法甲缩醛羰基法是迄今为止研究的最多的制备MMAc的方法㊂以甲缩醛为原料合成MMAc,是一种Koch型机理,即CO 与酸中氢正离子结合后,进攻甲缩醛中的仲碳,使仲碳失去氢正离子后,完成在仲碳上的插入CO的羰基化反应㊂3CH3OCH2OCH3+COңCH3OCH2COOCH3+2CH3OCH3+HCOOCH3 2015年,中国专利[5]报道在一价铜改性的磺酸型聚苯乙烯交联树脂催化剂条件下,甲缩醛与CO在120ħ下发生羰基化反应,生成最终产物MMAc,反应收率为87%左右㊂2016年,中国专利[6]报道在固体酸催化剂和多聚甲醛的条件下,110ħ反应6h,含水甲缩醛(含水量2%)与CO生成主产物MMAc,反应收率为72%左右㊂2020年,张晓艳[7]报道以ZSM-5分子筛为催化剂,110ħ下反应7h,甲缩醛和CO生成的MMAc收率为69%左右㊂甲缩醛简单易得且价格便宜,是合成MMAc的最佳原料,但是由于甲缩醛易发生歧化反应,副产物较多,只有通过研究不同催化剂来提高MMAc的选择性,才能走出一条清洁生产㊁经济合理的工业化路线㊂综上所述,尽管合成MMAc的路线很多,但由于反应条件苛刻,反应过程复杂,副产物比较多,收率比较低,所用催化剂难回收,分离成本高,易腐蚀设备,耗能高,污染环境,不利于工业化高质量生产㊂故迫切需要找出一种低能耗㊁高效率㊁低污染的生产MMAc的方法㊂2㊀MMAc的应用研究MMAc是一种重要的医药中间体和精细化工产品中间体,能在一定条件下转化为其衍生物维生素B6㊁周效磺胺以及乙二醇等药物或化工产品,具有广泛的用途㊂(1)医药领域MMAc经取代㊁环化等过程可以合成维生素B6,该方法是1939年Harris S A等[8]开发的,简称 吡啶酮法 ㊂维生素B6是人体必需的维生素之一,是人体内约140种酶的辅酶,参与催化80多种生化反应,是人体内许多代谢反应不可或缺的指挥者,还可以预防妇产科疾病以及在保健方面也有一定的作用,所以MMAc在制备维生素B6过程中有着悠久的历史㊂另外,由MMAc经克氏反应㊁酰胺化环合反应㊁氯化反应㊁缩合反应㊁甲氧基化反应合成周效磺胺㊂周效磺胺治疗各种细菌感染,特别适用于皮肤感染㊁肺及上呼吸道感染㊁细菌性痢疾,还治疗疟疾㊁麻疯病,与异烟肼合用治疗肺结核[9]㊂由此可见,MMAc在制备周效磺胺过程中发挥着重要作用,相信在不久的将来,越来越多的以MMAc为原料的药物将会被合成㊂(2)化工领域MMAc除了可以合成维生素B6㊁合成周效磺胺外,更多的使用价值是作为乙二醇的前体,即MMAc通过加氢㊁水解两步高效制成乙二醇㊂乙二醇是国家重要的化工原料和战略物资,可用作溶剂㊁防冻剂以及合成涤纶的原料㊂在溶剂方面,乙二醇常可代替甘油使用,在制革和制药工业中分别用作水合剂和溶剂,也可用于玻璃纸㊁纤维㊁皮革㊁粘合剂的湿润剂㊂在防冻剂方面,乙二醇60%的水溶液凝固点为-40ħ,可用作冬季汽车散热器的防冻剂和飞机发动机的致冷剂㊂乙二醇也是合成聚酯涤纶㊁纤维和化妆品的原料㊂乙二醇的高聚物聚乙二醇(PEG)是一种相转移催化剂,用于细胞融合;乙二醇的硝酸酯是一种炸药,因此,MMAc作为合成下游产品乙二醇的应用前景十分广阔㊂3㊀结㊀语通过对MMAc的合成方向及应用方面的介绍,可以看出,虽然MMAc在国内外研究较多,但是至今在工业化生产道路上还是存在,如何提高其反应收率,降低生产成本,减少环境污染等问题㊂尤其是在廉价的甲缩醛法越来越显现出其特有的优越性的条件下,但是甲缩醛法的研究工作仍然进展缓慢,且不是很理想㊂一方面,甲缩醛容易发生歧化反应,使得反应副产物多,后处理困难,不利于环保要求,如何尽可能多的得到目标产物MMAc,以此提高反应收率也是迫切需要解决的问题;另一方面,甲缩醛的羰基化反应受酸强度的影响非常大,较强的酸具有较强的催化活性,但是强酸对设备腐蚀严重,所以就需要通过寻找合适的催化剂或助催化剂来解决,还需要通过探索最佳化学计量比㊁改变反应时间或温度来提高反应的收率与纯度,以此取得较好的效果㊂因此,发展高效㊁温和的催化体系,实现生产成本低,环境污染小,适合于MMAc的工业化生产路线无论从经济利益还是环境影响两个方面,都具有重要意义㊂总之,随着科技的进步,MMAc的应用领域会越来越广,因此对其合成方向及应用领域的深入开发和研究还是十分有价值的㊂参考文献[1]㊀王克冰,姚洁,王越,等.酸催化剂在甲醛与甲酸甲酯偶联反应中的作用研究[J].天然气化工2006,31(6):19-21.[2]㊀奥戈奇㊃巴尔,瑞奇㊃劳尤什,佩伊瓦㊃耶诺,等.甲氧基乙酸的制备方法[P].中国:1039798A.1989-07-14.[3]㊀徐志珍,潘鹤林.甲氧基乙酸甲酯合成工艺研究[J].上海化工,2002,27(7):14-15.[4]㊀聂俊琦,李雄,王亦鸣,等.一种甲氧基乙酸的制备方法[P].中国:104892390A.2015-04-17.[5]㊀李晓明,吕建刚,刘波,等.甲氧基乙酸甲酯催化剂[P].中国:106582833A.2015-10-14.[6]㊀石磊,龚页境,王玉鑫.利用工业含水原料甲缩醛制备甲氧基乙酸甲酯的方法[P].中国:106518676A.2016-09-05.[7]㊀张晓艳.ZSM-5分子筛催化甲缩醛气相羰基化制备甲氧基乙酸甲酯研究[D].太原:山西大学化学化工学院,2020.[8]㊀Harris S A,Folkers K.Synthesis of vitamin B6[J].J.Am.Chem.Soc.,1939,61:1245-1247.[9]㊀上海化学工业设计院.周效磺胺设计简介[J].医药农药工业设计,1972(4):1-7.。
第 38 卷第 5 期2023 年 5 月Vol.38 No.5May 2023液晶与显示Chinese Journal of Liquid Crystals and Displays基于手性聚噻吩嵌段共聚物的圆偏振光探测器胡琪,徐云浩,陈思雨,姜龙龙,邱龙臻,王晓鸿*(合肥工业大学光电技术研究院特种显示技术国家工程实验室,测量理论与精密仪器安徽省重点实验室,安徽合肥 230009)摘要:手性有机半导体由于具有光谱可调和易于加工的优点,在小型化和集成化的圆偏振光检测中具有广泛的应用前景。
本文通过控制手性异腈(PPI)的加入合成了聚(3-己基噻吩-嵌段-聚(苯基异氰))(P3HT80和P3HT80-PPI(L)30)。
实验结果证明了两种半导体聚合物被成功合成。
测试了两种半导体聚合物的光学特性,发现嵌段聚合物P3HT80-PPI(L)30具有手性光学活性。
制备了基于有机场效应晶体管的圆偏振光探测器,研究器件对于450 nm的圆偏振光旋向的区分性能。
实验结果表明,手性异腈(PPI)的加入虽然降低了P3HT80的电学性能,但引入了手性光学活性,使基于P3HT80-PPI(L)30制备的器件能够区分圆偏振光的旋向,并且在450 nm的光电流不对称因子g res达到了0.083。
关键词:手性有机半导体;嵌段共聚物;手性光学活性;有机薄膜晶体管;圆偏振光探测器中图分类号:TN321+.5 文献标识码:A doi:10.37188/CJLCD.2023-0050Circularly polarized photodetector based on chiralpolythiophene block copolymerHU Qi,XU Yun-hao,CHEN Si-yu,JIANG Long-long,QIU Long-zhen,WANG Xiao-hong*(National Engineering Laboratory of Special Display Technology, Key Laboratory of Measurement Theory and Precision Instruments in Anhui Province, Institute of Optoelectronics,Hefei University of Technology, Hefei 230009, China)Abstract: Chiral organic semiconductors are promising for miniaturized and integrated circularly polarized light detection due to their spectral tunability and easy processing.In this paper,poly(3-hexylthiophene-block-poly(phenylisocyanide))(P3HT80 and P3HT80-PPI(L)30) were synthesized by controlled incorporation of chiral isonitrile (PPI).The experimental results demonstrated that two semiconductor polymers were successfully synthesized. Furthermore, the optical properties of the two semiconductor polymers were tested and the block polymer P3HT80-PPI(L)30was found to have chiral optical activity.A circularly polarized photodetector based on an organic field effect transistor was prepared to study the performance of the device for differentiating the spin direction of circularly polarized light at 450 nm. The experimental results 文章编号:1007-2780(2023)05-0555-08收稿日期:2023-02-09;修订日期:2023-02-28.基金项目:国家自然科学基金(No.52273172, No.62274053);国家重点研发计划(No.2022YFE0198200);安徽省科技重大专项(No.2021e03020007);合肥市自然科学基金(No.2022031, No.2022002)Supported by Natural Science Foundation of China (No.52273172, No.62274053);National Key Researchand Development Program of China (No.2022YFE0198200);Major Science and Technology Project of An‐hui Province (No.2021e03020007);Natural Science Foundation of Hefei (No.2022031, No.2022002)*通信联系人,E-mail:xhwang11@第 38 卷液晶与显示indicated that the addition of chiral isonitrile (PPI)degraded the electrical properties of P3HT80but introduced chiral optical activity,enabling the devices based on P3HT80-PPI(L)30to distinguish the spin direction of circularly polarized light, and the photocurrent asymmetry factor gres at 450 nm reached 0.083. Key words: chiral organic semiconductors;block copolymers;chiral optical activity;organic thin-film transistors; circularly polarized photodetectors1 引言近年来,基于圆偏振光(CPL)的手性光子学在量子计算、自旋光通信、生物医学、圆二色光谱、磁记录和3D显示等方面具有广泛的应用潜力,引起了人们的极大兴趣[1-3]。
