lesson28 Advanced Manufacturing Technology
- 格式:pdf
- 大小:356.04 KB
- 文档页数:29
Ping LouÆZu-de ZhouÆYou-Ping ChenÆWu AiStudy on multi-agent-based agile supply chain management Received:23December2002/Accepted:23December2002/Published online:5December2003ÓSpringer-Verlag London Limited2003Abstract In a worldwide network of suppliers,factories, warehouses,distribution centres and retailers,the supply chain plays a very important role in the acquisition, transformation,and delivery of raw materials and products.One of the most important characteristics of agile supply chain is the ability to reconfigure dynami-cally and quickly according to demand changes in the market.In this paper,concepts and characteristics of an agile supply chain are discussed and the agile supply chain is regarded as one of the pivotal technologies of agile manufacture based on dynamic alliance.Also,the importance of coordination in supply chain is emphas-ised and a general architecture of agile supply chain management is presented based on a multi-agent theory, in which the supply chain is managed by a set of intelli-gent agents for one or more activities.The supply chain management system functions are to coordinate its agents.Agent functionalities and responsibilities are de-fined respectively,and a contract net protocol joint with case-based reasoning for coordination and an algorithm for task allocation is presented.Keywords Agile supply chainÆMulti-agent systemÆCoordinationÆCBRÆContract net protocol1IntroductionAdvanced technology and management are constantly being adopted to improve an enterpriseÕs strength and competitive ability in order to achieve predominance among hot global competition.In a report on21st century manufacturing strategy development,the author suggests that various production resources,including people,funds,technology and facilities should be inte-grated and managed as a whole;thus optimising the utilisation of resources and taking full advantage of advanced manufacturing technology,information tech-nology,network technology and computer[1].Agile manufacture based on dynamic alliance is coming into being so that enterprises can remain competitive in a constantly changing business environment and is becoming a main competitive paradigm in the interna-tional market.Agility,which has basically two mean-ings:flexibility and reconfigurability,has become a very important characteristic of a modern manufacturing enterprise.Flexibility is an enterpriseÕs ability to make adjustments according to customersÕneeds.Reconfigu-rability is the ability to meet changing demands[2,3].The ability to quickly respond to marketÕs changes, called agility,has been recognised as a key element in the success and survival of enterprises in todayÕs market.In order to keep up with rapid change,enterprises need to change traditional management in this hot competition. Through dynamic alliance,enterprises exert predomi-nance themselves,cooperate faithfully with each other, and compete jointly so as to meet the needs of the fluctuating market,andfinally achieve the goal of win-win[2,3].So how to improve agility in the supply chain, namelyflexibility and reconfigurability,is one of the important factors to win against the competition.Supply chain management(SCM)is an approach to satisfy the demands of customers for products and ser-vices via integrated management in the whole business process from raw material procurement to the product or service delivery to customers.In[4],M.S.Fox et al. describe the goals and architecture of integrated supply chain management system(ISCM).In this system,each agent performs one or more supply chain management functions,and coordinates its decisions with other rele-vant agents.ISCM provides an approach to the real timeInt J Adv Manuf Technol(2004)23:197–203 DOI10.1007/s00170-003-1626-xP.Lou(&)ÆZ.ZhouRoom107,D8Engineering Research Center of Numerical Control System,School of Mechanical Science&Engineering, Huazhong University of Science&Technology, 430074Wuhan,Hubei,P.R.ChinaE-mail:louping_98@Y.-P.ChenÆW.AiSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074Wuhan,Hubei,P.R.Chinaperformance of supply chain function.The integration of multi-agent technology and constraint network for solving the supply chain management problem is pro-posed[6].In[7],Yan et al.develop a multi-agent-based negotiation support system for distributed electric power transmission cost allocation based on the networkflow model and knowledge query&manipulation language (KQML).A KQML based multi-agent coordination language was proposed in[8,9]for distributed and dy-namic supply chain management.However,the coordi-nation mechanisms have not been formally addressed in a multi-agent-based supply chain.In most industries, marketing is becoming more globalised,and the whole business process is being implemented into a complex network of supply chains.Each enterprise or business unit in the SCM represents an independent entity with conflicting and competing product requirements and may possess localised information relevant to their interests.Being aware of this independence,enterprises are regarded as autonomous agents that can decide how to deploy resources under their control to serve their interests.This paperfirst introduces concepts and characteris-tics of agile supply chains and emphasises the impor-tance of coordination in supply chain.Then,it presents an architecture of agile supply chain based on a multi-agent theory and states the agentsÕfunctions and responsibilities.Finally,it presents a CBR contract net protocol for coordination and the correlative algorithm for task allocation in multi-agent-based agile supply chains.2Agile supply chainA supply chain is a network from the topologic structure which is composed of autonomous or semi-autonomous enterprises.The enterprises all work together for pro-curement,production,delivery,and so on[10].There is a main enterprise in the supply chain that is responsible for configuring the supply chain according to the de-mand information and for achieving supply chain value using fundflow,materialflow and informationflow as mediums.There are three discontinuous buffers to make the materialflowfluently and satisfy the change in the demand.On the one hand,as every enterprise manages inventory independently,plenty of funds are wasted.As the demand information moves up-stream,the forecast is inaccurate and the respond to the change in demand is slow[11].Accordingly,the key method for competi-tiveness is improving and optimising supply chain management to achieve integrated,automated,and agile supply chain management and to cut costs in the supply chain.To optimise supply chain management and coordi-nate the processes for materialflow,fundflow and informationflow,it is necessary to make materialflow fluent,quickly fund turnover and keep information integrated.Prompt reconfiguration and coordination is an important characteristic of agile supply chain according to dynamic alliance compositing and de-compositing(enterprise reconfiguration).Agile supply chain management can improve enterprise reconfiguring agility.The agile supply chain breaks through the tra-ditional line-style organizational structure.With net-work technology an enterprise group is formed by a cooperative relationship which includes an enterprise business centre,a production design centre,a supplier,a distribution centre,a bank,a decision-making centre, etc.It reduces the lead time to the market to satisfy customer demand.Agile supply chain without temporal and spatial limits promptly expands the enterprise scale,marketing share and resource by allied enterprise.So,a key factor of the agile supply chain is to integrate heterogeneous information systems adopted in various enterprises.The integration information system can provide marketing information and supplier details.Feasible inventory, quantity and cycle of replenished stock,delivery,etc.is designed using the shared information.It is evident that agile supply chain is a typical distributed system.A multi-agent system(MAS)which is characterised byflexibility and adaptability is suit-able for an open and dynamic environment.Thus MAS is a good method for agile supply chain man-agement.3The concept of agents and MASSome people define an agent as any piece of software or object which can perform a specific given task.Presently the prevailing opinion is that an agent must exhibit three important general characteristics:autonomy,adapta-tion,and cooperation[8,12,13].Autonomy means that agents have their own agenda of goals and exhibit goal-directed behaviour.Agents are not simply reactive,but can be pro-active and take initiatives as they deem appropriate.Adaptation implies that agents are capable of adapting to the environment,which includes other agents and human users,and can learn from the expe-rience in order to improve themselves in a changing environment.Cooperation and coordination between agents are probably the most important feature of MAS. Unlike those stand-alone agents,agents in a MAS col-laborate with each other to achieve common goals.In other words,these agents share information,knowledge, and tasks among themselves.The intelligence of MAS is not only reflected by the expertise of individual agents but also exhibited by the emerged collective behaviour beyond individual agents.Of course various agents have different functions,but some functions are needed for each agent.A generic structure of agents that includes two parts is presented:agent kernel and function mod-ule.Figure1exhibits the generic structure of agents which is a plug-in model.In Fig.1,the generic agent includes the following components:198The mailbox handles communication between one agent and the other agents.The message handler processes incoming message from the mailbox,orders them according to