什么是s参数
- 格式:pdf
- 大小:635.26 KB
- 文档页数:2
s参数散射方程s参数散射方程是一种描述电磁波在微波领域中传播和散射的数学模型。
s参数(scattering parameters)也称为散射系数或传输参数,是用于描述微波元器件(如天线、滤波器、放大器等)的电磁特性的重要指标。
1. 介绍在微波工程中,s参数广泛应用于设计和分析微波元器件的性能。
s参数能够提供关于信号在器件中传输和反射的信息,从而帮助工程师优化器件设计、匹配网络以及系统性能。
s参数通常使用二端口网络来描述,其中一个端口作为输入端口,另一个端口作为输出端口。
通过测量输入和输出之间的功率传输比例,可以得到四个s参数:S11、S12、S21和S22。
•S11表示从输出端口反射回输入端口的功率与输入功率之比。
•S12表示从输入端口传输到输出端口的功率与输入功率之比。
•S21表示从输出端口传输到输入端口的功率与输入功率之比。
•S22表示从输入端口反射回输出端口的功率与输入功率之比。
2. s参数散射方程s参数散射方程描述了电磁波在微波元器件中的传输和散射过程。
它可以通过对微波器件进行测量和建模来获得。
s参数散射方程可以表示为以下矩阵形式:[S] = [A] + [B][Z][C]其中,[S]是一个4x4的复数矩阵,[Z]是一个2x2的复数阻抗矩阵,[A]和[B]、[C]是相关系数。
具体地,s参数散射方程可以用以下公式表示:S11 = A11 + B11*Z11*C11 + B12*Z21*C11S12 = A12 + B11*Z12*C11 + B12*Z22*C11S21 = A21 + B21*Z11*C11 + B22*Z21*C11S22 = A22 + B21*Z12*C11 + B22*Z22*C11其中,Aij、Bij、Cij分别为相关系数。
3. 应用s参数散射方程在微波工程中有着广泛的应用。
以下是一些常见的应用领域:3.1 微波器件设计与优化通过对s参数进行测量和分析,工程师可以了解微波器件的传输和反射特性。
S参数的含义以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。
在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。
假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S21>0.7的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。
对于由2根或以上的传输线组成的网络,还会有传输线间的互参数,可以理解为近端串扰系数、远端串扰系统,注意在奇模激励和偶模激励下的S参数值不同。
需要说明的是,S参数表示的是全频段的信息,由于传输线的带宽限制,一般在高频的衰减比较大,S参数的指标只要在由信号的边缘速率表示的EMI发射带宽范围内满足要求就可以了。
信息电子产品的运算速度与传输信息量大幅提升,相关电子零部件的高频特性也愈显重要。
如PCB、缆线、连接器等过去被视为单纯桥接作用的零部件,为满足高频应用的需要,现有规格逐渐纳入了衰减、特性阻抗、串音、传输延迟、传输延迟时滞、隔离效果、信号抖动等高频特性的项目。
什么是s参数?s参数的含义?什么是s参数微波网络法广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。
微波网络理论在低频网络理论的基础上发展起来,低频电路分析是微波电路分析的一个特殊情况。
微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。
微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集中参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流的困难性,而且在微波频率测量电压和电流也存在实际困难。
因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。
与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S 参数矩阵,它更适合于分布参数电路。
S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。
同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。