2021含四苯基乙烯结构的聚集诱导发光紫檀芪衍生物分子范文 摘要: 运用点击反应将四苯乙烯基乙炔与紫檀芪、叠氮等取代的三嗪分子连接,得到了一种含有四苯基乙烯结构的聚集诱导发光紫檀芪衍生物分子,并进一步研究了分子的毒性及细胞摄取等相关的生物活性和药理学性质.这种低毒的荧光探针分子可直观地观察到药物在细胞内外的移动和释放,为下一步靶向药物分子的设计奠定了良好的基础. 关键词: 四苯乙烯基乙炔;紫檀芪; 聚集诱导发光; 生物活性; Abstract:In this paper,tetrastyrylacetylene is linked to pterostilbene and azide substituted triazine by click reaction,and a kind of aggregation induced luminescent pterostilbene derivative molecule containing a tetraphenylethylene structure is obtained.In addition,the toxicity of the molecule as well as the related biological activity and pharmacological properties of cell uptake are further studied.This low toxicity fluorescent probe molecule can directly observe the movement and release of drugs in and out of cells,which lays a good foundation for the design of targeted drug molecules in the next step. Keyword: tetrastyrylacetylene;pterostilbene; aggregation induced luminescence; biological activity; 自从人类第一次用气相沉积法制成了电致发光(EL)装置后,有机发光二极管(OLED)的研究越来越引起大家的兴趣[1,2,3,4].它的各种光学和电子特性稳定,这正好契合了高效有机材料以及制造技术的需要.在传统的发光材料中,发光物质在溶液中能发出很强的荧光,但在聚集态或固态却没有荧光发出.最近,具有聚集诱导发光(AIE)的分子引起了人们的热捧.在这其中,四苯基乙烯(TPE)(图1)是一种结构简单且具有明显的聚集诱导发光的分子[5,6,7,8].科学家们利用TPE分子去构建不同的固态发光物质和其他功能性材料,尤其在有机发光二极管和生物检测等方面[9,10].传统的发光物质在聚集状态的荧光往往是猝灭的,这就是聚集导致的荧光猝灭现象(ACQ).这种荧光猝灭现象很大程度上限制了生物样品的标记浓度,让研究者不得不采用稀溶液来做生物检测,从而降低了检测的灵敏度.而利用四苯基乙烯具有的聚集诱导发光特性,可以使高浓度的分子在聚集状态也发出很强的荧光,并用于生物检测. 图1TPE结构图 Fig.1The structure of TPE 本研究将TPE分子连接到紫檀芪和叠氮取代的三嗪分子上,得到了一种含有四苯基乙烯结构的聚集诱导发光紫檀芪衍生物分子,进一步研究了分子的毒性及细胞摄取等相关生物活性和药理学性质.这种优质低毒的荧光探针物质的引入,使之在作为药物载体的同时,可以更直观地观察到药物在体内的移动和释放. 1、实验部分 1.1、仪器和试剂 SHB-ⅢA循环水式多用真空泵、2XZ-2型旋片真空油泵、R-201旋转蒸发仪、ZF-1型紫外分析仪、XS204电子天平、HZ-9310K型恒温振荡培养箱、酶标仪(BIO-RAD680,配570nm滤光片)、倒置荧光显微镜、磁力搅拌器、离心机、烘箱及其他有机合成玻璃仪器. 1-(4-溴苯基)-1,2,2-三苯基乙烯、四三苯基膦钯、碘化亚铜、2-甲基-3-丁炔-2-醇、三乙胺、石油醚、乙酸乙酯、甲苯、氢氧化钾、2-叠氮-4-氯-6-[4-(3,5-二甲氧基苯乙烯基)苯氧基]三嗪、介孔铜氧化物、叔丁醇、水、盐酸、无水硫酸镁、四氢呋喃、HELA细胞、COS-7细胞、CHL细胞、GSE细胞、乙醇、二甲基亚砜等. 试剂均系市售商品或工业品,用前未经处理. 1.2、四苯乙烯基乙炔的制备(图2) 称取0.822g1-(4-溴苯基)-1,2,2-三苯基乙烯、0.15g Pd(Ph3P)4、0.025g CuI、0.242mL 2-甲基-3-丁炔-2-醇,NEt3作为溶剂,剧烈加热回流4h后,冷却至室温,过滤,将滤液转干,以石油醚和乙酸乙酯(体积比为3∶1)作为洗脱剂柱层析分离得0.692g黄色油状物1,产率为83.5%. 称取0.828g(2mmol)产物1、0.112g(2mmol)KOH,甲苯作为溶剂,加热回流3h后,冷却至室温,用10mL质量分数为10%的盐酸洗涤1次,再用100mL水洗涤2次,干燥过滤,旋干,以石油醚作为洗脱剂柱层析分离得到0.400g白色固体2,产率为56.1%. 图2合成路线1 Fig.2Synthesis route 1 1.3 2-氯-4-[4-(3,5-二甲氧基苯乙烯基)苯氧基]-6-{4-[4-(1,2,2-三苯基乙烯基)苯基]-1H-1,2,3-三唑-1-基}三嗪的制备(图3) 将0.493g(1.2mmol)2-叠氮-4-氯-6-[4-(3,5-二甲氧基苯乙烯基)苯氧基]三嗪(化合物3)、0.356g(1mmol)产物2、0.008g(0.1mmol)介孔铜氧化物、20mL叔丁醇、2mL水,搅拌溶解加热至90℃,反应10h.过滤,把叔丁醇旋干,用10mL乙酸乙酯萃取洗涤,无水硫酸镁干燥,用石油醚和乙酸乙酯(体积比为15∶1)作为洗脱剂柱层析的方法分离,得到0.430g产物4,产率为56%. 图3合成路线2 Fig.3Synthesis route 2 1.4、产物的表征 [2-(4-Ethynylphenyl)ethene-1,1,2-triyl]tribenzene(产物2)[11] Mp:152~153℃. MS(ESI):m/z(%)357.164 0[M+H]+. IRvmax/cm-1:3440,3 276,3 072,3 020,1 519,1 442,1 262,1 071,1 028. 1H NMR (500MHz,CDCl3)δ7.28~6.96(m,19H),3.05(s,1H). 2-Chloro-4-[4-(3,5-dimethoxystyryl)phenoxy]-6-{4-[4-(1,2,2-triphenylvinyl)phenyl]-1H-1,2,3-triazol-1-yl}-1,3,5-triazine(产物4)[12] Mp:165~166℃. MS(ESI):m/z(%)767.253 8[M+H]+. IRvmax/cm-1:3445,3 072,3 020,2 961,2 916,2 849,2 190,1 752,1 623,1 588,1 532,1 465,1 420,1 365,1 295,1 120,1 051,1 023. 1H NMR (500MHz,CDCl3)δ8.58(s,1H),7.68(d,J=8.3Hz,2H),7.62(d,J=8.6Hz,2H),7.26(d,J=8.6Hz,2H),7.11( dddd,J=14.1,10.0,8.7,6.6Hz,19H),6.71(d,J=2.1Hz,2H),6.45(s,1H),3.87(s,6H). 1.5、化合物的紫外及荧光检测 图4(a)为产物2和化合物3在99%的水和100%的四氢呋喃(THF)中的荧光图谱,图4(b)为产物4在99%的水和100%的THF中的荧光图谱.如图4(a)所示,在350nm波长的激发下,产物2在THF中几乎没有荧光,而在含99%水的溶液中,具有很强的荧光,且发射波长为494nm,说明产物2具有明显的AIE现象,即聚集诱导发光效应.而在相同条件下,化合物3在THF和含99%水的溶液中都无明显的荧光现象.图4(b)中350nm波长的激发下,产物4在THF中也几乎没有荧光,而在99%水的溶液中,具有很强的荧光,其发射波长为496nm.与产物2相比,略有红移,但不是很明显.图4(c)紫外吸收光谱显示,化合物3在310nm处有吸收,产物2在321nm处有吸收,产物4在333nm处有吸收. 图4荧光紫外谱图和紫外吸收光谱图 Fig.4Fluorescent UV spectrum and UV absorption spectrum (a)化合物3、产物2的荧光紫外谱图;(b)产物4的荧光紫外谱图;(c)化合物3、产物2、产物4的紫外吸收光谱图. 1.6、MTT法测定产物2和产物4的细胞毒性 1)细胞接种:(1)HELA细胞用含10%小牛血清的DMEM培养液配成单个细胞悬液;(2)用0.25%胰蛋白酶消化单层COS-7细胞,用含10%小牛血清的RPMI1640培养液配成单个细胞悬液;(3)CHL细胞用含10%小牛血清的RPMI1640培养液配成单个细胞悬液;(4)GSE细胞用含10%胎牛血清的DMEM培养液配成单个细胞悬液,将细胞接种到96孔板上,每孔8000个细胞,每孔体积200μL. 2)细胞培养:将培养板放入CO2培养箱,在37℃、5%CO2及饱和湿度条件下培养16~18h. 3)吸去培养液,用PBS清洗细胞,加入无血清培养液,在细胞板孔中分别加入产物2和产物4的DMSO溶液,使每孔中产物2和产物4的质量浓度分别为20、40、60、80、120、160、200、240μg/mL,每孔液体的总体积为200μL(每个样品每种浓度均为三复孔). 4)产物2和产物4与细胞共孵育24h. 5)吸去培养基,每孔加入90μL无血清培养液和10μL质量浓度为5mg/mL的MTT溶液,37℃孵育3h. 6)翻板法弃去液体,每孔加入100μLDMSO,在微量振荡器上振荡10min. 7)在酶标仪上测570nm波长处OD值. 8)统计细胞活力. 由图5可见,产物2对4种细胞的活性影响不大,属于低毒范围.产物4则毒性较大,在GSE和HELA细胞中当其质量浓度达到80μg/mL时,细胞毒性低于50%,而在CHL和COS-7细胞上其质量浓度达到40μg/mL时,细胞已经全部失活.分析研究发现,产物4对上皮组织细胞的毒性较大,而紫檀芪属于抗氧化的抗癌辅助天然化合物,理论上属于低毒化合物,所以可能是由于该化合物中含有活泼的氯原子,对上皮组织中的某种酶有影响,故毒性较大. 图5产物2和产物4对4种不同细胞在不同浓度下的细胞毒性 Fig.5Cytotoxicity of product 2and product 4to four different cells at different concentrations 1.7、产物2和产物4的细胞摄取实验 1)细胞接种. 将普通洁净盖玻片放入70%乙醇中浸泡5min,于超净台内吹干.将盖玻片置于24孔板内,种入细胞培养过夜,使细胞密度为70%~80%.将圆形载玻片放入24孔板的每个孔中. 神经胶质瘤细胞用含10%小牛血清的DMEM培养液配成细胞悬液,将细胞接种到24孔板上,每孔2×104个细胞,每孔体积500μL.于CO2培养箱中培养24h,待细胞密度为70%~80%时进行摄取实验. 2)产物2和产物4的溶液分别用DMSO配制成20μg/mL的溶液. 3)细胞摄取实验. 