priority level,and dispatches them to the relevant components of the agent.The coordination engine makes decisions concerning the agent Õs goals,e.g.how they should be pursued,when to abandon them,etc.,and sends the accepted tasks to the planner/scheduler.It is also responsible for coordi-nating the agents Õinteractions with other agents using coordination protocols and strategies.The planner and scheduler plans the agent Õs tasks on the basis of decisions made by the coordination engine and on resources and task specifications available to the agent.If not,a message is sent to the coordination en-gine for finding extra resources.The blackboard provides a shared work area for exchanging information,data,and knowledge among function modules.Every function module is an inde-pendent entity.These function modules execute con-currently by the control of planner/scheduler and collaborate through the blackboard.The acquaintance database describes one agent Õs relationships with other agents in the society,and its beliefs about the capabilities of those agents.The coor-dination engine uses information contained in this database when making collaborative arrangements with other agents.The resource database reserves a list of resources (referred to in this paper as facts)that are owned by and available to the agent.The resource database also sup-ports a direct interface to external systems,which allows the interface to dynamically link and utilise a proprie-tary database.The ontology database stores the logical definition of each fact type—its legal attributes,the range of legal values for each attribute,any constraints betweenattribute values,and any relationship between the attributes of that fact and other facts.The task/plan database provides logical descriptions of planning operators (or tasks)known to the agent.4Multi-agent-based agile supply chain management Multi-agent-based agile supply chain management per-forms many functions in a tightly coordinated manner.Agents organise supply chain networks dynamically by coordination according to a changing environment,e.g.exchange rates go up and down unpredictably,customers change or cancel orders,materials do not arrive on time,production facilities fail,etc.[2,14].Each agent performs one or more supply chain functions independently,and each coordinates his action with other agents.Figure 2provides the architecture of multi-agent-based agile supply chains.There are two types of agents:functional agents and mediator agents.Functional agents plan and/or control activities in the supply chain.Mediator agents play a system coordinator role s by promoting coopera-tion among agents and providing message services.Mediator agents dispatch the tasks to the functional agents or other mediator agents,and then those func-tional or mediator agents complete the tasks by coordi-nation.All functional agents coordinate with each other to achieve the goals assigned by mediator agents.The mediator-mediator and mediator-agent communication is asynchronous,and the communication mode can be point-to-point (between two agents),broadcast (one to all agents),or multicast (to a selected group of agents).Messages are formatted in an extended KQML format.The architecture is characterised by organizational hier-archy and team spirit,simplifying the organisational architecture and reducing the time needed to fulfil the task.The rest of this section briefly describes each of the mediator agents underdevelopment.Fig.1Generic structures of agents199–Customer mediator agent:This agent is responsible for acquiring orders from customers,negotiating with customers about prices,due dates,technical advisory,etc.,and handling customer requests for modifying or cancelling respective orders,then sending the order information to a scheduling mediator agent.If a customer request needs to be re-designed,the infor-mation is sent to a design mediator agent,then to a scheduling mediator agent.–Scheduling mediator agent:This agent is responsible for scheduling and re-scheduling activities in the fac-tory,exploring hypothetical ‘‘what-if’’scenarios for potential new orders,and generating schedules that are sent to the production mediator agent and logis-tics mediator agent.The scheduling agent also acts as a coordinator when infeasible situations arise.It has the capability to explore tradeoffs among the various constraints and goals that exit in the plant.–Logistics mediator agent:This agent is responsible for coordinating multi-plans,multiple-supplier,and the multiple-distribution centre domain of the enterprise to achieve the best possible results in terms of supply chain goals,which include on-time delivery,cost minimisation,etc.It manages the movement of products or materials across the supply chain from the supplier of raw materials to the finished product customer.–Production mediator agent:This agent performs the order release and real-time floor control functions as directed by the scheduling mediator agent.It monitors production operation and facilities.If the production operation is abnormal or a machine breaks down,this agent re-arranges the task or re-schedules with the scheduling mediator agent.–Transportation mediator agent:This agent is responsible for the assignment and scheduling of transportation resources in order to satisfy inter-plant movement specified by the logistics mediator agent.It is able to take into account a variety oftransportation assets and transportation routes in the construction of its schedules.The goal is to send the right materials on time to the right location as assigned by the logistics mediator agent.–Inventory mediator agent:There are three invento-ries at the manufacturing site:raw product inven-tory,work-in-process inventory,and finished product inventory.This agent is responsible for managing these inventories to satisfy production requirements.–Supplier mediator agent:This agent is responsible for managing supplier information and choosing suppli-ers based on requests in the production process.–Design mediator agent:This agent is responsible for developing new goods and for sending the relevant information to the scheduling mediator agent for scheduling,as well as to the customer mediator agent for providing technological advice.5Coordination in a multi-agent-based agile supply chainCoordination has been defined as the process of man-aging dependencies between activities [15].One impor-tant characteristic of an agile supply chain is the ability to reconfigure quickly according to change in the envi-ronment.In order to operate efficiently,functional entities in the supply chain must work in a tightly coordinated manner.The supply chain works as a net-work of cooperating agents,in which each performs one or more supply chain functions,and each coordinates its action with that of other agents [5].Correspondingly,a SCMS transforms to a MAS.In this MAS,agents may join the system and leave it according to coordinating processes.With coordination among agents,this MAS achieves the goal of ‘‘the right products in the right quantities (at the right location)at the right moment at minimalcost’’.Fig.2An architecture of multi-agent based agile supply chain management2005.1Contract net protocol combined withcase-based reasoningThe contract net is a negotiation protocol(CNP)pro-posed by Smith[15].In the CNP,every agent is regarded as a node,such as a manager or a contractor.The manager agent(MA)is responsible for decomposing, announcing,and allocating the task and contractor agent(CA)is responsible for performing the task.This protocol has been widely used for multi-agent negotia-tion,but it is inefficient.For this reason,contract net protocol is combined with case-based reasoning(CBR).In case-based reasoning(CBR),the target case is defined as problem or instance which is currently being faced,and the base case is problem or instance in the database.CBR searches the base case in the database under the direction of the target case,and then the base case instructs the target case to solve the problem.This method is efficient.But at the very beginning,it is very difficult to set up a database which includes all problems solving cases.The cases may be depicted as follows:C¼\task;MA;taskÀconstraint;agentÀset> Here,MA is task manager.Task-constraint repre-sents various constraint conditions for performing the task,depicted as a vector{c1,c2,c3,...,c m}.Agent-set is a set of performing the task as defined below:Agent set¼\sub task i;agent id;cost;time;resource>f gtask¼[ni¼1sub task iIn the supply chain,the same process in which a certain product moves from the manufacturer to the customer is performed iteratively.So,case-based rea-soning is very efficient.Consequently,combining con-tract net protocol with CBR could avoid high communicating on load,thus promoting efficiency.The process can be depicted as follows(Fig.3).5.2The algorithm for task allocation baseon CBR contract net protocolThere are two types of agents in the supply chain, cooperative and self-interested agents.Cooperative agents attempt to maximise social welfare,which is the sum of the agents utilities.They are willing to take individual losses in service of the good of the society of agents.For example,function agents come from the same enterprise.In truth,the task allocation among cooperative agents is combinational optimisation prob-lem.Self-interested agents seek to maximise their own profit without caring about the others.In such a case,an agent is willing to do other agentsÕtasks only for com-pensation[16].Function agents,for example,come from different enterprises.In the following section the algorithm for task allo-cation among self-interested agents based on CBR contract net protocol will be addressed.Before describ-ing the algorithm,there are some definitions that must be clarified:Task—A task which is performed by one agent or several agents together:T=<task,reward,con-straints>,where task is the set of tasks(task={t1,t2,..., t m}),reward is the payoffto the agents that perform the task(reward={r1,r2,...,r m}),and constraints refer to the bounded condition for performing the task(con-straints={c1,c2,...,c n}).Agent coalition(AC)—A group of agents that per-form task T,described as a set AC={agent i,i=1,2,...,n}.Efficiency of agent—Efficiency of an agent i is de-scribed as follows:E i¼rewardÀcostðÞ=costð1Þwhere reward is the payoffto the agent performing task T,and cost refers to that spend on performing the task. If agent i is not awarded the task,then E i=0.Efficiency of agent coalition—E coalition¼rewardÀX micost iÀh!,X micost iþh!