相似三角形简单的试题
- 格式:doc
- 大小:150.50 KB
- 文档页数:5
三角形相似测试题及答案1. 已知三角形ABC和三角形DEF相似,且AB/DE = 2/3,求AC/DF的比值。
答案:AC/DF = 2/3。
2. 若三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,那么∠C与∠F的关系是什么?答案:∠C = ∠F。
3. 在一个三角形中,如果两个角的度数分别为50度和60度,那么第三个角的度数是多少?答案:第三个角的度数是70度。
4. 一个三角形的三边长分别为3cm,4cm,5cm,另一个三角形的三边长分别为6cm,8cm,10cm,这两个三角形是否相似?答案:这两个三角形相似,因为它们的边长比相等,即3/6 = 4/8 = 5/10 = 1/2。
5. 已知三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,那么AC与DF的比值是多少?答案:AC/DF = AB/DE = 6/9 = 2/3。
6. 如果一个三角形的两边长分别为8cm和15cm,且这两个边的夹角为90度,那么这个三角形的第三边长是多少?答案:根据勾股定理,第三边长为17cm。
7. 两个相似三角形的对应高的比为3:4,那么它们的周长比是多少?答案:周长比也是3:4。
8. 一个三角形的三个内角的度数分别为30度,60度,90度,那么这个三角形与另一个三角形相似,其三个内角的度数分别为15度,30度,45度,这两个三角形是否相似?答案:这两个三角形不相似,因为它们的内角不相等。
9. 已知三角形ABC与三角形DEF相似,且BC = 2cm,EF = 4cm,那么AB与DE的比值是多少?答案:AB/DE = BC/EF = 2/4 = 1/2。
10. 一个三角形的三边长分别为2cm,3cm,4cm,另一个三角形的三边长分别为4cm,6cm,8cm,这两个三角形是否相似?答案:这两个三角形相似,因为它们的边长比相等,即2/4 = 3/6 = 4/8 = 1/2。
类似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延伸线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试解释:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,衔接BE,CD,M,N分离为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基本上,将△ADE绕点A按顺时针偏向扭转180°,其他前提不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的前提下,请你在图②中延伸ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延伸线上一点,衔接EC,交AD于点F.在不添加帮助线的情形下,请你写出图中所有的类似三角形,并任选一对类似三角形赐与证实.7.如图,在4×3的正方形方格中,△ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ABC=_________°,BC=_________;(2)断定△ABC与△DEC是否类似,并证实你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点动身沿AB偏向以1cm/s的速度向B点匀速活动;同时,动点N从D点动身沿DA偏向以2cm/s的速度向A点匀速活动,问:(1)经由若干时光,△AMN的面积等于矩形ABCD 面积的?(2)是否消失时刻t,使以A,M,N为极点的三角形与△ACD类似?若消失,求t的值;若不消失,请解释来由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD.AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情形,并求出拔取到的两个三角形是类似三角形的概率是若干;(留意:全等算作类似的特例)(2)请你任选一组类似三角形,并给出证实.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,衔接AE.(1)写出图中所有相等的线段,并加以证实;(2)图中有无类似三角形?如有,请写出一对;若没有,请解释来由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的随意率性一点,过点M分离作AB.AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对类似三角形(不需证实);(3)M位于BC的什么地位时,四边形AQMP为菱形并证实你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试解释:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B动身,以1cm/s的速度,沿B⇒A⇒D⇒C偏向,向点C活动;动点Q从点C动身,以1cm/s的速度,沿C⇒D⇒A偏向,向点A活动,过点Q作QE⊥BC于点E.若P.Q 两点同时动身,当个中一点到达目标地时全部活动随之停止,设活动时光为t秒.问:①当点P在B⇒A上活动时,是否消失如许的t,使得直线PQ将梯形ABCD的周长等分?若消失,请求出t的值;若不消失,请解释来由;②在活动进程中,是否消失如许的t,使得以P.A.D为极点的三角形与△CQE类似?若消失,请求出所有相符前提的t的值;若不消失,请解释来由;③在活动进程中,是否消失如许的t,使得以P.D.Q为极点的三角形正好是以DQ为一腰的等腰三角形?若消失,请求出所有相符前提的t的值;若不消失,请解释来由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P.Q分离是AB.BC 上活动的两点.若P自点A动身,以1cm/s的速度沿AB偏向活动,同时,Q自点B动身以2cm/s的速度沿BC偏向活动,问经由几秒,以P.B.Q为极点的三角形与△BDC类似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开端沿AB边向B点以2cm/s的速度移动,点Q从点B开端沿BC边向点C以4cm/s的速度移动,假如P.Q分离从A.B同时动身,问经由几秒钟,△PBQ与△ABC类似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为若干时,这两个直角三角形类似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,可否在边AB上找一点N(不含A.B),使得△CDM与△MAN类似?