孵育24h后,将24孔板中的培养液吸去,加入400μL无血清的DMEM培养液,将配好的两种溶液分别加入24孔板中,在37℃、5%CO2培养箱中培养2.5h后取出,重复前一步骤,再吸去两个孔板中的培养液,加入400μL无血清的DMEM培养液,将配好的两种溶液分别加入24孔板中,在37℃、5%CO2培养箱中培养0.5h. 吸去培养液,用PBS洗涤3次,每次200μL,吸去PBS,每孔加入200μL0.5μg/mL 的Hoechst溶液,孵育6min后,吸去Hoechst溶液,用PBS洗涤3次. 4)倒置荧光显微镜观察. 由图6可发现,产物4在细胞吞噬3h后荧光负载的药物比0.5h的要多,且与产物2比较发现,无论是3h还是0.5h,产物4的细胞吞噬效果都要比产物2好.分析其原因,可能是由于分子量的增大使得细胞更易吞噬且不易流出,所以分子量大的产物4更易被细胞吞噬.这一结果使笔者将荧光与药物相结合的设想成为可能,可以更直观地看出药物被细胞吞噬的形态、数量及分布状况[13]. 图6细胞摄取图像 Fig.6Cell uptake image (a)0.5h产物2;(b)0.5h产物4;(c)3h产物2;(d)3h产物4.Ⅰ为白光条件下细胞,Ⅱ为蓝光条件下细胞,Ⅲ为两图合并的效果图. 2、结果与讨论 本研究把具有AIE聚集诱导发光效应的四苯乙烯基引入到三氯三嗪分子中,同时连载上具有抗氧化性的辅助抗肿瘤分子紫檀芪,通过荧光测定,确定分子在水中仍具有聚集诱导发光的特性.MTT检测发现,产物2在不同细胞中毒性较小,但随着浓度的增加毒性有所加强,在相同条件下,产物4由于分子中有氯元素的存在,毒性更大.细胞摄取实验发现在一定时间内,吞噬时间越长,细胞摄取效果越好,产物4因含有抗氧化性的紫檀芪且分子量较大,所以细胞摄取情况优于产物2. 这一系列的检测说明,我们可以利用产物4荧光显色的特性,研究其被细胞吞噬后药物的分布、数量及形态等,使得对三嗪化合物产物4的研究不再停留在最基础的化学合成阶段,对它的药理性能也有了更多的认识,为下一步靶向药物分子设计奠定了良好基础.。
收稿:2007年6月,收修改稿:2007年8月 3通讯联系人 e 2mail :gaoge @手性离子液体的合成孙洪海1,2 高 宇3 翟永爱1 张 青1 刘凤岐1 高 歌13(11吉林大学化学学院 长春130023;21大庆师范学院化学系 大庆163712;31北京大学医学部 北京100083)摘 要 近年来,研究者对室温离子液体极为关注,因为这些离子液体可以作为潜在的替代试剂用于有机合成、提取与分离、电化学和材料科学等方面。
在离子液体中,手性离子液体由于可用在手性识别、不对称合成、消旋体的拆分、立体选择聚合、气相色谱、NMR 位移试剂和液晶等方面而受到特别注意。
尽管手性离子液体由于合成困难和费用昂贵而限制了其广泛应用,但其在不对称合成中可作为手性诱导物的应用前景促使研究者不断地去开发新型的手性离子液体。
手性离子液体的制备既可以使用手性源(如氨基酸、胺、氨基醇以及生物碱类),也可以利用不对称合成的手段,其所具有的手性可位于分子的中心、轴或者平面上。
本文综述了手性离子液体合成的最新进展,并按照阴离子或阳离子的种类将其分为咪唑类、吡啶类、铵类和噻唑啉盐类,同时简要介绍了一些新的合成技术。
关键词 手性 离子液体 合成中图分类号:O62113,O64514 文献标识码:A 文章编号:10052281X (2008)0520698215Synthesis of Chiral Ionic LiquidsSun Honghai1,2 Gao Yu 3 Zhai Yongai 1 Zhang Qing 1 Liu Fengqi 1 Gao G e13(1.C ollege of Chemistry ,Jilin University ,Changchun 130023,China ;2.Department of Chemistry ,Daqing NormalUniversity ,Daqing 163712,China ;3.Health Science Center ,Peking University ,Beijing 100083,China )Abstract The interest in using room tem perature ionic liquids (RTI Ls )as potential replacement s olvents for organic synthesis ,extraction ,electrochemistry ,and materials science has increased tremendously in the recent years.Am ong them ,chiral ionic liquids are particularly attractive due to their potential for chiral discrimination ,asymmetric synthesis ,optical res olution of racemates ,stereoselective polymerization ,gas chromatography ,NMR shift reagents and liquid crystals.Even though the difficult syntheses of chiral ionic liquids and their high cost often precluded their use ,the possibility to use chiral ionic liquids as inducers for asymmetric reactions has greatly prom pted researchers to continuely synthesize new chiral s olvents.The chiral ionic liquids are designed either from the chiral pool (aminoacids ,amines ,aminoalcohols ,and alkaloids )or by asymmetric synthesis ;they can bear central ,axial or planar chirality.This review deals mainly with recent advances in synthesis of chiral ionic liquids.Based on the species of cation or anion ,they are classified into imidazolium 2based ,pyridinium 2based ,amm onium 2based ,and thiazolinium 2based etc.In addtion ,s ome new synthesis techniques are als o introduced.K ey w ords chirality ;ionic liquids ;synthesis 以离子液体(I Ls )为溶剂进行有机合成反应是近年来的新兴研究领域之一。
Journal of Colloid and Interface Science333(2009)128–134Contents lists available at ScienceDirectJournal of Colloid and Interface Science/locate/jcisSynthesis of poly(3-hexylthiophene)grafted TiO2nanotube composite Ming-De Lu a,Sze-Ming Yang b,∗a Photovoltaics Technology Center,Industrial Technology Research Institute,Chutung31040,Taiwanb Department of Chemical and Materials Engineering,National Central University,Chung-Li32054,Taiwana r t i c l e i n f o ab s t r ac tArticle history:Received22May2008Accepted30January2009 Available online6February2009Keywords:TitaniaPoly(3-hexylthiophene) NanotubeSolar cell material A composite of poly(3-hexylthiophene)(P3HT)grafted on TiO2nanotubes was synthesized.It was characterized using XRD,TEM,TGA,FTIR and XPS.Cyclic voltammetry(CV)was used to elucidate the electrochemical behavior and evaluate the HOMO and LUMO energy levels.Photoluminescence(PL) measurements show that the emission intensity of P3HT mixed with TiO2nanotubes was one third of that of random P3HT,while that of P3HT grafted onto TiO2nanotubes was10%of random P3HT. The results show that the P3HT grafted onto TiO2nanotubes is more efficient in photoinduced charge transfer than a physical mixture of P3HT and TiO2nanotubes,indicating this composite has potential for the fabricating hybrid organic–inorganic solid state solar cells.Crown Copyright©2009Published by Elsevier Inc.All rights reserved.1.IntroductionAmong various organic solar cells,the organic–inorganic hy-brid solar cell is one of the most promising,since it has not only a large interface area where excitons,bound electron–hole pairs, may effectively dissociate,but also two separate channels for ef-ficient electron and hole transport.In an organic–inorganic hybrid solar cell,an inorganic semiconductor such as titanium oxide acts as an electron acceptor,and a conducting polymer such as poly-thiophene can be adopted to absorb light and transport holes. Excitons formed after light is absorbed in organicfilms typically