ð2Þwhere reward is the payoffof the agent coalition per-forming task T;cost i refers to that spend on performing task t i;and h is the expense on forming coalition,which is shared by the members of the coalition.If the coalition is not awarded task T,then E coalition<=0.6Algorithm:1.After MA accepts the task T=<task,reward,constraint>(task is decomposable),then it searches the database.2.If itfinds a corresponding case,it assigns the task orsubtask to the related agents according to the case, and the process is over3.If no case is found,then the task T is announced toall relevant agents(agent i,i=1,2,...n).4.The relevant agents make bids for the task accord-ing to their own states and capabilities.Thebid Fig.3CBR contract net process201from agent i can be described as follows:Bid i =<agentid i ,T i ,price i ,condition i >,where i ex-presses the bidding agent (i =1,2,...,h );agentid i is the exclusive agent identifier;T i is the task set of agent i Õs fulfilment;price i is the recompense of agent i fulfilling the task T i ;and condition i is the constraint conditions for agent i to fulfil the task T i .5.If [1 i h&T i then the task T can not be performed.Otherwise MA makes a complete combination of the agents,namely to form a number of agent coalitions (or agent sets,amounting to N =2h )1).6.First MA deletes those agent coalitions where no agents are able to satisfy the constraint condition.Next the rest of the coalitions are grouped by the number of agents in coalitions and put into set P (P ={P 1,P 2,...,P h })in order of the minimum re-compense increase of the coalitions,where P i is the set of agent coalitions,including i agents.7.MA puts the first coalition from each group P i(i =1,2,...,h )into set L ,and if L is null then it returns to (10),otherwise it calculates the minimum re-compense of each coalition as follows:Min Pm iprice i ÃT is :t :P h i ¼1T i TP m icondition i constraitThen it searches for the minimal agent coalition AC min from the set L .8.MA sends the AC min to the relevant agents,namely MA requests that these agent fulfil the task to-gether.The relevant agents calculate the E coalition and E i according to Eqs.1and 2.IfE coalition !max miE i ,then all agents in the AC minaccept the proposal to form a coalition to perform the task T together.MA assigns the task to the AC min ,and the process is over.Otherwise it deletes the AC min from P i and returns to (7).9.If the relevant agents accept the task or subtask,then MA assigns the task to them.The process is over.If some agents cannot accept the subtask and the stated time is not attained,then it returns to (3),otherwise it returns to (10).10.The process is terminated (namely the task cannotbe performed).After all processes have been completed,case-based maintenance is required to improve the CBR.Thus efficiency is continuously promoted.6.1An example–A simple instantiation of a supply chain simulation is presented here and the negotiating process among agents is shown.In this supply chain instantiation,thetransportation mediator agent (TMA)has a transporttask T ,in which it has to deliver the finished product to the customer within 15units of time and must pay 1500monetary units for it,that is T =<t ,1500,15>.Four transport companies can perform task T .Each company is an autonomous agent,that is four agents,agent A,agent B,agent C and agent D.So the TMA announces the task T to the four agents.Then the four agents make a bid for the task T as shown in Table 1.–So the four agents can form 24)1coalitions (see Fig.4),which are put into set P .Cooperation between agents in the coalition requires expense and the ex-pense for forming the coalition increases with the growth of in coalition size.This means that expanding the coalition may be non-beneficial.The expense of each agent in forming a coalition h is 100.First,the coalitions in which no agents can satisfy the constraint conditions are deleted from the set P .The rest of the coalitions are grouped by the number of agents in the coalition and ordered according to the recompense of each group that was increased due to the coalition,namely P 1={B},P 2={{A,B},{A,C},{B,C},{A,D},{B,D}},P 3={{A,B,C},{A,B,D},{B,C,D}},P 4={{A,B,C,D}}.Then the cost and efficiency of coalition {B},{A,C}and {A,B,C}are calculated as follows:Price f A ;B g ¼Min ð800x 1þ1200x 2Þs :t :20x 1þ12x 2 15x 1þx 2!1x 1!0:x 2!0Price f A ;B ;C g ¼Min ð800y 1þ1200y 2þ2000y 3Þs :t :20y 1þ12y 2þ5y 3 15y 1þy 2þy 3!1y 1!0:y 2!0;y 3!Fig.4Agent coalition graphTable 1The bids of four agents Agent Id Price Conditions Agent A 80020Agent B 120012Agent C 20005AgentD25003202the following result can be obtained:Price{B}=1200; x1=0.3750,x2=0.6250,Price{A,B}=1050;and y1= 0.3750,y2=0.6250,y3=0.The above result shows that agent B does not attend the coalition{A,B,C},that is both agent B and coalition{A,B}can fulfill the task and satisfy the constraint conditions.According to Eqs.1 and2,E A,E B,E{A,B}:E A=0(because TMA does not assign the task to A.),E B=(1500)1200)/1200=0.25, E{A,B}=(1500)1050)2*100)/(1050+2*100)=0.2can be obtained.Because of E{A,B}<max{E A,E B},agent B does not agree to form a coalition.Therefore,the TMA se-lects agent B to fulfil the task.7ConclusionsIn this paper,the concept and characteristics of agile supply chain management are introduced.Dynamic and quick reconfiguration is one of important characteristics of an agile supply chain and agile supply chain man-agement is one of the key technologies of agile manu-facturing based on dynamic alliances.As agile supply chain is a typical distributed system,and MAS is effi-cient for this task.In the architecture of agile supply chain management, the supply chain is managed by a set of intelligent agents that are responsible for one or more activities.In order to realise the agility of supply chains,coordination amongst agents is very important.Therefore,it can be suggested that contract net protocol should be combined with case-based reasoning to coordinate among agents. Acknowledgement The authors would like to acknowledge the funding support from the National Science Fund Committee (NSFC)of China(Grant No.5991076861).References1.Goldman S,Nagel R,Preiss K(1995)Agile competitors andvirtual organization.Van Nostrsand Reinhold,New York, pp23–32,pp158–1662.Yusuf YY,Sarhadi M,Gunasekaran A(1999)Agile manu-facturing:the drivers,concepts and attributes.Int J Prod Eng 62:33–433.Gunasekaran A(1999)Agile manufacturing:A framework forresearch and development.Int J Prod Eng62:87–1054.Fox MS,Chionglo JF,Barbuceanu M(1992)Integrated chainmanagement system.Technical report,Enterprise Integration Laboratory,University of Toronto5.Shen W,Ulieru M,Norrie DH,Kremer R(1999)Implementingthe internet enabled supply chain through a collaborative agent system.In:Proceedings of agentsÔ99workshop on agent-based decision support for managing the internet-enabled supply-chain,Seattle,pp55–626.Sandholm TW,Lesser VR(1995)On automated contracting inmulti-enterprise manufacturing.Advanced Systems and Tools, Edinburgh,Scotland,pp33–427.Beck JC,Fox MS(1994)Supply chain coordination via medi-ated constraint relaxation.In:Proceedings of thefirst Canadian workshop on distributed artificial intelligence,Banff,Alberta, 15May19948.Chen Y,Peng Y,Finin T,Labrou Y,Cost R,Chu B,Sun R,Willhelm R(1999)A negotiation-based multi-agent system for supply chain management.In:Working notes of the ACM autonomous agents workshop on agent-based decision-support for managing the internet-enabled supply-chain,4:1–79.Wooldridge M,Jennings NR(1995)Intelligent agents:theoryand practice.Knowl Eng Rev10(2):115–15210.Barbuceanu M,Fox MS(1997)The design of a coordinationlanguage for multi-agent systems.In:Muller JP,Wooldridge MJ,Jennings NR(eds)Intelligent agent III:agents theories, architecture and languanges(Lecture notes in artificial intelligence),Springer,Berlin Heidelberg New York,pp341–35711.Hal L,Padmanabhan V,Whang S(1997)The Bullwhip effect insupply chains.Sloan Manag Rev38(4):93–10212.Yung S,Yang C(1999)A new approach to solve supply chainmanagement problem by integrating multi-agent technology and constraint network.HICASS-3213.Yan Y,Yen J,Bui T(2000)A multi-agent based negotiationsupport system for distributed transmission cost allocation.HICASS-3314.Nwana H(1996)Software agents:an overview.Knowl Eng Rev11(3):1–4015.Smith RG(1980)Contract net protocol:high-level communi-cation and control in a distributed problem solver.IEEE Trans Comput29(12):1104–111316.Barbuceanu M,Fox MS(1996)Coordinating multiple agentsin the supply chain.In:Proceedings of thefifth workshop on enabling technology for collaborative enterprises(WET ICEÕ96).IEEE Computer Society Press,pp134–14117.Jennings NR,Faratin P,Norman TJ,OÕBrien P,Odgers B(2000)Autonomous agents for business process management.Int J Appl Artif Intell14(2):145–1818.Malone TW,Crowston K(1991)Toward an interdisciplinarytheory of coordination.Center for coordination science tech-nical report120,MIT Sloan School203。