阻抗和导纳矩阵反映了端口的总电压和电流的关系,而散射矩阵是反映端口的入射电压波和反射电压波的关系。
散射参量可以直接用网络分析仪测量得到,可以用网络分析技术来计算。
只要知道网络的散射参量,就可以将它变换成其它矩阵参量。
下面以二端口网络为例说明各个S参数的含义,如图所示。
二端口网络有四个S参数,Sij代表的意思是能量从j口注入,在i口测得的能量,如S11定义为从Port1口反射的能量与输入能量比值的平方根,也经常被简化为等效反射电压和等效入射电压的比值,各参数的物理含义和特殊网络的特性如下:S11:端口2匹配时,端口1的反射系数;S22:端口1匹配时,端口2的反射系数;S12:端口1匹配时,端口2到端口1的反向传输系数;S21:端口2匹配时,端口1到端口2的正向传输系数;对于互易网络,有:S12=S21;对于对称网络,有:S11=S22 对于无耗网络,有:(S11)2+(S12)2=1 ;S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,S21越大传输的效率越高,一般建议S21>0.7,即-3dB。
S参数的原理及使用详解在进行射频、微波等高频电路设计时,需采用分布参数电路分析方法。
大多采用微波网络分析法来分析电路,对于一个网络,可用S、Y、Z参数来进行测量和分析。
S称为散射参数(或散射系数),Y称为导纳参数,Z称为阻抗参数。
Y、Z参数主要用于集总电路,对集总电路分析非常有效,测试也比较方便。
在处理高频网络时,等效电压和电流及有关的阻抗、导纳参数变得很抽象。
散射参数能更准确地表示直接测量的入射波、反射波及传输波的概念。
参数矩阵更适合于分布参数电路。
S参数是建立在入射波、反射波关系基础上的网络参数,以元器件端口的反射信号及从该端口向另外一个端口发送信号的分散程度和分量大小来描述高频网络。
S参数可以用网络分析仪来实际测量。
本文将详细介绍S参数的原理及使用。
内容包含:S参数定义S参数端口特性史密斯图观察S参数S参数仿真讲解S参数模型讲解项目中S参数使用流程需要S参数的测试场景1.S参数定义S参数测量是射频设计过程中的基本手段之一。
S参数将元件描述成一个黑盒子,并被用来模拟电子元件在不同频率下的行为。
在有源和无源电路设计和分析中经常会用到S 参数。
1)从时域与频域评估传输线特性良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。
而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。
2)S散射也叫散射参数。
是微波传输中的一组重要参数。
由于我们很难在高频率时测量电流或电压,因此我们要测量散射参数或S 参数。
这些参数用来表征RF 元件或网络的电气属性或性能,与我们熟悉的测量(如增益、损耗和反射系数)有关。
如上图所示,其中:S12为反向传输系数,也就是隔离;S21为正向传输系数,也就是增益;S11为输入反射系数,也就是输入回波损耗;S22为输出反射系数,也就是输出回波损耗。
3)S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为VNAport也是50奥姆终端。
s参数转换时域s参数是指在信号处理领域中常用的一个参数,用于描述信号在时域上的特征。
时域表示的是信号在时间上的变化情况,通过s参数可以对信号的时域特征进行分析和描述。
s参数可以用来描述信号的幅度变化。
通过分析信号在不同时间点上的幅度大小,可以了解信号的振幅变化情况。
例如,对于一个音频信号,通过s参数可以知道音频的音量大小是否有明显的变化,从而对音频进行音量调节或者增加音效效果。
s参数还可以用来描述信号的频率变化。
频率表示的是信号的周期性变化情况,通过分析信号的频率特征,可以了解信号的周期性变化模式。
例如,在音频信号中,通过s参数可以判断出音频信号的基频是多少,从而可以对音频进行音高调整或者音频合成。
s参数还可以用来描述信号的相位变化。
相位表示的是信号在时间上的相对位置关系,通过分析信号的相位特征,可以了解信号的相对位置关系。
例如,在图像处理中,通过s参数可以判断出图像中物体的位置偏移情况,从而可以对图像进行位置校正或者图像融合。
s参数还可以用来描述信号的时长变化。
时长表示的是信号持续的时间长度,通过分析信号的时长特征,可以了解信号的持续时间。
例如,在视频处理中,通过s参数可以判断出视频的长度是多少,从而可以对视频进行剪辑或者拼接。
s参数还可以用来描述信号的波形变化。
波形表示的是信号的形状特征,通过分析信号的波形特征,可以了解信号的形状变化。