travel less than20nm before recombination[1,2],so electron acceptors must be intermixed on the nanometer scale with or-ganic semiconductors,to obtain a high charge separation yield. The smallness of nanoparticles results in a large interface between the conducting polymer and the inorganic semiconductor,and in-creases the tunability and efficiency of hetero-junctions.Studies of nanocrystalline titanium oxide and conducting polymer photo-voltaic cells have recently been published[3–8].Most studies on conjugated polymer–TiO2PV cells have involved sintering together TiO2nanocrystals andfilling the pores with a conjugated polymer. Fan et al.reported the fabrication of MEH-PPV/TiO2photovolatic device,which had a power conversion efficiency of1.6%[9].Qiao et al.described the fabrication of a water-soluble polythiphene/TiO2 photovoltaic device,which had a power conversion efficiency of 0.13%[10].Huisman et al.reported the fabrication of a poly(3-octylthiphene)/TiO2photovoltaic device,which had a power con-version efficiency of0.06%[11].Watanabe et al.reported the fab-*Corresponding author.Fax:+88634252296.E-mail address:smyang@.tw(S.M.Yang).rication of a TiO2/poly(3-hexylthiophene)heterojunction solar cell, with a power efficiency of0.061%in air[12].Additionally,many other studies have been carried out on the TiO2and regioregular P3HT blend system[13–18].Huynh et al.reported that in a solar cell with P3HT/CdSe nanorods[19],electron transport was faster in the nanorods than in the nanoparticles,so the power conver-sion efficiency in the nanorods exceeded that in the nanoparticles.Since TiO2is insoluble in organic solvents,and the compos-ite formed by mixing conducting polymer solution with TiO2 nanoparticle is heterogeneous,phase segregation occurs easily.Re-cent studies on obtaining titania nanotubes from titania pow-der in a simple chemical process have attracted much interest [20].Electron transfer in titania nanotubes is more efficient than in nanoparticles.This investigation synthesizes conducting poly-mer on a highly crystalline titania nanotube.The composite thus formed is homogeneous and without phase segregation.The highly crystalline titania nanotubes facilitate electron transport.2.Experimental2.1.MaterialsAnatase powder obtained from the TAYCA Corporation of Japan(AMT-100).Regioregular poly(3-hexylthiophene)was pur-chased from Aldrich.The other chemicals were purchased in their reagent grade and used without further purification including3-aminopropyltriethoxysilane(Acros,99%),3-thiophene acetic acid (Acros,98%),1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hy-drochloride(Acros,98%),FeCl3(Showa,97%)and3-hexylthiophene (Aldrich,99%).0021-9797/$–see front matter Crown Copyright©2009Published by Elsevier Inc.All rights reserved. doi:10.1016/j.jcis.2009.01.073M.-D.Lu,S.-M.Yang/Journal of Colloid and Interface Science333(2009)128–1341292.2.Methods2.2.1.Synthesis of TiO2tubesAnatase powder(3.0g)was added to100mL of a10M NaOH aqueous solution in a250mL Teflonflask,was placed in an oil bath that was maintained at110–130◦C for24h.The mixture was treated with distilled water and then centrifuged to separate the product from the solution.This procedure was repeated until the pH of the supernatant reached10.Next,1000mL of0.1M HCl aqueous solution was added and ultrasonically dispersed.The ma-terials were repeatedly washed with distilled water until the pH of the supernatant reached4.2.2.2.Synthesis of P3HT-grafted TiO2tubesSilanization To a250mLflask were added 1.5g of TiO2nan-otubes,toluene(100mL)and5g3-aminopropyltriethoxysilane (APS);the mixture was refluxed for24h in an atmosphere of nitrogen to react with the hydroxyl groups on the TiO2surface. The mixture was washed in toluene and methanol,and then cen-trifuged to separate the product from the solution.The sample was dried in a vacuum oven at60◦C for24h.Condensation The silanized TiO2nanotubes(1g)were sus-pended in150mL of the solvent acetone.Then,0.35g of3-thiophene acetic acid(T3A)and0.7g1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride(EDCI)were added,and the mixture was stirred at room-temperature for24h.The mix-ture was washed with acetone by centrifugation at2000rpm for 20min.The sample was dried in a vacuum oven at60◦C for24h. The sample was called thiophene-TiO2nanotubes.Grafting(1)Random-P3HT grafted TiO2nanotube.0.1g thiophene–TiO2nanotubes(from section“Condensation”)were stirred at room temperature in150mL chloroform.Then,0.4g of FeCl3and0.1 g3-hexylthiophene were added,and the mixture was stirred for 24h.The reaction product was precipitated with methanol and the residue FeCl3was removed by dissolution in methanol.Fi-nally,the product was added to methanol and stirred at65◦C for24h.All samples were dried in a vacuum oven at60◦C for 24h.