外文原文:The new advanced manufacturing technology developmentAbstract : This paper has presented the problems facing today's manufacturing technology, advanced manufacturing discussed in the forefront of science, and a vision for the future development of advanced manufacturing technology.Keyword:Advanced manufacturing technologies; Frontier science; Applications prospectsModern manufacturing is an important pillar of the national economy and overall national strength and its GDP accounted for a general national GDP 20%~55%. In the composition of a country's business productivity, manufacturing technology around 60% of the general role. Experts believe that the various countries in the world economic competition, mainly manufacturing technology competition. Their competitiveness in the production of the final product market share. With the rapid economic and technological development and customer needs and the changing market environment, this competition is becoming increasingly fierce, and that Governments attach great importance to the advanced manufacturing technology research.1 .Current manufacturing science to solve problemsManufacturing science to solve the current problems focused on the following aspects :(1) Manufacturing systems is a complex systems, and manufacturing systems to meet both agility, rapid response and rapid reorganization of the capacity to learn from the information science, life science and social science interdisciplinary research, and explore new manufacturing system architecture, manufacturing models and manufacturing systems effective operational mechanism. Manufacturing systems optimized organizational structure and good performance is manufacturing systemmodelling, simulation and optimization of the main objectives. Manufacturing system architecture not only to create new enterprises both agility and responsiveness to the needs and the ability to reorganize significance, but also for the soft production equipment manufacturing enterprises bottom reorganization and dynamic capacity to set higher demands. Biological manufacturing outlook increasingly being introduced to the system to meet new demands manufacturing systems.(2) The rapid rise in support of manufacturing, geometric knowledge sharing has become a modern manufacturing constraints, product development and manufacturing technologies of the key issues. For example, in computer-aided design and manufacturing (CAD/CAM) integration, coordinates measurements (CMM) and robotics fields, in 3D real space (3-Real Space), there are a lot of geometric algorithm design and analysis, especially the geometric said, geometric calculation and geometric reasoning; In measurement and robot path planning and parts search spaces (such as Localization), the existence of space C- interspace (configuration space Configuration Space) geometric calculation and geometric reasoning; Objects in operation (rescue, paying and assembly, etc.) means paying more description and robot planning, campaign planning and assembly operations planning is needed in the types of space (Screw Space) geometric reasoning. Manufacturing process of physical and geometric mechanics phenomenon of scientific research to create a geometric calculation and geometric reasoning, and other aspects of the research topic, the theory pending further breakthrough, the new one door disciplines -- computer geometric are being increasingly broad and in-depth study.(3) In the modern manufacturing process, information not only manufacturing industries have become dominated the decisive factor, but also the most active ones. Manufacturing information systems to improve throughput of modern manufacturing has become a focus of scientific development. The manufacturing information system organization and structure required to create information access, integration and integration show three-dimensional in nature, measuring the multidimensional nature of the information, and information organizations nature. Information structure models in the manufacturing, manufacturing information consistency constraint, andthe dissemination of data processing and the manufacture of enormous knowledge base management, and other areas, there is a need to further breakthroughs.(4) The calculation of the wisdom of artificial intelligence tools and methods in the manufacture of a wide range of applications for manufacturing smart development. Category based on the calculation of biological evolution algorithms smart tools, including activation issues optimize GPS technology portfolio by growing concern is in the manufacture of the complete portfolio optimization problems combined speed and precision of GPS issues both in size constraints. Manufacturing wisdom manifested in the following aspects : wisdom activation, wisdom design, intelligent processing, robotics, intelligent control, intelligent process planning, smart diagnostic, and other aspects. These innovative products are the key theoretical issues, but also by creating a door for a science skills in the important basic issues. The focus in these issues, we can form the basis of product innovation research system.2. Modern mechanical engineering at the frontiers of scienceCross-integration between the different science will produce new scientific gathering, economic development and social progress of science and technology created new demands and expectations, thus creating a frontier science. Frontier science is settled and unsettled issues between the scientific community. Frontier science, with a clear domain, and dynamic character of the area. Works frontier science from the general basic science is an important characteristic of the actual works, it covers the key emerging science and technology issues. Ultrasonic electrical, ultra-high-speed machines, green design and manufacturing, and other fields, and has done a lot of research work, but innovation is the key question is not clear mechanical science. Large complex mechanical system design and performance optimization of product innovation design, smart structures and systems, intelligent robots and their dynamics, nano Mocaxue, manufacturing process 3D numerical simulations and physical simulation, precision and ultra-fine processing technology key basis, about 10 mega large and sophisticated equipment design and manufacturing base, virtual manufacturing and virtual instruments, nanometer measurement and instrumentation, parallel connection axis machine tools, and although the field ofmicro-electromechanical systems have done a lot of research, but there are still many key science and technology issues to be resolved. Information science, nano science, materials science, life science, management science and manufacturing science of the 21st century will be to change the mainstream science, and the resulting high-tech industry will change the face of the world. Therefore, the above areas of cross-development manufacturing systems and manufacturing informatics, nano manufacturing machinery and nano science, better machinery and better manufacturing science, management science and manufacturing systems will be critical to the 21st century mechanical engineering science is important frontier science.2.1 Manufacturing science and information science cross -- manufacturing informaticsMechanical and electrical products, chemical raw materials in the information. Many modern value added products primarily reflected in the information. Thus the manufacturing process for the acquisition and application of information is very important. Information science and technology is to create an important symbol of globalization and modernization. While the manufacturing technology began to explore product design and manufacturing processes, the nature of the information, on the other hand, to create technology to transform itself to adapt to the new information makes its manufacturing environment. Along with the manufacturing process and manufacturing systems to deepen understanding, researchers are trying to new concepts and approaches to their description and expression to achieve further control and optimization purposes.And manufacturing-related information mainly product information, technical information and information management in this area following major research direction and content :(1) manufacturing information acquisition, processing, storage, transmission and application of knowledge to create information and decision-making transformation.(2) Non-symbols expressing information, manufacturing information enables transmission, manufacturing information management, manufacturing informationintegrity in a state of non-production decision-making, management of virtual manufacturing, based on the network environment of the design and manufacturing, manufacturing process control and manufacturing systems science. These elements are manufactured in science and the scientific basis for the integration of product information, constitute the manufacture of the new branch of science -- to create informatics.2.2 Micro mechanical and manufacturing technology researchMicro-electronic mechanical systems (MEMS) refers to the collection of micro-sensors, micro-devices and the implementation of signal processing and control circuits, interface circuits, communications and power with the integration of micro-electromechanical system integrity. MEMS technology objectives through system miniaturization, to explore a new theory of integration, new functional components and systems. MEMS development will greatly facilitate the pocket of various products, miniaturization, a number of devices and systems to enhance the level of functional density, information density and Internet density, significantly saving, thin section. Not only can it reduce the cost of mechanical and electrical systems, but also to be completed and the size of many large systems impossible task. For example, using sophisticated 5μm diameter micro tweezers walls are made of a red blood cell can; Created to keep the cars 3mm size; In the magnetic field, like butterflies flying size aircraft. MEMS technology has opened up a completely new technology areas and industries, with many traditional sensors incomparable advantages in manufacturing, aerospace, transportation, telecommunications, agriculture, biomedical, environmental monitoring, military, families, and access to almost all areas have very broad application prospects.Micro machinery is machinery and electronic technology in nano-scale technology integration photogenic product. Back in 1959 scientists have raised the idea of micro-mechanical and micro-1962, the first silicon pressure sensors. 