若能,请给出证实,若不克不及,请解释来由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B动身,沿BC偏向以2cm/s的速度移动,点P从C动身,沿CA偏向以1cm/s的速度移动.若Q.P分离同时从B.C动身,试探讨经由若干秒后,以点C.P.Q为极点的三角形与△CBA类似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上肯定点P 的地位,使得以P,A,D为极点的三角形与以P,B,C为极点的三角形类似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的极点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E扭转,使得DE与BA的延伸线交于点M,EF与AC交于点N,于是,除(1)中的一对类似三角形外,可否再找出一对类似三角形并证实你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开端向B以2cm/s的速度移动;点Q沿DA边从点D开端向点A以1cm/s的速度移动.假如P.Q同时动身,用t (秒)暗示移动的时光,那么当t为何值时,以点Q.A.P为极点的三角形与△ABC类似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA地点的直线行走14米到B点时,身影的长度是变长了照样变短了?变长或变短了若干米?23.阳光亮媚的一天,数学兴致小组的同窗们去测量一棵树的高度(这棵树底部可以到达,顶部不轻易到达),他们带了以下测量对象:皮尺,标杆,一副三角尺,小平面镜.请你在他们供给的测量对象中选出所需对象,设计一种测量计划.(1)所需的测量对象是:_________;(2)请鄙人图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母暗示)求出x.24.问题布景在某次活动课中,甲.乙.丙三个进修小组于统一时刻在阳光下对校园中一些物体进行了测量.下面是他们经由过程测量得到的一些信息:甲组:如图1,测得一根竖立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得黉舍旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细疏忽不计)的高度为200cm,影长为156cm.义务请求:(1)请依据甲.乙两组得到的信息盘算出黉舍旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请依据甲.丙两组得到的信息,求景灯灯罩的半径.(友谊提醒:如图3,景灯的影长等于线段NG的影长;须要时可采取等式1562+2082=2602)25.阳光经由过程窗口照耀到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下漫步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的程度距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请解释来由;(3)若李华在点A朝着影子(如图箭头)的偏向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分离以直角三角形ABC三边为直径向外作三个半圆,其面积分离用S1,S2,S3暗示,则不难证实S1=S2+S3.(1)如图②,分离以直角三角形ABC三边为边向外作三个正方形,其面积分离用S1,S2,S3暗示,那么S1,S2,S3之间有什么关系;(不必证实)(2)如图③,分离以直角三角形ABC三边为边向外作三个正三角形,其面积分离用S1.S2.S3暗示,请你肯定S1,S2,S3之间的关系并加以证实;(3)若分离以直角三角形ABC三边为边向外作三个一般三角形,其面积分离用S1,S2,S3暗示,为使S1,S2,S3之间仍具有与(2)雷同的关系,所作三角形应知足什么前提证实你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD.CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两类似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证实:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考核的是平行线的性质及类似三角形的剖断定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延伸线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.解答:(1)证实:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证实:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试解释:△ABF∽△EAD.解答:证实:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考核类似三角形的剖断定理,症结是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,衔接BE,CD,M,N分离为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基本上,将△ADE绕点A按顺时针偏向扭转180°,其他前提不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的前提下,请你在图②中延伸ED交线段BC于点P.求证:△PBD∽△AMN.解答:(1)证实:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M.N分离是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证实:在图②中准确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN 都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延伸线上一点,衔接EC,交AD于点F.在不添加帮助线的情形下,请你写出图中所有的类似三角形,并任选一对类似三角形赐与证实.