(2)Regioregular-P3HT grafted TiO2nanotube.The same pro-cedure was adopted for Random-P3HT grafted TiO2nanotubes,but 3-hexylthiophene monomer was replaced with regioregular P3HT.2.3.CharacterizationThe morphology of the nanotubes was observed using a JEOL JEM2000FX II transmission electron microscope(TEM).Samples for TEM were prepared by the ultrasonic dispersion of a small amount of sample in water;a drop of the solution was then dis-persed to a copper microgrid with a carbonfilm.X-ray diffraction(XRD)experiments were performed using a Bruker D8A X-ray diffractometer with a Cu Kαradiation source. The IR spectra were obtained using a Jasco FT/IR410spectrometer in the range4000–400cm−1from samples that were dispersed in KBr pellets.TGA analyses were carried out in N2and air,the molecular weight of P3HT grafted TiO2nanotubes was determined by thermal gravimetric analysis(TGA)on thermal analyzer(Perkin–Elmer TGA7).Samples were heated to800◦C from50◦C at the speed of10◦C/min.Cyclic voltammograms of the sample were obtained with a working electrode of a spin-coatedfilm on Pt,and using an Ag/AgCl reference electrode.0.1M[CH3(CH2)3]4N·ClO4in acetoni-trile was the electrolyte and the scanning rate was50mV/s in the range−2.0to+1.2V.Photoluminescence spectra were obtained using a Cary Eclipse spectrometer by photoexcitation at430nm.Absorption spectra were obtained using a Cary300Bio spectrom-eter in the range400–800nm.X-ray photoelectron spectroscopic(XPS)analysis of tubes was performed using a Thermo VG Scientific Sigma Probe with a base pressure of10−9mbar(UHV)and monochromatized Al(Kα)radi-ation(hν=1486eV).The binding energy was calibrated using an Au4f7/2standard;the same fwhm and Lorentzian/Gaussian mix val-ues were used in the curvefitting of all peaks.3.Results and discussion3.1.MorphologyFig.1(a)shows TEM images of the TiO2nanotubes.Titania particles have been transformed into nanotubes with an inner diameter of5nm,an outer diameter of12nm,and a length of200–300nm.Figs.1(b)and1(c)present TiO2nanotubes af-ter silanization and thiophene–TiO2nanotubes.The tubular shape remains.Fig.1(d)presents random-P3HT mixed with TiO2nan-otubes;the composite formed exhibits phase segregation and the polymer distribution is non-uniform.Fig.1(e)shows random-P3HT grafted TiO2nanotubes;the covalent bonding of the P3HT grown in situ provides for higher coverage of P3HT on the nanotubes,and no phase segregation occurs.3.2.FTIR measurementsThe FTIR spectrum of titania nanotube in Fig.2(d)has a broad band between3500and3000cm−1,which indicates the presence of–OH groups on the surface of the titania.Two peaks at approx-imately3411and1627cm−1,which are characteristic of stretch-ing and bending vibrations of water molecules,reveal molecularly adsorbed water on the dried titania nanotubes.The spectrum of TiO2nanotube after silanization in Fig.2(a)includes a peak at 953cm−1,which is ascribed to Ti–O–Si[21–23],and signals that correspond to organic fragments of APS.The band at500cm−1 was associated with the Ti–O–Ti stretching mode of TiO2[24]. The C–O and N–H stretching absorption of the thiophene–TiO2 nanotube at1660and1559cm−1support the successful incor-poration of3-thiophene acetic acid units into the TiO2nanotube after silanization(Fig.2(b)).The bands at1450and1540cm−1 were attributed to the symmetric C–C stretching mode;the band at3097cm−1was associated with the C–H stretching mode of the thiophene rings.Fig.2(e)presents the FT-IR spectrum of random-P3HT,which includes the following main characteristic absorption bands;1450cm−1band of symmetric C=C stretching,1488cm−1 band of C–H stretching in the thiophene ring,1156and1215cm−1 bands of C–H bending;the peak at788cm−1is assigned to C–H out-of-plane stretching vibration,while the peaks at997and 695cm−1are indications of C–S stretching in the thiophene ring. Fig.2(c)presents IR spectra of random-P3HT grafted TiO2nan-otubes with peaks of C=C stretching,C–H stretching and bending, C–S stretching and Ti–O–Ti stretching.The IR spectra show that P3HT is grafted onto TiO2nanotubes.3.3.X-ray photoelectron spectroscopyQuantitative XPS analysis of titania nanotubes and random-P3HT grafted titania nanotubes yielded the binding energies that are presented in Table1.Fig.3presents the high resolution spectra of the titania nanotubes and titania nanotubes after silanization. The TiO2nanotubes after silanization contain N1s and Si2p peaks, verifying the presence of the APS surface modifier.The Ti2p1/2and Ti2p3/2spin-orbital splitting photo-electrons in both samples are located at binding energies of463.8±0.1eV and458.1±0.1eV,respectively,as presented in Fig.4(A).Fig.4(B)130M.-D.Lu,S.