1987 California University of California Berkeley developed rotor diameter of the silicon micro-60~120 16ug m electrostatic electric motors, show produced using silicon micro-machining small movable structures and compatible with IC manufacturingmicro system potential. Micro-mechanical technology might like 20th century microelectronics technology, the technology of the world in the 21st century, economic development and national defense building a tremendous impact. Over the past 10 years, the development of micro-mechanical spectacular. Its characteristics are as follows : a considerable number of micro-components (micro structure, the implementation of micro-sensors and micro-machines, etc.) and micro-systems research success reflects the current and potential applications of value; The development of micro-manufacturing technology, particularly semiconductor processing technology have become small micro systems support technology; micro-electromechanical systems research needs of the interdisciplinary research team, micro-electromechanical systems technology in the development of microelectronics technology on the basis of multidisciplinary cross-frontier area of research, involving electronic engineering, mechanical engineering, materials engineering, physics, chemistry and biomedical engineering and other technical and scientific.The current micro-mechanical systems under the conditions of the campaign laws, the physical characteristics and micro components of the role of the mechanics payload acts lack adequate understanding is not yet in a theoretical basis for a micro-system design theory and methodology, and therefore can By experience and test methods research. Micro-mechanical systems, the existence of key scientific research issues of micro-scale system effects, physical properties and biochemical characteristics. Micro-system research are in the eve of a breakthrough, which is the in-depth study of the area.2.3 Material produced / manufactured parts integration of new technologies for processing.Material is a milestone in the progress of mankind, is the manufacturing and high-tech development. Every important to the success of the production and application of new materials, will promote the material and the promotion of national economic strength and military strength. 21, the world will be resource consumption-based economy to a knowledge-based industrial transformation for materials and parts and functions of a high performance, intelligent features; Requestmaterials and components designed to achieve quantitative-based and digitized; Prepare materials and components for the rapid, efficient and achieve both integration and integrated. Digital materials and components designed to be a simulation and optimization of materials and components to achieve high quality production / manufacturing and other integration, integrated manufacturing key. On the one hand, to be completed through computer simulation optimization can reduce the material is produced in the course of manufacture of spare parts and experimental links to the best craft programmes, materials and components to achieve high quality production / manufacturing; On the other hand, according to the requirements of different material properties, such as flexible modules volume, thermal expansion coefficient, magnetic performance, Research materials and components designed form. And the removal of traditional materials-manufacturing technology, and increase the level of information technology, the research group of synthetic materials is a process technology. Forming materials and components manufacture digital theory, technology and methods, such as rapid adoption of emerging technologies material growing principles, a breakthrough in the traditional law and to build law mechanical deformation processing many restrictions, no processing tools or dies, can rapidly create arbitrary complex shape and has a certain function 3D models or entity parts.2.4 machinery manufacturing breakthroughThe 21st century will be the century of life science, mechanical and life sciences depth integration will generate new concept products (such as better intelligence structure), to develop a new process (such as the growth processes shape) and the opening of new industries and to resolve product design, manufacturing processes and systems provide a series of problems new solutions. This is a highly innovative and leading edge area in the challenge.Earth's biological evolution in the long accumulated fine qualities of human manufacturing activities to address the various problems with examples and guidelines. Learning from life phenomena organizations operating complex systems and methods and techniques, manufacturing is the future solution to the current problems facing many an efficient way. Better manufacturing refers to the replicationof biological organs from organizations, since healing, self growth and evolution since the function of the model structure and operation of a manufacturing system and manufacturing process. If the manufacturing process mechanization, automation extends human physical and intelligent extension of the human intellectual, then "create better" may be said to extend its own organizational structure and human evolution process.Gene involved in the manufacture of biological science is the "self-organization" mechanism and its application in manufacturing systems. The so-called "self-organization" refers to a system in its internal mechanism driven by the organizational structure and operation mode learning, thereby enhancing the capacity for environmental adaptation process. Create better "since the organization" bottom-up mechanism for parallel product design and manufacturing processes of automatic generation, the dynamics of production systems and manufacturing systems and products more automatic a theoretical foundation and achieve superior conditions.Create a better manufacturing and life sciences "far edge hybrid" of the 21st century manufacturing will have an enormous impact. Create better research content is twofold :2.4.1 To create better livesResearch lives of the general phenomenon of the law and models, such as artificial life, cellular automatic machines, biological information processing skills, biological wisdom, biological-based organizational structure and mode of operation and the evolution of biological mechanisms and getting better;2.4.2 Oriented manufacturing breakthrough manufacturingResearch organizations better manufacturing systems since the mechanisms and methods, for example : based on full information-sharing breakthrough design principles, multi-discipline modules based on the distributed control and coordination mechanism based on the evolution of an excellent strategy; Study the concept of creating better system and its basis, such as : the formalization described space and better information shine upon relations better system and its evolution of complexity measurement methods.Machinery manufacturing is better and better mechanical science and life science, information science, materials science disciplines such as high integration, the study includes growth formative processes, better design and manufacturing systems, mechanical and biological wisdom better shape manufacturing. Currently doing research mostly forward exploratory work, with distinct characteristics of the basic research, if the research continues to seize opportunities that might arise revolutionary breakthroughs. Future research should concern areas of biological processing technology, better manufacturing system, based on rapid prototype manufacturing engineering technology organizations, as well as biological engineering related key technical basis.3. Modern manufacturing technology trendsSince the beginning of the 1990s, the nations of the world have manufacturing technology research and development as a national priority for the development of key technologies, such as the United States advanced manufacturing technology plan AMTP, Japan wisdom manufacturing technology (IMS) international cooperation schemes, Korea senior national plan of modern technology (G--7), Germany plans to manufacture 2000 and the EC Esprit and BRITE-EURAM plan.With the electronics, information, the constant development of new and high technologies, market demand individuality and diversity, the future of modern manufacturing technology to the overall development trends of the sophisticated, flexible, and networked, virtual and intelligent, green integrated, globalization direction.Current trends in modern manufacturing technology has the following nine areas :(1) Information technology, management techniques and technology closelyintegrated technology, modern production model will be continuousdevelopment.(2) Design techniques and more modern means.(3) Shaped and manufacture of sophisticated technology and manufacturingprocesses to achieve longer.(4) The formation of new special processing methods.(5) Development of a new generation of ultra-sophisticated, ultra-high-speedmanufacturing equipment.(6) Machining skills development for the engineering sciences.(7) Implementation of clean green manufacturing.(8)The widespread application of virtual reality technology to the manufacturingsector.(9) To create people-oriented.译文:先进制造技术的新发展摘要:本文介绍了当今制造技术面临的问题,论述了先进制造的前沿科学,并展望了先进制造技术的发展前景。