例如,在语音识别中,通过s参数可以判断出语音信号的语调变化情况,从而可以对语音进行识别或者情感分析。
s参数是一个用于描述信号在时域上特征的重要参数。
通过分析s 参数,可以对信号的幅度、频率、相位、时长和波形等特征进行描述和分析,从而对信号进行处理和优化。
在信号处理领域中,s参数是一个非常重要的工具,对于理解和应用信号处理算法具有重要意义。
希望通过本文的介绍,读者能够更加深入地了解和理解s参数在时域上的应用。
S参数例子Ur1 = S11 Ui1 + S12 Ui2Ur2 = S21 Ui1 + S22 Ui2Ui1,Ui2,Ur1,Ur2:分别是端口1和端口2的归一化入射电压和反射电压S11:端口2匹配时,端口1的反射系数;S22:端口1匹配时,端口2的反射系数;S12:端口1匹配时,端口2到端口1的反向传输系数;S21:端口2匹配时,端口1到端口2的正向传输系数;S 参数(散射参数)用于评估DUT 反射信号和传送信号的性能。
S 参数由两个复数之比定义,它包含有关信号的幅度和相位的信息。
S 参数通常表示为:S输出输入输出:输出信号的DUT 端口号输入:输入信号的DUT 端口号例如,S 参数S21 是DUT 上端口2 的输出信号与DUT 上端口1 的输入信号之比,输出信号和输入信号都用复数表示。
当启动平衡- 不平衡转换功能时,可以选择混合模S 参数。
S参数分析微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。
微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
微波网络法被广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。
微波网络理论是在低频网络理论的基础上发展起来的,低频电路分析是微波电路分析的一个特殊情况。
一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称为导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集总参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流非常困难,而且在微波频率测量电压和电流也存在实际困难。
因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。
s参数幅值相位s参数是描述电路传输特性的一种方法,它可以用来表示幅值和相位。
在电路设计和分析中,s参数是非常重要的参数之一。
本文将从幅值和相位两个方面介绍s参数的相关知识。
我们来了解一下s参数的幅值。
幅值是指信号的振幅大小,也可以理解为信号的强度。
在电路传输中,幅值的大小会直接影响信号的衰减和增益。
s参数的幅值可以用来描述信号在电路中的衰减或增益情况。
在实际应用中,s参数的幅值可以通过测量来得到。
测量s参数幅值的方法有多种,常用的方法包括功率计、网络分析仪等。
通过测量得到的幅值数据可以用来分析电路的传输特性,评估电路的性能。
接下来,我们来讨论一下s参数的相位。
相位是指信号的相对相位差,在电路传输中,相位的变化会影响信号的延迟和相位失真。
s 参数的相位可以用来描述信号在电路中的延迟或相位失真情况。
与幅值一样,s参数的相位也可以通过测量来得到。
测量s参数相位的方法与测量幅值的方法类似,常用的方法包括相位计、网络分析仪等。
通过测量得到的相位数据可以用来分析电路的传输特性,评估电路的性能。
在电路设计和分析中,我们通常会对s参数的幅值和相位进行分析。
通过对幅值和相位的分析,我们可以了解电路的衰减、增益、延迟和相位失真等特性。
这些特性对于设计和优化电路非常重要。
除了幅值和相位,s参数还可以用来描述电路的其他特性,比如反射系数、传输系数等。
通过对这些特性的分析,我们可以更全面地了解电路的性能。
总结起来,s参数是描述电路传输特性的重要参数,它可以用来表示幅值和相位。
s参数的幅值可以描述信号的衰减和增益,相位可以描述信号的延迟和相位失真。
通过对s参数的测量和分析,我们可以评估电路的性能,优化电路设计。
在电路设计和分析中,s参数是一项非常有用的工具。
一篇文章了解S参数在EDA仿真结果中,S参数是一个经常被提及的结果,关于S参数详细内容,其实不管是网上还是教科书都有较规范的介绍,但是大多数并不适用没有EDA背景的读者。
本文就S参数的相关应用背景,具体内容做一下介绍,主要针对没有任何EDA行业背景的朋友,EDA工程师可忽略。
S意为Scatter/Scattering,字面意思为散射。