-M.Yang /Journal of Colloid and Interface Science 333(2009)128–134Fig.1.TEM image of the (a)TiO 2nanotubes,(b)TiO 2nanotube silanization,(c)thiophene–TiO 2nanotube,(d)random-P3HT mixed with TiO 2nanotube,inset in panel (d)shows a TEM image of low P3HT area,(e)random-P3HT grafted TiO 2nanotube.Fig.2.FT-IR spectrum of (a)TiO 2nanotube silanization,(b)thiophene–TiO 2nan-otube,(c)random-P3HT grafted TiO 2nanotube,(d)TiO 2nanotube,(e)random-P3HT.presents the O 1s peak.Table 1lists the binding energies of the peaks.The spectrum of untreated TiO 2nanotubes (Fig.4(B))in-clude a peak at 529.5eV with a shoulder located toward the higher binding energy side (531.4eV).The shoulder at higher binding energy was assigned to OH species on the surface [32].The O 1s peak at 532.0eV in the spectrum of TiO 2nanotube after silaniza-tion is consistent with the reported O 1s binding energy of the Si–O–Ti species [23,32],indicating the bonding of APS to surface of the TiO 2nanotubes.The O 1s signal from random-P3HT grafted TiO 2nanotubes (Fig.4(B)(d))included four peaks at 529.5,530.5,532.0and 533.2eV.Additionally,the high-resolution N 1s spec-trum (Fig.4(C)(b))includes peaks at binding energies 399.8and 401.6eV.The two peaks were attributed to terminal-protonated amines NH +3(401.6eV)and to terminal NH 2groups (399.8eV)[25,29].The grafting of thiophene onto TiO 2nanotubes reduced the amount of NH +3and NH 2(Fig.4(C)(c)).Additionally,thiophene-TiO 2nanotubes have a new peak at a binding energy of 399.9eV;this new peak was attributed to –NHCO–groups [30].This result is consistent with a reaction between the terminal amine group of silane and the COOH group of T3A.The element composition and the chemical state of composite surface were determined by XPS.Intensity of N 1s is decreasing from (b)to (d),because the ti-tania was covered with P3HT (N element was covered with P3HT).The high-resolution S 2p spectrum of thiophene–TiO 2nanotubesTable 1Binding energy of titania nanotubes and its nanocomposites.SampleTi (eV)S (eV)O 1s (eV)2p3/22p1/22p3/22p1/2Ti–O–Ti Ti–OH Ti–O–Si TiO 2nanotubes458.1463.8––529.5531.4–Silanized TiO 2nanotubes 458.2463.9––529.5530.8532.0Thiophene–TiO 2nanotubes458.2463.9164.5165.8529.5530.8532.0Random-P3HT grafted TiO 2nanotubes458.2463.7164.1165.3529.5530.5532.0M.-D.Lu,S.-M.Yang/Journal of Colloid and Interface Science333(2009)128–134131Fig.3.XPS spectrum of N1s,Si2p from(a)the silanized TiO2nanotube and(b)TiO2 nanotube.(Fig.4(D))includes two peaks at164.5and165.8eV for S2p3/2and S2p1/2,indicating the bonding of T3A to NH2of the silanized TiO2 nanotube.The binding energies of S2p in random-P3HT-grafted TiO2nanotubes are164.1eV and165.3eV for S2p3/2and S2p1/2 (Fig.4(D)).The signal intensities of N1s,Ti2p,O1s and S2p in the random-P3HT-grafted TiO2nanotubes were reduced when titania was covered with P3HT.3.4.Thermal analysisFig.5(c)presents the thermograms of random-P3HT-grafted on titania nanotubes.The polymer undergoes two major,but not com-pletely distinct,steps of weight loss in air in the temperature range 50–800◦C.Thefirst step is primarily loss of the alkyl side-chain at 300–475◦C.The second weight loss step,in the temperature range 475–650◦C,corresponds to degradation of the polymer backbone. Thermogram was also adopted to determine the amount of P3HT in the nanocomposites.The amount of P3HT in the nanocompos-ites was determined from the mass loss between200◦C,at which the adsorbed H2O and solvents were evaporated,and800◦C,at which the polymer was completely decomposed.Table2presents the weight gain of each reaction step and the calculated molar ra-tio:W H2OW TiO2W H2O=4wt%, W aW TiO2+W H2O+W a=6wt%, W bW TiO2+W H2O+W a+W b=5wt%,W cW TiO2W H2OW a W b W c=40wt%,where W TiO2:weight of TiO2nanotube,W H2O:weight of adsorbedH2O and solvents,W a:weight increase of TiO2nanotube after silanization,W b:weight increase after grafting thiophene on TiO2 nanotube,W c:weight increase after polymerization of3HT on thiophene grafted TiO2nanotube.Define W TiO2=1,so W H2O=0.0417,W a=0.0664,W b=0.0583,W c=0.7776.From Scheme1,we assumed that3HT grafted on each thiophene on the TiO2nanotube.The thiophene–TiO2nanotube had a thiophene to silane molar ratio of0.41,in-dicating not every NH2group from silane was bonded to T3A. The result is consistent with the S/N ratio of0.45,obtained from XPS.P3HT-grafted TiO2nanotubes have a molar ratio of3HT to thiophene9.96.If each thiophene of thiophene–TiO2nanotubes is assumed to be grafted to3-hexylthiophene,then random-P3HT-grafted TiO2nanotubes have an average of103-hexylthiophene units per chain.3.5.X-ray diffractionAnatase crystal outperforms rutile and brookite in organic so-lar cells[26].The XRD patterns and the above FT-IR spectra show the formation of pure TiO2nanotubes with an anatase crystalline phase following calcination at300◦C.Fig.6presents TiO2nan-otubes and P3HT-grafted TiO2nanotubes;all samples had a peak at 2θ=25.2◦,which peak corresponded well to the value of25.3◦in the literature for the(101)crystalline face of anatase.Other peaks at38.1◦,48.1◦and54.2◦correspond to the anatase(112),(200) and(211)crystal planes,respectively.3.6.Optical and electrochemical propertiesThe energy levels of P3HT and TiO2were analyzed using cyclic voltammetry and from spectroscopic absorption data.Fig.7 presents the absorption spectra,the onset points of1.91–1.95eV and3.26eV were used the approximate band gaps of the P3HT and TiO2,respectively.Random-P3HT physically mixed TiO2nanotubes have a longer absorption wavelength than random-P3HT.Random-P3HT-grafted TiO2nanotubes have the longest absorption wave-length.The result indicates that the random-P3HT-grafted TiO2 nanotubes have the longest conjugation length.Fig.8presents cyclic voltammograms of the composites.The compositefilm on