Advanced Manufacturing TechnologiesAdvanced manufacturing technologies have been a game-changer in the manufacturing industry. These technologies have revolutionized the way productsare designed, manufactured, and delivered to customers. From 3D printing toartificial intelligence, advanced manufacturing technologies have made it possible to produce high-quality products at a faster rate and lower cost. In this essay,we will explore the benefits and challenges of advanced manufacturing technologies from various perspectives. From a business perspective, advanced manufacturing technologies have provided companies with a competitive advantage. These technologies have enabled companies to produce products faster, cheaper, and with higher quality. For example, 3D printing technology has allowed companies to produce complex parts with a high degree of accuracy, reducing the need for expensive tooling. This has resulted in significant cost savings for companies, which can be passed on to customers. Additionally, advanced manufacturing technologies have made it possible for companies to customize products to meet the specific needs of customers, which has increased customer satisfaction and loyalty. From an environmental perspective, advanced manufacturing technologies have the potential to reduce the environmental impact of manufacturing. For example, 3D printing technology has the potential to reduce waste by producing only what is needed, reducing the need for excess inventory. Additionally, advanced manufacturing technologies have made it possible to produce products using sustainable materials, reducing the environmental impact of manufacturing. From a societal perspective, advanced manufacturing technologies have the potential to create new job opportunities and increase economic growth. These technologies require a skilled workforce, which can lead to the creation of high-paying jobs. Additionally, advanced manufacturing technologies have the potential to increase economic growth by enabling companies to produce products more efficiently and ata lower cost, which can lead to increased profits and investment in new technologies. However, advanced manufacturing technologies also present challenges. One of the biggest challenges is the need for a skilled workforce. These technologies require specialized skills, which can be difficult to find. Additionally, the cost of implementing advanced manufacturing technologies can behigh, which can be a barrier for smaller companies. Finally, advanced manufacturing technologies can also lead to job displacement, as some tasks previously done by humans can now be automated. In conclusion, advanced manufacturing technologies have the potential to revolutionize the manufacturing industry. From a business perspective, these technologies provide companies with a competitive advantage by enabling them to produce products faster, cheaper, and with higher quality. From an environmental perspective, these technologies have the potential to reduce the environmental impact of manufacturing. From a societal perspective, these technologies have the potential to create new job opportunities and increase economic growth. However, these technologies also present challenges, such as the need for a skilled workforce, the high cost of implementation, and job displacement. Overall, the benefits of advanced manufacturing technologies outweigh the challenges, and companies that embrace these technologies are more likely to succeed in the long run.。
课程名称:Advanced Manufacturing Technology(先进制造技术)专业班级:机制091学号:3090101310姓名:孙作强任课老师:钟相强成绩:Computer-aided design专业:机制093 姓名:孙作强指导老师:钟相强Abstract: Computer-aided design also known as computer-aided design and drafting (CADD), is the use of computer systems to assist in the creation, modification, analysis, or optimization of a design. Computer Aided Drafting describes the process of creating a technical drawing with the use of computer software. CADD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CADD output is often in the form of electronic files for print or machining operations. CADD software uses either vector based graphics to depict the objects of traditional drafting, or may also produce raster graphics showing the overall appearance of designed objects.Keywords: CAD computer technologyIntroduction:The design of geometric models for object shapes, in particular,is occasionally called computer-aided geometric design (CAGD). In CAD, many commands are available for drawing basic geometric shapes. Examples include CIRCLE, POLYGON, ARC, ELLIPSE, and more.1.1 UsesComputer-aided design is one of the many tools used by engineers and designers and is used in many ways depending on the profession of the user and the type of software in question.CAD is one part of the whole Digital Product Development (DPD) activity within the Product Lifecycle Management (PLM) processes, and as such is used together with other tools, which are either integrated modules or stand-alone products, such as:∙Computer-aided engineering (CAE) and Finite element analysis (FEA)∙Computer-aided manufacturing (CAM) including instructions to Computer Numerical Control (CNC) machines∙Photo realistic rendering∙Document management and revision control using Product Data Management (PDM).CAD is also used for the accurate creation of photo simulations that are often required in the preparation of Environmental Impact Reports, in which computer-aided designs of intended buildings are superimposed into photographs of existing environments to represent what that locale will be like were the proposed facilities allowed to be built. Potential blockage of view corridors and shadow studies are also frequently analyzed through the use of CAD.CAD has also been proven to be useful to engineers as well. Using four properties which are history, features, parameterization, and high level constraints (Zhang). The construction history can be used to look back into the model's personal features and work on the single area rather than the whole model (zhang). Parameters and constraints can be used to determine the size, shape, and the different modeling elements. The features in the CAD system can be used for the variety of tools for measurement such as tensile strength, yield strength, also its stress and strain and how the element gets affected in certain temperatures.1.2 TypesThere are several different types of CAD, each requiring the operator to think differently about how to use them and design their virtual components in a different manner for each.There are many producers of the lower-end 2D systems, including a number of free and open source programs. These provide an approach to the drawing process without all the fuss over scale and placement on the drawing sheet that accompanied hand drafting, since these can be adjusted as required during the creation of the final draft.3D wireframe is basically an extension of 2D drafting (not often used today). Each line has to be manually inserted into the drawing. The final product has no mass properties associated with it and cannot have features directly added to it, such as holes. The operator approaches these in a similar fashion to the 2D systems, although many 3D systems allow using the wireframe model to make the final engineering drawing views.3D "dumb" solids are created in a way analogous to manipulations of real world objects (not often used today). Basic three-dimensional geometric forms (prisms, cylinders, spheres, and so on) have solid volumes added or subtracted from them, as if assembling or cutting real-world objects. Two-dimensional projected views can easily be generated from the models. Basic 3D solids don't usually include tools to easily allow motion of components, set limits to their motion, or identify interference between components.3D parametric solid modeling requires the operator to use what is referred to as "design intent". The objects and features created are adjustable. Any future modifications will be simple, difficult, or nearly impossible, depending on how the original part was created. One must think of this as being a "perfect world" representation of the component. If a feature was intended to be located from the center of the part, the operator needs to locate it from the center of the model, not, perhaps, from a more convenient edge or an arbitrary point, as he could when using "dumb" solids. Parametric solids require the operator to consider the consequences of his actions carefully.Some software packages provide the ability to edit parametric and non-parametric geometry without the need to understand or undo the design intent history of the geometry by use of direct modeling functionality. This ability may also include the additional ability to infer the correct relationships between selected geometry (e.g., tangency, concentricity) which makes the editing process less time and labor intensive while still freeing the engineer from the burden of understanding the models. These kind of non-history based systems are called Explicit Modellers or Direct CAD Modelers.Top end systems offer the capabilities to incorporate more organic, aesthetics and ergonomic features into designs. Freeform surface modeling is often combined with solids to allow the designer to create products that fit the human form and visual requirements as well as they interface with the machine.1.3 TechnologyOriginally software for Computer-Aided Design systems was developed with computer languages such as Fortran, but with the advancement of object-oriented programming methods this has radically changed. Typical modern parametric feature based modeler and