剖析:依据平行线的性质和两角对应相等的两个三角形类似这一剖断定理可证实图中类似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:类似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,在4×3的正方形方格中,△ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ABC=135°°,BC=;(2)断定△ABC与△DEC是否类似,并证实你的结论.解答:解:(1)∠ABC=135°,BC=;(2)类似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点动身沿AB偏向以1cm/s的速度向B点匀速活动;同时,动点N从D点动身沿DA偏向以2cm/s的速度向A点匀速活动,问:(1)经由若干时光,△AMN的面积等于矩形ABCD面积的?(2)是否消失时刻t,使以A,M,N为极点的三角形与△ACD类似?若消失,求t的值;若不消失,请解释来由解:(1)设经由x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经磨练,可知x1=1,x2=2相符题意,所以经由1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经由t秒时,以A,M,N为极点的三角形与△ACD类似,由矩形ABCD,可得∠CDA=∠MAN=90°,是以有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经磨练,t=或t=都相符题意,所以动点M,N同时动身后,经由秒或秒时,以A,M,N为极点的三角形与△ACD类似.(8分)9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD.AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情形,并求出拔取到的两个三角形是类似三角形的概率是若干;(留意:全等算作类似的特例)(2)请你任选一组类似三角形,并给出证实.解答:解:(1)任选两个三角形的所有可能情形如下六种情形:①②,①③,①④,②③,②④,③④(2分)个中有两组(①③,②④)是类似的.∴拔取到的二个三角形是类似三角形的概率是P=(4分)证实:(2)选择①.③证实.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②.④证实.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考核概率的求法:假如一个事宜有n种可能,并且这些事宜的可能性雷同,个中事宜A消失m种成果,那么事宜A的概率P(A)=,即类似三角形的证实.还考核了类似三角形的剖断.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,衔接AE.(1)写出图中所有相等的线段,并加以证实;(2)图中有无类似三角形?如有,请写出一对;若没有,请解释来由;(3)求△BEC与△BEA的面积之比.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形类似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延伸线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题重要考核了直角三角形的性质,类似三角形的剖断及三角形面积的求法等,规模较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的随意率性一点,过点M分离作AB.AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对类似三角形(不需证实);(3)M位于BC的什么地位时,四边形AQMP为菱形并证实你的结论.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试解释:△ADM∽△MCP.解答:证实:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B动身,以1cm/s的速度,沿B⇒A⇒D⇒C偏向,向点C活动;动点Q从点C动身,以1cm/s的速度,沿C⇒D⇒A偏向,向点A活动,过点Q作QE⊥BC于点E.若P.Q 两点同时动身,当个中一点到达目标地时全部活动随之停止,设活动时光为t秒.问:①当点P在B⇒A上活动时,是否消失如许的t,使得直线PQ将梯形ABCD的周长等分?若消失,请求出t的值;若不消失,请解释来由;②在活动进程中,是否消失如许的t,使得以P.A.D为极点的三角形与△CQE类似?若消失,请求出所有相符前提的t的值;若不消失,请解释来由;③在活动进程中,是否消失如许的t,使得以P.D.Q为极点的三角形正好是以DQ为一腰的等腰三角形?若消失,请求出所有相符前提的t的值;若不消失,请解释来由.解答:解:(1)过D 作DH ∥AB交BC于H 点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴SABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长等分.②第一种情形:0<t≤8若△PAD∽△QEC则∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情形:8<t≤10,P.A.D三点不克不及构成三角形;第三种情形:10<t≤12△ADP为钝角三角形与Rt△CQE不类似;∴t=或t=时,△PAD与△CQE类似.③第一种情形:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E.H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情形:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情形:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P.Q分离是AB.BC 上活动的两点.若P自点A动身,以1cm/s的速度沿AB偏向活动,同时,Q自点B动身以2cm/s的速度沿BC偏向活动,问经由几秒,以P.B.Q为极点的三角形与△BDC类似?解答:解:设经x秒后,△PBQ∽△BCD,因为∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经由秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开端沿AB边向B点以2cm/s的速度移动,点Q从点B开端沿BC边向点C以4cm/s的速度移动,假如P.Q分离从A.B同时动身,问经由几秒钟,△PBQ与△ABC类似.解答:设经由秒后t秒后,△PBQ与△ABC类似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经由2.5s或1s时,△PBQ与△ABC类似(10分).