a Pt disk electrode(working electrode)was scanned(scan rate:50mV/s)anodically and cathodically in a so-lution of TBAClO4in acetonitrile(0.1M)with Ag/AgCl as the ref-erence electrode.In Fig.8(a),regioregular P3HT yields two clearly separated oxidation peaks with maxima at625and950mV(vs. Ag/AgCl).Thefirst oxidation step of regioregular P3HT at625mV is abrupt and covers a narrower range of potentials than random-P3HT.This behavior can be considered to be a manifestation of the higher structural homogeneity of the regioregular P3HT com-pared to random-P3HT,and therefore a more isoenergetic polymer chain.The second step(950mV)is associated with the doping re-action,so the HOMO level of P3HT is determined by this step.The HOMO and LUMO energy levels of P3HT and TiO2were analyzed using cyclic voltammetry and from spectroscopic absorption data. The HOMO and LUMO levels can be determined from the onset oxidation potential and onset reduction potential,with reference to the energy level of ferrocene(4.8eV below the vacuum level, which is defined as zero)[27,28].E HOMO/LUMO=−E ox/redonset−E onset(Fc/Fc+)−4.8eV,(1) where E onset(Fc/Fc+)is the potential of the external standard, which is the ferrocene/ferricenium ion(Fc/Fc+)couple.The value of E onset(Fc/Fc+)determined under the same conditions as for P3HT and P3HT-grafted TiO2nanotubes,is about400mV vs. Ag/AgCl.As presented in Fig.8(a),regioregular-P3HT-grafted TiO2 nanotubes have oxidation peaks at630and1000mV,and on-set points of500and760mV,which correspond to oxidation in ordered lamellae and in the doping reaction[31],respectively. Regioregular-P3HT-grafted TiO2nanotubes have a higher oxida-tion potential peak is compared to regioregular-P3HTfilm.The difference between the cyclic voltammograms indicates that the TiO2causes a partial loss of crystallinity reducing the conjugation length of regioregular P3HT by disrupting the ordered structure. In Fig.8(c),random-P3HT has onset points of920mV associated with the doping reaction.The random-P3HT-grafted TiO2nanotube yields an oxidation peak of1100mV,and onset points of780mV correspond to the doping reaction.Random-P3HT physically mixed TiO2nanotubes have an onset point of880mV.Random-P3HT has132M.-D.Lu,S.-M.Yang /Journal of Colloid and Interface Science 333(2009)128–134Fig.4.XPS spectrum of (A)Ti 2p signals,(B)O 1s signals,(C)N 1s signals,(D)S 2p signals from (a)TiO 2nanotube,(b)silanized TiO 2nanotube,(c)thiophene–TiO 2nanotube and (d)random-P3HT grafted TiO 2nanotube.a higher oxidation potential than random-P3HT-grafted or physi-cally mixed TiO 2nanotubes.The oxidation potential indicates that random-P3HT-grafted on TiO 2nanotubes has the longest conjuga-tion.The result agrees with those obtained from UV–vis spectra.The presence of TiO 2nanotubes in random-P3HT increases the conjugation length of random-P3HT.The LUMO level of the TiO 2was derived from the reduction peaks in the cyclic voltammogram of random-P3HT physically mixed TiO 2nanotubes.Random-P3HT physically mixed TiO 2nanotubes yield reduction peaks,and onset points of −200mV,corresponding to a LUMO energy level of TiO 2(Fig.8(d)).The absorption data and obtained band energy levels,shown in Table 3,indicate that the P3HT and TiO 2nanotube com-posite has potential as an electron donor–acceptor material.3.7.Photoluminescence spectraFig.9presents the PL spectra of neat random-P3HT,random-P3HT mixed TiO 2nanotubes and random-P3HT-grafted TiO 2nano-tubes under incident light with a wavelength of 430nm.Adding TiO 2markedly reduced the PL intensity of random-P3HT.Although the absorption intensity of P3HT is similar to P3HT-grafted or mixed TiO 2(Fig.7),the P3HT mixed TiO 2nanotubes have on third of the emission intensity of random P3HTs,while P3HT-grafted TiO 2nanotubes have 10%of the emission intensity.The results show charge transfer from P3HT to TiO 2,and P3HT-grafted TiO 2nanotubes is more efficient than in the physical mixture.The pho-toluminescence intensity of P3HT-grafted TiO 2nanotubes is less than one third of that of the physical mixture.The in situ growth of P3HT provides improved quenching than the physical mixture because the thiophene monomers can diffuse more easily between the nanosized tubes compared to the long polymers,therefore pro-viding a more intimate mixture of the polymer and TiO 2.Addition-ally,the covalent attachment of the P3HT to the TiO 2nanotubes will help to improve charge transfer,increasing the amount of quenching thatoccurs.Fig.5.Thermogravimetric analysis of (a)TiO 2nanotube silanization,(b)thiophene–TiO 2nanotube,(c)random-P3HT grafted TiO 2nanotube,(d)P3HT.Table 2Weight increase wt%,molar ratio from TGA.TiO 2nanotube after silanizationThiophene–TiO 2nanotube P3HT grafted TiO 2nanotube Net TGA weight increase %6wt%5wt%40wt%Molar ratio–R 1=0.41R 2=9.96The net weight increase wt%was calculated from 200◦C to 800◦C.R 1is molar ratio of thiophene to silane,R 2is molar ratio of 3HT to thiophene.M.-D.Lu,S.