freeform surface systems are built around a number of key C modules with their own APIs. A CAD system can be seen as built up from the interaction of a graphical user interface (GUI) with NURBS geometry and/or boundary representation (B-rep) data via a geometric modeling kernel. A geometry constraint engine may also be employed to manage the associative relationships between geometry, such as wireframe geometry in a sketch or components in an assembly.Unexpected capabilities of these associative relationships have led to a new form of prototyping called digital prototyping. In contrast to physical prototypes, which entail manufacturing time in the design. That said, CAD models can be generated by a computer after the physical prototype has been scanned using an industrial CT scanning machine. Depending on the nature of the business, digital or physical prototypes can be initially chosen according to specific needs.Today, CAD systems exist for all the major platforms (Windows, Linux, UNIX and Mac OS X); some packages even support multiple platforms.Right now, no special hardware is required for most CAD software. However, some CAD systems can do graphically and computationally intensive tasks, so a modern graphics card, high speed (and possibly multiple) CPUs and large amounts of RAM may be recommended.The human-machine interface is generally via a computer mouse but can also be via a pen and digitizing graphics tablet. Manipulation of the view of the modelon the screen is also sometimes done with the use of a Spacemouse/SpaceBall. Some systems also support stereoscopic glasses for viewing the 3D model.References1. Vijay Duggal. “CADD Primer”. Mailmax Publishing.2. Narayan, K. Lalit (2008). Computer Aided Design and Manufacturing. New Delhi: Prentice Hall of India. pp.3.3. Narayan, K. Lalit (2008). Computer Aided Design and Manufacturing. New Delhi: Prentice Hall of India. pp.4.4. H. Pottmann, S. Brell-Cokcan, and J. Wallner:Discrete surfaces for architectural design计算机辅助设计摘要:计算机辅助设计也称为计算机辅助设计以及制定(CADD),是利用计算机系统来协助创造、修改、分析、优化设计。
新理念职业英语智能制造英语英文回答:Introduction.Smart manufacturing is the integration of advanced technologies, such as artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT), into the manufacturing process. This integration enables manufacturers to create more efficient, productive, and sustainable operations.Benefits of Smart Manufacturing.Smart manufacturing offers a number of benefits for manufacturers, including:Increased productivity: Smart manufacturing technologies can help manufacturers increase productivity by automating tasks, reducing errors, and improvingefficiency.Improved quality: Smart manufacturing technologies can help manufacturers improve quality by providing real-time data on the manufacturing process. This data can be used to identify and correct problems before they become major issues.Reduced costs: Smart manufacturing technologies can help manufacturers reduce costs by reducing waste, energy consumption, and downtime.Increased sustainability: Smart manufacturing technologies can help manufacturers increase sustainability by reducing their environmental impact.Challenges of Smart Manufacturing.While smart manufacturing offers a number of benefits, there are also a number of challenges associated with its implementation. These challenges include:Cost: Smart manufacturing technologies can be expensive to implement.Complexity: Smart manufacturing technologies can be complex to implement and integrate.Cybersecurity: Smart manufacturing technologies can create cybersecurity risks.Lack of skilled workers: There is a lack of skilled workers in the smart manufacturing industry.Overcoming the Challenges of Smart Manufacturing.Despite the challenges, there are a number of ways to overcome them. These include:Government support: Governments can provide financial support and other incentives to encourage manufacturers to adopt smart manufacturing technologies.Education and training: Universities and colleges canoffer education and training programs to develop the skills needed for the smart manufacturing industry.Collaboration: Manufacturers can collaborate with technology providers and other organizations to implement smart manufacturing technologies.Conclusion.Smart manufacturing is a transformative technology that has the potential to revolutionize the manufacturing industry. By overcoming the challenges associated with its implementation, manufacturers can reap the benefits of smart manufacturing and create more efficient, productive, and sustainable operations.中文回答:引言。
Manufacturing Technology制造技术第一TechnologyHuman life can not continue without science and technology. For many years, human society has developed with the advance of science and technology has in turn brought the process to mankind. Because of this, the life we are living now is more civilized than that of our forefather's.The development of science and technology has brought about many changes in people's lives. For instance, the invention of television and the space rocket has opened a new era for mankind. Through the use of TV people can hear the sound and learn of the events, which actually are thousands of miles away. Owing to the invention of spaceship and rocket, the dream of men's landing on the moon, which was impossible several decades ago, has now come true.Especially in technical and scientific fields, so much new information is being addedto our present knowledge that people in technicalfields must study constantly to keep up with new developments.Science and technology also play an important role in our socialist construction. To realize the four-modernization, we need to accelerate the development of science and technology.It is hard to imagine that the modernization of industry,agriculture and national defense of our country can be realized without the application of modern science and technology. We may say, our socialist construction is just like a skyscraper,while science and technology are its base. Without the base,the skyscraper can't be built.Therefore we should all try our best to contribute, however small, to the development of science and technology so as to provide a more solid base on which we build our country.。
Advancements in Mechanical Engineering Mechanical engineering is an ever-evolving field that has seen numerous advancements over the years. These advancements have made it possible for mechanical engineers to design and develop machines and systems that were once considered impossible. The field has seen significant changes in the last few decades, and these changes have led to the development of more efficient and reliable systems. In this article, we will explore some of the advancements in mechanical engineering that have revolutionized the field.One of the most significant advancements in mechanical engineering is the development of computer-aided design (CAD) software. CAD software has made it possible for engineers to design and test machines and systems before they are built. This software has made the design process more efficient and has reduced the time and cost associated with building and testing prototypes. CAD software has also made it possible for engineers to design more complex machines and systems that were once impossible to build.Another significant advancement in mechanical engineering is the development of 3D printing technology. 3D printing has revolutionized the manufacturing process by allowing engineers to create complex parts and components quickly and easily. This technology has made it possible for engineers to create prototypes and test parts before they are mass-produced. 3D printing has also made it possible to manufacture parts on demand, reducing the need for large inventories of spare parts.Advancements in material science have also had a significant impact on mechanical engineering. New materials such as carbon fiber, titanium, and ceramics have made it possible to design machines and systems that are lighter, stronger, and more durable. These materials have also made it possible to design machines and systems that can operate in extreme environments, such as high temperatures and corrosive environments.The development of robotics technology has also had a significant impact on mechanical engineering. Robots have made it possible to automate manufacturing processes, reducing the need for human labor. Robotics technology has also made itpossible to design machines and systems that can operate in hazardous environments, such as nuclear power plants and oil rigs. Robots have also been used in the medical field to perform surgeries and assist with rehabilitation.Advancements in energy storage technology have also had a significant impact on mechanical engineering. The development of batteries and fuel cells has made it possible to design machines and systems that are more energy-efficient and environmentally friendly. These technologies have also made it possible to design machines and systems that can operate in remote locations, such as space and deep-sea environments.Finally, advancements in data analytics and machine learning have had a significant impact on mechanical engineering. These technologies have made it possible for engineers to analyze large amounts of data and identify patterns and trends that were once impossible to detect. Machine learning has also made it possible to design machines and systems that can learn from their environment and adapt to changing conditions.In conclusion, advancements in mechanical engineering have revolutionized the field, making it possible to design and develop machines and systems that were once impossible. The development of CAD software, 3D printing technology, new materials, robotics technology, energy storage technology, and data analytics and machine learning have all had a significant impact on the field. These advancements have made it possible to design more efficient and reliable machines and systems that are environmentally friendly and can operate in extreme environments. Mechanical engineering will continue to evolve, and we can expect to see even more advancements in the future.。