解法二:设ts后,△PBQ与△ABC类似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情形:(1)当BP与AB对应时,有=,即=(2)当BP与BC对应时,有=,即=,解得t=1s所以经由1s或2.5s时,以P.B.Q三点为极点的三角形与△ABC类似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为若干时,这两个直角三角形类似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形类似,有两种情形:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形类似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,可否在边AB上找一点N(不含A.B),使得△CDM与△MAN类似?若能,请给出证实,若不克不及,请解释来由.解答:证实:分两种情形评论辩论:①若△CDM∽△MAN,则=.∵边长为a,M是AD的中点,∴AN=a.②若△CDM∽△NAM,则.∵边长为a,M是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N(不含A.B),使得△CDM与△MAN类似.当AN=a时,N点的地位知足前提.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B动身,沿BC偏向以2cm/s的速度移动,点P从C动身,沿CA偏向以1cm/s的速度移动.若Q.P分离同时从B.C动身,试探讨经由若干秒后,以点C.P.Q为极点的三角形与△CBA类似?解答:解:设经由x秒后,两三角形类似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形类似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经由秒或秒后,两三角形类似.(6分)点评:本题分解考核了旅程问题,类似三角形的性质及一元一次方程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上肯定点P 的地位,使得以P,A,D为极点的三角形与以P,B,C为极点的三角形类似.解答:解:(1)若点A,P,D分离与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分离与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.磨练:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.是以,点P的地位有三处,即在线段AB距离点A的1..6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的极点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E扭转,使得DE与BA的延伸线交于点M,EF与AC交于点N,于是,除(1)中的一对类似三角形外,可否再找出一对类似三角形并证实你的结论.解答:证实:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)同理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开端向B以2cm/s的速度移动;点Q沿DA边从点D开端向点A以1cm/s的速度移动.假如P.Q同时动身,用t(秒)暗示移动的时光,那么当t为何值时,以点Q.A.P为极点的三角形与△ABC类似.解答:解:以点Q.A.P为极点的三角形与△ABC类似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q.A.P为极点的三角形与△ABC类似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA地点的直线行走14米到B点时,身影的长度是变长了照样变短了?变长或变短了若干米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光亮媚的一天,数学兴致小组的同窗们去测量一棵树的高度(这棵树底部可以到达,顶部不轻易到达),他们带了以下测量对象:皮尺,标杆,一副三角尺,小平面镜.请你在他们供给的测量对象中选出所需对象,设计一种测量计划.(1)所需的测量对象是:;(2)请鄙人图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母暗示)求出x.解答:解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分离为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题布景在某次活动课中,甲.乙.丙三个进修小组于统一时刻在阳光下对校园中一些物体进行了测量.下面是他们经由过程测量得到的一些信息:甲组:如图1,测得一根竖立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得黉舍旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细疏忽不计)的高度为200cm,影长为156cm.义务请求:(1)请依据甲.乙两组得到的信息盘算出黉舍旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请依据甲.丙两组得到的信息,求景灯灯罩的半径.(友谊提醒:如图3,景灯的影长等于线段NG的影长;须要时可采取等式1562+2082=2602)解答:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,黉舍旗杆的高度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)在Rt△NGH中,依据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,衔接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,衔接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,依据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)25.