-M.Yang /Journal of Colloid and Interface Science 333(2009)128–134133Scheme 1.Synthesis of random poly(3-hexylthiophene)grafted TiO 2nanotubecomposite.Fig. 6.XRD patterns of (a)TiO 2nanotube,(b)TiO 2nanotube silanization,(c)thiophene–TiO 2nanotube,(d)random-P3HT grafted TiO 2nanotube.Fig.7.UV–vis spectrums of thin films,(a)random-P3HT grafted TiO 2nanotube,(b)random-P3HT mixed TiO 2nanotube,(c)random-P3HT and (d)TiO 2nanotube.Fig.8.Cyclic voltammogram of (1)regioregular P3HT,(2)regioregular P3HT-grafted TiO 2nanotube,(3)random-P3HT,(4)random-P3HT grafted TiO 2nanotube,(5)random-P3HT mixed with TiO 2nanotube,(6)TiO 2nanotube,scanning rate of 50mV/s.4.SummarySurface characterization of the titania nanotubes and titania nanotubes P3HT composites by XPS and FTIR indicated NH 2and thiphene groups on silanized titania nanotube and thiophene–titania nanotube surfaces.A homogeneous organic–inorganic con-ducting polymer composite of P3HT grafted on TiO 2nanotubes was synthesized.The TGA results show 40wt%P3HT in the random-P3HT-grafted TiO 2nanotubes.P3HT,grafted on TiO 2nanotubes,was formed and PL studies indicated an interaction between P3HT and titania nanotubes in the composite.The in situ growth of P3HT provides improved quenching than the physical mixture because the thiophene monomers can diffuse more easily between the nanosized tubes compared to the long polymers,therefore provid-ing a more intimate mixture of the polymer and TiO 2.Additionally,the covalent attachment of the P3HT to the TiO 2nanotubes will help to improve charge transfer,increasing the amount of quench-ing that occurs.This suggests that nanocomposites are a promisingTable 3Cyclovoltammetry data,HOMO and LUMO levels,E g of donor and acceptor materials.MaterialHOMO of P3HT [eV]/[V]LUMO of P3HT d [eV]HOMO of TiO 2d [eV]LUMO of TiO 2[eV]/[V]E opt .g[eV]Regioregular-P3HT−5.18/0.78c −3.30–– 1.88a Regioregular-P3HT grafted TiO 2nanotube −5.16/0.76c −3.25–– 1.89a Random-P3HT−5.32/0.92c −3.37–– 1.95a Random-P3HT grafted TiO 2nanotube −5.18/0.78c −3.27––1.91aRandom-P3HT mixed TiO 2nanotube−5.28/0.88c −3.35−7.46−4.20/−0.20c1.93a ,3.26ba P3HT.b TiO 2.c V vs.Ag/AgCl.dLUMO level =HOMO level +E optg .134M.-D.Lu,S.-M.Yang/Journal of Colloid and Interface Science333(2009)128–134Fig.9.Photoluminescence spectrum of(a)random-P3HT,(b)random-P3HT mixed TiO2nanotube and(c)random-P3HT grafted TiO2nanotube.material in fabricating hybrid organic–inorganic solid state solar cells.AcknowledgmentsWe thank the assistance of S.J.Ueng and R.M.Huang from the instrumental center,National Central University for TEM and XPS. Financial supports from the National Science Council of Taiwan un-der the Grant NSC96-2113-M-008-005-MY2and National Central University are acknowledged.References[1]T.J.Savenije,J.M.Warman,A.Goossens,Chem.Phys.Lett.287(1998)148.[2]L.Pettersson,L.Roman,O.Inganas,J.Appl.Phys.86(1999)487.[3]D.Gebeyehu,C.J.Brabec,N.S.Sariciftci,D.Vangeneugden,R.Kiebooms,D.Van-derzande,F.Kienberger,H.Schindler,Synth.Met.125(2002)279.[4]J.Kruger,R.Plass,L.Cevey,M.Piccirelli,M.Gratzel,Appl.Phys.Lett.79(2001)2085.[5]U.Bach,D.Lupo,te,J.E.Moser,F.Weissortel,J.Salbeck,H.Spreitzer,M.Gratzel,Nature(London)395(1998)583.[6]A.C.Arango,S.A.Carter,P.J.Brock,Appl.Phys.Lett.74(1999)1698.[7]A.J.Breeze,Z.Schlesinger,S.A.Carter,P.J.Brock,Phys.Rev.B64(2001)125205.[8]C.L.Huisman,A.Goossens,J.Schoonman,Synth.Met.138(2003)237.[9]Q.Fan, B.McQuillin, D.D.C.Bradley,S.Whitelegg, A.B.Seddon,Chem.Phys.Lett.347(2001)325.[10]Q.Qiao,J.T.McLeskey,Appl.Phys.Lett.86(1999)153501.[11]C.L.Hisman,A.Goossens,J.Schoonman,Synth.Met.138(2003)237.[12]A.Watanabe,A.Kasuya,Thin Solid Films483(2005)358.[13]C.Y.Kwong,A.B.Djuri,P.C.Chui,K.W.Cheng,W.K.Chan,Chem.Phys.Lett.284(2004)372.[14]Y.X.Liu,S.R.Scully,M.D.McGehee,J.S.Liu,C.K.Luscombe,J.M.J.Frechet,S.E.Shaheen,D.S.Ginley,J.Phys.Chem.B110(2006)3257.[15]Y.Y.Lin, C.W.Chen,T.H.Chu,W.F.Su, C.C.Lin, C.H.Ku,J.J.Wu, C.H.Chen,J.Mater.Chem.17(2007)4571.[16]J.Boucle,S.Chyla,M.S.P.Shaffer,J.R.Durrant,D.D.C.Bradley,J.Nelson,Adv.Funct.Mater.18(2008)622.[17]J.Boucle,P.Ravirajan,J.Nelson,J.Mater.Chem.17(2007)3141.[18]Y.Y.Lin,T.H.Chu,C.W.Chen,W.F.Su,Appl.Phys.Lett.92(2008)053312.[19]W.U.Huynh,J.J.Dittmer,A.P.Alivisatos,Science295(2002)2425.[20]T.Kasuga,M.Hiramatsu,A.Hoson,T.Sekino,K.Niihara,Adv.Mater.11(1999)1307.[21]D.C.M.Dutoit,M.Schneider,A.Baiker,J.Catal.153(1995)165.[22]X.Gao,I.E.Wachs,Catal.Today51(1999)233.[23]J.W.Lee,S.Kong,W.S.Kim,J.Kim,Mater.Chem.Phys.106(2007)39.[24]Z.Li,B.Hou,Y.Xu,D.Wu,Y.Sun,J.Colloid Interface Sci.288(2005)149.[25]E.M.E.Kristensen,F.Nederberg,H.Rensmo,T.Bowden,J.Hiborn,H.Siegbahn,Langmuir22(2006)9651.[26]Y.Tsuge,K.Inokuchi,K.Onozuka,O.Shingo,S.Sugi,M.Yoshikawa,S.Shiratori,Thin Solid Films499(2006)396.[27]J.Pommerehne,H.Vestweber,W.Guss,R.F.Mahrt,H.Bässler,M.Porsch,J.Daub,Adv.Mater.7(1995)551.[28]Q.D.Ling,S.L.Lim,Y.Song,C.X.Zhu,Daniel S.H.Chan,E.T.Kang,K.G.Neoh,Langmuir23(2007)312.[29]H.J.Martin,K.H.Schulz,J.D.Bumgardner,K.B.Walters,Langmuir23(2007)6645.[30]M.R.Alexander,F.R.Jones,Carbon34(1996)1093.[31]E.L.Ratcliff,J.L.Jenkins,K.Nebesny,N.R.Armstrong,Chem.Mater.20(2008)5796.[32]B.Erdem,R.A.Hunsicker,G.W.Simmons, E.D.Sudol,V.L.Dimonie,M.S.El-Aasser,Langmuir217(2001)2664.。