S参数也就是散射参数。
1.S参数计算方法2.差分线和多端口3.S参数文件1.S参数计算方法:一般书上用电压,电流来描述信号,为了方便理解,这里用能量来描述。
如下图微带线,假设有100单位能量进入端口1,然后从端口2出来。
在传输过程中种种原因,能量并不能全部到达端口2,部分会反射。
情形1:假设有5单位能量反射。
则S参数计算如下:S11 = 5/100=0.05S12 = 95/100 = 0.95S11表示反射比例,学名回波损耗(Return Loss),简写RLS12表示传送到比例,学名插入损耗(Insertion Loss),简写IL对于对称网络: S11=S22S22 = 5/100 = 0.05S21 = 95/100 = 0.95情形2:如果反射值为0.01,则S11=0.01/100=0.0001S12-99.99/100=0.9999因为这种计算数据跨度较大,通常习惯取20*log10(S11),其中log10表示取以10为底的对数,也就是log10(10)=1,单位dB 上述情形1:S11=20*log10(0.05)=-26.021dBS12=20*log10(0.95)=-0.4455dB上述情形2:S11=20*log10(0.0001)=-80dBS12=20*log10(0.9999)=-8.68e-3dB几组dB值对应百分比S11(dB)S11-26 95%-13 80%-10 70%-6 50%-40 99%至此计算出的是一个频点的S参数值。
S参数的意义及矢网实例测量方法1、S参数的定义和意义S参数(Scattering Parameters,散射参数)是一个表征器件在射频信号激励下的电气行为的工具,它以输入信号、输出信号为元素的矩阵来表现DUT的“传输”和“散射”效应,输入、输出信号是可测量的物理量,测量到的物理量的大小反应出DUT对不同的输入信号具有不同的响应,这种不同的响应程度就可以用来描述DUT的特性,而且这种表征方法可以作为非常精确的矢量模型用于建模。
此处的DUT就包括很多无源器件如电缆、连接器、滤波器,有源器件包括放大器和混频器等,因此都可以用S 参数来表征。
S参数是在射频中用来描述器件特性的参数,S参数将电磁场中相关的特性转换为网络的概念,让读者可以很形象地理解电路中增益、回波损耗、稳定性、隔离度、网络匹配等概念,将电磁场中一些电气特性具体化为数字,提供了极大的方便。
2、S参数的测量方法2.1 S参数的测量原理测量2端口DUT的S参数需要使用2端口及以上矢量网络分析仪;图2.1 S参数测量硬件框体图2.2 2端口矢量网络分析仪简要结构Sout-in:out =analyzer port number where the device signal output is measured (receiver)in =analyzer port number where the signal is applied (incident) to the device (source)S11测量原理:当矢网Source1-OUT1输出信号经过reference接收机R1输出到DUTport1,接收机A接收DUT port1反射回来的功率,测量比值被称为回波损耗,S11=20log(a/r1),单位dB。
图2.3 S11的信号传输路径S21测量原理:当矢网Source1-OUT1输出信号经过reference接收机R1输出到DUTport1,接收机B接收DUT port2输出的功率,测量比值被称为正向传输,S21=20log(b/r1),单位dB。
S参数的含义以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。
在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。
假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S21>0.7的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。
对于由2根或以上的传输线组成的网络,还会有传输线间的互参数,可以理解为近端串扰系数、远端串扰系统,注意在奇模激励和偶模激励下的S参数值不同。
需要说明的是,S参数表示的是全频段的信息,由于传输线的带宽限制,一般在高频的衰减比较大,S参数的指标只要在由信号的边缘速率表示的EMI发射带宽范围内满足要求就可以了。
信息电子产品的运算速度与传输信息量大幅提升,相关电子零部件的高频特性也愈显重要。