(2007•白银)阳光经由过程窗口照耀到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题根本上难度不大,应用类似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下漫步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的程度距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请解释来由;(3)若李华在点A朝着影子(如图箭头)的偏向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)依据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时刻,他的影子也从C移到C',是以速度与旅程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分离以直角三角形ABC三边为直径向外作三个半圆,其面积分离用S1,S2,S3暗示,则不难证实S1=S2+S3.(1)如图②,分离以直角三角形ABC三边为边向外作三个正方形,其面积分离用S1,S2,S3暗示,那么S1,S2,S3之间有什么关系;(不必证实)(2)如图③,分离以直角三角形ABC三边为边向外作三个正三角形,其面积分离用S1.S2.S3暗示,请你肯定S1,S2,S3之间的关系并加以证实;(3)若分离以直角三角形ABC三边为边向外作三个一般三角形,其面积分离用S1,S2,S3暗示,为使S1,S2,S3之间仍具有与(2)雷同的关系,所作三角形应知足什么前提证实你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC.CA.AB的长分离为a.b.c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证实如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形类似时,S1=S2+S3.证实如下:∵所作三个三角形类似∴∴=1∴S1=S2+S3;(4)分离以直角三角形ABC三边为一边向外作类似图形,其面积分离用S1.S2.S3暗示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD.CD的长;(2)过B作BE⊥DC于E,求BE的长.解答:解:(1)Rt△ABC中,依据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两类似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:(1)设=k,那么x=2k,y=3k,z=5k,因为3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分离为240cm,800cm。
相似三角形测试题一、选择题1. 在相似三角形中,对应角相等,那么对应边的比例关系是怎样的?A. 相等B. 不成比例C. 成比例D. 无法确定2. 如果两个三角形的两个对应角分别相等,那么这两个三角形的关系是?A. 相似B. 全等C. 既不相似也不全等D. 以上都有可能3. 根据三角形的边长比例,可以判断三角形的相似性。
若三角形ABC的边长比为a:b:c,三角形DEF的边长比为x:y:z,则它们相似的条件是?A. ax = by = czB. ax = by = czC. ax = cy = bzD. ay = bx = cz二、填空题4. 在图中,标记为△ABC和△DEF的两个三角形是相似的。
若AB =6cm,AC = 8cm,BC = 10cm,DE = 9cm,那么DF的长度是多少?______ cm。
5. 已知两个三角形相似,且它们的周长比为3:4。
如果较小三角形的周长为15cm,那么较大三角形的周长是______ cm。
三、解答题6. 如图所示,△ABC与△DEF相似。
AB = 5cm,BC = 10cm,且DE =6cm。
求AC的长度及相似比。
7. 一个观察者站在河岸边,观察到对岸的塔顶和塔底的仰角分别为30°和15°。
如果观察者到河岸边的距离是50米,求塔的高度。
四、证明题8. 证明:如果两个三角形的对应边上的高也成比例,那么这两个三角形是相似的。
五、应用题9. 一个梯形的上底是10cm,下底是20cm,高是8cm。
另一个相似的梯形上底是15cm,下底是30cm。
如果它们的面积比为2:5,求高的长度比。
六、综合题10. 在一个公园的平面图上,有一个矩形花坛A和另一个相似的矩形花坛B。
花坛A的长和宽分别是20m和10m,花坛B的长是25m。
如果两个矩形的面积比是4:9,求花坛B的宽度。
相似三角形单元检测题一填空:(3分×14=42分) (90分钟完卷)1.如图1,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,那么AD=______.2。
如图2,AD∥EF∥BC,那么图的相似三角形共有_____对。
3。
如图3,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,那么BM=______.4。
ΔABC的三边长为,,2,ΔA'B’C'的两边为1和,假设ΔABC∽ΔA'B'C',那么ΔA'B’C’的笫三边长为________.5.两个相似三角形的面积之比为1∶5,小三角形的周长为4,那么另一个三角形的周长为_____.6。
如图4,RtΔABC中,∠C=900,D为AB的中点,DE⊥AB,AB=20,AC=12,那么四边形ADEC的面积为__________.7.如图5,RtΔABC中,∠ACB=900,CD⊥AB,AC=8,BC=6,那么AD=____,CD=_______。
8.如图6,矩形ABCD中,AB=8,AD=6,EF垂直平分BD,那么EF=_________.9。
如图7,ΔABC中,∠A=∠DBC,BC=,S ΔBCD∶SΔABC=2∶3,-那么CD=______。
10.如图8,梯形ABCD中,AD∥BC,两腰BA和CD的延长线相交于P,PF⊥BC,AD=3.6,BC=6,EF=3,那么PF=_____.11。
如图9,ΔABC中,DE∥BC,AD∶DB=2∶3,那么SΔADE∶SΔ=___________.ABE12.如图10,正方形ABCD内接于等腰ΔPQR,∠P=900,那么PA∶AQ=__________.13。
如图11,ΔABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,-那么S四边形DFGE∶S四边形FBCG=_________.14.如图12,ΔABC中,中线BD和CE相交于O点,SΔADE=1,那么S四=________。