新概念第四册课文翻译及学习笔记:Lesson28【课文】First listen and then answer the following question.听录音,然后回答以下问题。
What are patients looking for when they visit the doctor?This is a sceptical age, but although our faith in many of the things in which our forefathers fervently believed has weakened, our confidence in the curative properties of the bottle of medicine remains the same a theirs. This modern faith in medicines is proved the fact that the annual drug bill of the Health Services is mounting to astronomical figures and shows no signs at present of ceasing to rise. The majority of the patients attending the medical out-patients departments of our hospitals feel that they have not received adequate treatment unless they are able to carry home with them some tangible remedy in the shape of a bottle of medicine, a box of pills, or a small jar of ointment, and the doctor in charge of the department is only too ready to provide them with these requirements. There is no quicker method of disposing of patients then by giving them what they are asking for, and since most medical men in the Health Services are overworked and have little time for offeringtime-consuming and little-appreciated advice on such subjects as diet, right living, and the need for abandoning bad habits etc., the bottle, the box, and the jar are almost always granted them.Nor is it only the ignorant and ill-educated person who has such faith in the bottle of medicine. It is recounted of Thomas Carlylethat when he heard of the illness of his friend, Henry Taylor, hewent off immediately to visit him, carrying with him in his pocket what remained of a bottle of medicine formerly prescribed for an indisposition of Mrs. Carlyle's. Carlyle was entirely ignorant ofwhat the bottle in his pocket contained, of the nature of the illness from which his friend was suffering, and of what had previously been wrong with his wife, but a medicine that had worked so well in one form of illness would surely be of equal benefit in another, and comforted by the thought of the help he was bringing to his friend,he hastened to Henry Taylor's house. History does not relate whether his friend accepted his medical help, but in all probability he did. The great advantage of taking medicine is that it makes no demands on the taker beyond that of putting up for a moment with a disgustingtaste, and that is what all patients demand of their doctors -- to be cured at no inconvenience to themselves.【New words and expressions 生词和短语】sceptical adj. 怀疑的forefathers n. 祖先fervently adv. 热情地curative adj. 治病的astronomical adj. 天文学的tangible adj.实实在在的remedy n. 药物ointment n. 药膏prescribe v. 开药方indisposition n. 小病disgusting n. 令人讨厌的inconvenience n. 不便【课文注释】1.sceptical adj.怀疑的例句:Mary is sceptical about the solution.玛丽对这个解决办法表示怀疑。
28nm 制程工艺英文回答:28nm process technology is a manufacturing process used in the production of integrated circuits (ICs). It is characterized by the minimum feature size of 28 nanometers (nm), which refers to the smallest physical structure that can be fabricated on the IC. This technology was introduced in 2011 and has since been used to produce a wide range of electronic devices, including smartphones, tablets, and computers.28nm process technology offers several advantages over previous generations of IC manufacturing processes. These advantages include:Smaller size: The smaller feature size of 28nm process technology allows for the production of ICs that are smaller and more compact. This is important for devicesthat are becoming increasingly portable, such assmartphones and tablets.Lower power consumption: The smaller feature size also results in lower power consumption. This is important for devices that are battery-powered, as it can extend the battery life.Higher performance: The smaller feature size also enables the production of ICs with higher performance. This is because the smaller transistors can switch faster and handle more data.28nm process technology is a significant advancement in IC manufacturing. It has enabled the production of smaller, more power-efficient, and higher-performance electronic devices.As of 2023, 28nm process technology is still in use for the production of some electronic devices, but it has largely been replaced by more advanced technologies, such as 14nm and 10nm process technologies. These more advanced technologies offer even smaller feature sizes and provideeven greater benefits in terms of size, power consumption, and performance.中文回答:28nm工艺制程是一种用于生产集成电路(IC)的制造工艺。
Advanced Manufacturing Techniques Advanced manufacturing techniques have revolutionized the way products are designed, produced, and distributed. These techniques encompass a wide range of technologies and processes that aim to improve efficiency, reduce costs, and enhance product quality. From additive manufacturing to robotics and automation, advanced manufacturing techniques have the potential to transform industries and drive economic growth. One of the key benefits of advanced manufacturing techniques is their ability to increase productivity. By automating repetitive tasks and streamlining production processes, manufacturers can produce more goods in less time. This not only leads to cost savings but also allows companies to meet increasing demand and stay competitive in the market. For example, the use of robotics in manufacturing can significantly speed up production lines and improve overall efficiency. Moreover, advanced manufacturing techniques enable greater customization and flexibility in production. With technologies like additive manufacturing, manufacturers can easily create complex and unique products that would be difficult or impossible to produce using traditional methods. This opens up new opportunities for innovation and allows companies to cater to individual customer needs and preferences. Customization also leads to higher customer satisfaction and loyalty, ultimately driving business growth. In addition to increased productivity and customization, advanced manufacturing techniques also contribute to sustainability and environmental conservation. By optimizing production processes and reducing waste, manufacturers can minimize their environmental impact and operate more sustainably. For example, additive manufacturing produces less waste than traditional subtractive methods, leading to lower material consumption and reduced energy usage. This not only benefits the environment but also enhances the reputation of companies as socially responsible entities. Despite the numerous advantages of advanced manufacturing techniques, there are challenges and barriers that companies may face when implementing these technologies. One major challenge is the cost of investment in advanced equipment and training of personnel. Adopting new technologies requires a significant financial commitment, which may be prohibitive for small and medium-sized enterprises. Additionally, the rapid pace of technological advancements means thatcompanies must continuously upgrade their systems to stay competitive, further adding to the cost burden. Another challenge is the potential displacement of human workers due to automation. While advanced manufacturing techniques can improve efficiency and productivity, they also have the potential to replace human labor with machines. This raises concerns about job loss and the need for retraining and upskilling of the workforce. Companies must strike a balance between automation and human labor to ensure a sustainable and ethical approach to manufacturing. In conclusion, advanced manufacturing techniques offer a wealth of opportunities for companies to improve their operations, enhance product quality, and drive innovation. From increased productivity and customization to sustainability and environmental conservation, these technologies have the potential to transform industries and create new business models. However, companies must navigate challenges such as high costs and workforce displacement to successfully implement advanced manufacturing techniques. By addressing these challenges and embracing the benefits of advanced manufacturing, companies can position themselves for long-term success in a rapidly evolving market.。
智能制造英文文献以下是关于智能制造(Intelligent Manufacturing)的一些英文文献,这些文献可能包括学术论文、综述文章或专业报告。
请注意,具体的文献内容可能根据时间和领域的不同而有所变化:1. 文献标题:Intelligent Manufacturing Systems: Present and Future 作者: L. Monostori 出处: CIRP Annals - Manufacturing Technology, 2014.2. 文献标题:Intelligent Manufacturing: A Review 作者:S. Kovács, G. J. Váncza 出处: Engineering Applications of Artificial Intelligence, 2015.3. 文献标题:The Evolution of Industry4.0 and Practical Application Scenarios in Intelligent Manufacturing 作者:Y. Zhang, K. Zhang, W. Sun, et al. 出处:The International Journal of Advanced Manufacturing Technology, 2018.4. 文献标题: Intelligent Manufacturing in the Context of Industry 4.0: A Review 作者:R. M. S. Santos, J. B. Mendonça, A. J. M. Cardoso 出处: Computers in Industry, 2018.5. 文献标题:Challenges and Opportunities of Intelligent Manufacturing in the Context of Industry 4.0 作者: J. A. M. Lopes, P. F. Bartolomeu, A. C. B. Soeiro 出处:Procedia CIRP, 2017.6. 文献标题: A Review on the Key Issues of the Intelligent Manufacturing System 作者: W. Zhang, X. Zhou, Y. Zhou, et al. 出处: Journal of Manufacturing Science and Engineering, 2018.7. 文献标题: An Overview of Intelligent Manufacturing in the Context of Industry 4.0: Features, Challenges, and Opportunities 作者: J. Wan, S. W. Chiang, A. V. D. Venkatesh, et al. 出处: IEEE Access, 2019.请注意,这些文献可能需要通过学术数据库(如IEEE Xplore、ScienceDirect、PubMed等)或图书馆资源获取。