如PCB、缆线、连接器等过去被视为单纯桥接作用的零部件,为满足高频应用的需要,现有规格逐渐纳入了衰减、特性阻抗、串音、传输延迟、传输延迟时滞、隔离效果、信号抖动等高频特性的项目。
S参数的含义以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。
在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。
假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S21>0.7的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。
对于由2根或以上的传输线组成的网络,还会有传输线间的互参数,可以理解为近端串扰系数、远端串扰系统,注意在奇模激励和偶模激励下的S参数值不同。
需要说明的是,S参数表示的是全频段的信息,由于传输线的带宽限制,一般在高频的衰减比较大,S参数的指标只要在由信号的边缘速率表示的EMI发射带宽范围内满足要求就可以了。
信息电子产品的运算速度与传输信息量大幅提升,相关电子零部件的高频特性也愈显重要。
如PCB、缆线、连接器等过去被视为单纯桥接作用的零部件,为满足高频应用的需要,现有规格逐渐纳入了衰减、特性阻抗、串音、传输延迟、传输延迟时滞、隔离效果、信号抖动等高频特性的项目。
图文详细解说S参数前言S 参数是SI与RF领域工程师必备的基础知识,大家很容易从网络或书本上找到S,Y,Z参数的说明,笔者也在多年前写了S参数 -- 基础篇。
但即使如此,在相关领域打滚多年的人,可能还是会被一些问题困扰着。
你懂S参数吗? 请继续往下看...一、个别参数与串联S参数的差别问题1:为何有时候会遇到每一段的S参数个别看都还好,但串起来却很差的情况(loss不是1+1=2的趋势)?Quick answer : 如果每一线段彼此连接处的real port Zo是匹配的,那loss会是累加的趋势,但若每一线段彼此连接处的real port Zo差异很大,那就会看到loss不是累加的趋势,因为串接的接面上会有多增加的反射损失。
下图所示的三条传输线Line1是一条100mm长,特性阻抗设计在50ohm的微带线,左边50mm,右边50mm。
Line2也是一条100mm长的微带线,左边50mm维持特性阻抗50ohm,但右边50mm线宽加倍,特性阻抗变小到33。
Line3也是一条100mm长的微带线,左边50mm维持特性阻抗50ohm,但右边50mm线宽加倍,特性阻抗变小到33,且呈135o转折。
观察Line1的S21发现,左右两段的S参数有累加特性观察Line2, Line3的S21发现,整条线的S参数比起左右两段个别看的S参数之累加差一些问题2:为何各别抽BGA与PCB的S参数后,在Designer内串接看总loss,与直接抽BGA+PCB看S参数的结果不同?Quick answer : 这与结构在3D空间上的交互影响,还有下port 位置有时也有影响。
下图所示是两层板BGA封装,放上有完整参考平面的PCB两层板,这是在消费性电子产品很常见的应用条件。
黄色是高速的差动对讯号,其在PCB上走线的部分,有很好的完整参考平面,但在BGA端则完全没有参考平面。
HFSS 3D Layout模拟结果二、双埠S参数对地回路效应的处理问题1:RLC等效电路可以估出讯号线与地回路每一段的RLC特性,但S参数却不行,原因是什么? S参数带有地回路的寄生效应吗?Quick answer : RLC等效电路是terminal base model,而S参数是port base model,后者看的昰一个port的正负两端之间的差值。
S参数的含义以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。
在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。
假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S21>0.7的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。
对于由2根或以上的传输线组成的网络,还会有传输线间的互参数,可以理解为近端串扰系数、远端串扰系统,注意在奇模激励和偶模激励下的S参数值不同。
需要说明的是,S参数表示的是全频段的信息,由于传输线的带宽限制,一般在高频的衰减比较大,S参数的指标只要在由信号的边缘速率表示的EMI发射带宽范围内满足要求就可以了。
信息电子产品的运算速度与传输信息量大幅提升,相关电子零部件的高频特性也愈显重要。
如PCB、缆线、连接器等过去被视为单纯桥接作用的零部件,为满足高频应用的需要,现有规格逐渐纳入了衰减、特性阻抗、串音、传输延迟、传输延迟时滞、隔离效果、信号抖动等高频特性的项目。
什么是s参数?s参数的含义?什么是s参数微波网络法广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。
微波网络理论在低频网络理论的基础上发展起来,低频电路分析是微波电路分析的一个特殊情况。
微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。
微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集中参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流的困难性,而且在微波频率测量电压和电流也存在实际困难。
因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。
与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S参数矩阵,它更适合于分布参数电路。
S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。
同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。
阻抗和导纳矩阵反映了端口的总电压和电流的关系,而散射矩阵是反映端口的入射电压波和反射电压波的关系。
散射参量可以直接用网络分析仪测量得到,可以用网络分析技术来计算。
只要知道网络的散射参量,就可以将它变换成其它矩阵参量。
下面以二端口网络为例说明各个S参数的含义,如图所示。
二端口网络有四个S参数,Sij代表的意思是能量从j口注入,在i口测得的能量,如S11定义为从 Port1口反射的能量与输入能量比值的平方根,也经常被简化为等效反射电压和等效入射电压的比值,各参数的物理含义和特殊网络的特性如下:S11:端口2匹配时,端口1的反射系数;S22:端口1匹配时,端口2的反射系数;S12:端口1匹配时,端口2到端口1的反向传输系数;S21:端口2匹配时,端口1到端口2的正向传输系数;对于互易网络,有:S12=S21;对于对称网络,有:S11=S22 对于无耗网络,有:(S11)2+(S12)2=1 ;S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,S21越大传输的效率越高,一般建议S21>0.7,即-3dB。
S参数理解中常见的六个疑惑电子元器件:价格比您现有供应商最少降低10%射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!S参数是表征高速互联行为特性的标准参数,参数具有完整的数学定义,这没有歧义。
但是,当要将S参数的数学定义转换为互连电气特性的实际解释时,会出现一些容易疑惑的地方。
在本文中,我们了总结S参数容易出现疑惑的六个地方,并给出了详细解释。
疑惑1S参数的适用对象S参数是“散射'参数的缩写,是对进入被测器件(DUT)的散射电压波与入射电压波之比的度量。
S参数源自频域中的网络分析方法,在频域中电压波指的是正弦波。
输出与输入之比是一个传递函数,它描述了系统对输入正弦波的响应。
正弦波只有三个参数:•频率•幅度•相位当我们测量高速互连对正弦波的响应时,我们假设互连满足三个重要特征:•无源的-没有增益,只有损耗•线性的-互联不改变输入正弦波的频率•时间不变的-静态的,在测量过程中几何形状和其他特征未发生变化这意味着当我们发送1 GHz的正弦波给DUT时,我们得到的也只是正弦波,唯一改变的是幅度和相位,在频域中对正弦波的描述是一个复数,具有实部和虚部或幅值和相位。
它们的复杂性质和用来描述它们的复杂数学公式有时也会引起混乱。
疑惑 2S参数的适用对象以两个相同频率的正弦波相比得到一个复数,幅度是输出波与输入波的幅度之比,相位是输出波与输入波之间的相位差。
我们可以使用以下三种方式中的任何一种,在整个频率范围内绘制复数的值:实数和虚数、极坐标以及幅度和相位。
这三种方式的示例如图1所示,三者的本质内容是完全相同的,只是显示方式不同,这有时这也会引起混乱。
疑惑3端口阻抗的理解端口是到DUT的连接,我们在其中测量正弦波信号,考虑端口的方法是将它理解为具有特定特性阻抗的同轴电缆连接器,并且既连接到的信号又连接到返回路径,如图2所示。
如果不设计与返回路径的连接,则信号将自己找到一条路径,你可能不喜欢它找到的路径。
S参数动态范围:理解与优化
在现代通信系统和电子设备中,S参数扮演着至关重要的角色。
S参数,也称为散射参数,是描述网络输入与输出之间关系的参数。
特别地,S参数的动态范围
是衡量系统性能的重要指标。
S参数动态范围的定义是,系统在保持线性响应的条件下,可以处理的最大和最
小信号幅度之间的比值。
这个范围反映了系统在处理不同幅度信号时的性能。
一个大的动态范围意味着系统可以处理更大范围的信号,从而提高设备的效率和稳定性。
影响S参数动态范围的因素有很多,包括系统架构、材料特性、电路设计等。
要提高S参数动态范围,可以从以下几个方面入手:
1.优化系统架构:通过改进系统的整体架构,可以有效地提高动态范围。
例
如,采用分布式架构可以降低信号的衰减,从而提高动态范围。
2.选择合适的材料:不同的材料对信号的传输和衰减有不同的影响。
选择具
有低损耗、高稳定性的材料,可以提高系统的动态范围。
3.精细的电路设计:电路设计对S参数动态范围的影响不容忽视。
通过优化
电路布局、元件选择和匹配网络,可以显著提高动态范围。
4.信号处理技术:在某些情况下,通过采用先进的信号处理技术,可以在一
定程度上提高动态范围。
例如,自适应增益控制、数字信号处理等。
5.系统校准和标定:定期对系统进行校准和标定,确保其工作在最佳状态,
也是提高S参数动态范围的有效方法。
总的来说,理解并优化S参数动态范围对于提升通信设备和电子系统的性能具有重要意义。
在实际应用中,应综合考虑各种因素,制定出切实可行的优化方案。
;
文文章
下下载EDA教程┆电源技术┆电子书籍┆电子元件┆无线通信┆通信网络┆电路图纸┆嵌入式类┆单片机┆传感/控制┆电子教材┆模拟数字┆
)秘
退出登录 用户管理
热门文章
·[组图] 电子元器件基础知识...
·[图文] USB接口定义·[图文] 三极管开关电路图·[组图] RS232 RS485接口原
作者:佚名 来源:本站整理 发布时间:2008-7-23 11:17:07 减小字体增大字体LM3886TF
Buy this component NOW - Price: £4.25 - $7.65 -
EUR 5.31
Buy EXB841 Here
Great Quality, Affordable Price, Visa MasterCard,
30-Day Warranty!
下面以二端口网络为例说明各个S参数的含义,如图所示。
二端口网络有四个S参
数,Sij代表的意思是能量从j口注入,在i口测得的能量,
如S11定义为从 Port1口反射的能量与输入能量比值的平方根,也经常被简化为等效
反射电压和等效入射电压的比值,
各参数的物理含义和特殊网络的特性如下:
S11:端口2匹配时,端口1的反射系数;
S22:端口1匹配时,端口2的反射系数;
S12:端口1匹配时,端口2到端口1的反向传输系数;
S21:端口2匹配时,端口1到端口2的正向传输系数;
对于互易网络,有:S12=S21;
对于对称网络,有:S11=S22 对于无耗网络,有:(S11)2+(S12)2=1 ;
S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越
好,理想值是1,即0dB,S21越大传输的效率越高,一般建议S21>0.7,即-3dB。
我们经常用到的单根传输线,或一个过孔,就可以等效成一个二端口网络,一端接输
入信号,另一端接输出信号,如果以Port1作为信号的输入端口, Port2作为信号的
输出端口,那么S11表示的就是回波损耗,即有多少能量被反射回源端(Port1),这
个值越小越好,一般建议S11< 0.1,即-20dB,
[本日:2 本周:39 本月:201 总浏览数:1715 ] [返回上一页] [打 印] [收 藏]
上一篇文章:超越S参数测试-安捷伦科技最先进的矢量网络分析仪PNA-X
下一篇文章:S参数在高频测量中的妙用
∷∷相相关关文文章章评评论论∷∷ ((评评论论内内容容只只代代表表网网友友观观点点,,与与本本站站立立场场无无关关!!)) [[更更多多评评论论......]]
关于本站- 意见反馈 - 网站导航 - 帮助 - 隐私政策 - 联系我们 - 使用条款 - 安全承诺 - 友情连接
站长QQ:39550527 Powered by: 飓风网络(电路图) 站长统计
Copyright 2006-2008 E El le ec c f f a an ns s..C Co om m.电子发烧友: 粤ICP备07065979号All Rights Reserved。