相似三角形的判定测试题(含详细解析)时间:100分钟总分:100一、选择题(本大题共10小题,共30.0分)1.如图,在中,点P在边AB上,则在下列四个条件中::;;;,能满足与相似的条件是A. B. C. D.2.下列的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与相似的是A. B. C. D.3.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形阴影部分与相似的是A. B. C. D.4.如图,在中,,,点D在AC上,且,如果要在AB上找一点E,使与相似,则AE的长为A. B. C. 3 D. 或5.如图,在正方形ABCD中,点E,F分别在BC,CD上,且,将绕点A顺时针旋转,使点E落在点处,则下列判断不正确的是A. 是等腰直角三角形B. AF垂直平分C. ∽D. 是等腰三角形6.如图,在中,点D,E分别在边AB,AC上,下列条件中不能判断∽的是A.B.C.D.7.如图,点D,E分别在的AB,AC边上,增加下列条件中的一个:,,,,,使与一定相似的有A. B. C. D.8.如图,在钝角三角形ABC中,,,动点D从A点出发到B点止,动点E从C点出发到A点止点D运动的速度为秒,点E运动的速度为秒如果两点同时运动,那么当以点A、D、E为顶点的三角形与相似时,运动的时间是A. 4或B. 3或C. 2或4D. 1或69.如图,在中,,,,将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是A. B.C. D.10.如图,点E是矩形ABCD的边AD的中点,且于点F,则下列结论中错误的是A.B.C. 图中与相似的三角形共有4个D.二、填空题(本大题共10小题,共30.0分)11.如图,已知中,D为边AC上一点,P为边AB上一点,,,,当AP的长度为______ 时,和相似.12.如图,在中,、E分别为边AB、AC上的点,,点F为BC边上一点,添加一个条件:______,可以使得与相似只需写出一个13.在中,,,点D在边AB上,且,点E在边AC上,当______时,以A、D、E为顶点的三角形与相似.14.如图,,,,,,点p在BD上移动,当______时,和相似.15.如图,中,D、E分别是AB、AC边上一点,连接请你添加一个条件,使∽,则你添加的这一个条件可以是______写出一个即可.16.如图所示,中,E,F分别是边AB,AC上的点,且满足,则与的面积比是______ .17.已知在中,,,E是边AB上一点,且,若F是AC边上的点,且以A、E、F为顶点的三角形与相似,则AF的长为______.18.如图,在中,,,,点M在AB边上,且,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则______ .19.如图,在正方形网格上有6个三角形:,,,,,.在中,与相似的三角形的个数是______.三、计算题(本大题共4小题,共24.0分)20.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.求证:≌;求证:∽.21.如图,在中,D、E分别是AB、AC上的点,,,AD::3,的角平分线AF交DE于点G,交BC于点F.请你直接写出图中所有的相似三角形;求AG与GF的比.22.如图,已知,,垂足分别为B、D,AD与BC相交于点E,,垂足为F,试回答图中,∽______ ,∽______ ,∽______ .23.在图中,的内部任取一点O,连接AO、BO、CO,并在AO、BO、CO这三条线段的延长线上分别取点D、E、F,使,画出你认为与相似吗?为什么?你认为它们也具有位似形的特征吗?四、解答题(本大题共2小题,共16.0分)24.如图所示,,,,点P从点B出发,沿BC向点C以的速度移动,点Q从点C出发沿CA向点A以的速度移动,如果P、Q分别从B、C同时出发,过多少时,以C、P、Q为顶点的三角形恰与相似?25.如图,四边形ABCD中,AC平分,,,E为AB的中点.求证:∽;与AD有怎样的位置关系?试说明理由;若,,求的值.答案和解析【答案】1. D2. B3. B4. D5. D6. A7. A8. B9. C10. C11. 4或912. ,或13. 或14. 或12cm或2cm15.16.17. 1:918. 或19. 4或620. 321. 证明:正方形ABCD,等腰直角三角形EDF,,,,,,在和中,,≌;延长BA到M,交ED于点M,≌,,即,,,,,,∽.22. 解:∽,∽,∽;,,,又,∽,,为角平分线,∽,,.23. DAB;BCD;DCE24. 解:相似如图,,,∽,,同理,∽,它们也具有位似形的特征.25. 解:设经过y秒后,∽,此时,.,,,.∽,,设经过y秒后,∽,此时,..∽,所以,经过秒或者经过后两个三角形都相似26. 解:平分,,又,::AB,∽;,理由:∽,,又为AB的中点,,,,,;,,,,,,∽,,.【解析】1. 解:当,,所以∽;当,,所以∽;当,即AC::AC,所以∽;当,即PC::AB,而,所以不能判断和相似.故选D.根据有两组角对应相等的两个三角形相似可对进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对进行判断.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.2. 解:根据勾股定理,,,所以,夹直角的两边的比为,观各选项,只有B选项三角形符合,与所给图形的三角形相似.故选:B.可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.3. 解:小正方形的边长为1,在中,,,,A中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故A错误;B中,一边,一边,一边,有,即三边与中的三边对应成比例,故两三角形相似故B正确;C中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故C 错误;D中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故D错误.故选:B.根据相似三角形的判定,易得出的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.本题考查了相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.4. 解:是公共角,当,即时,∽,解得:;当,即时,∽,解得:,的长为:或.故选D.由是公共角,分别从当,即时,∽与当,即时,∽,去分析求解即可求得答案.此题考查了相似三角形的判定注意分类讨论思想的应用.5. 解:将绕点A顺时针旋转,使点E落在点处,,,是等腰直角三角形,故A正确;将绕点A顺时针旋转,使点E落在点处,,四边形ABCD是正方形,,,,,,,垂直平分,故B正确;,,,,∽,故C正确;,但不一定等于,不一定是等腰三角形,故D错误;故选D.由旋转的性质得到,,于是得到是等腰直角三角形,故A正确;由旋转的性质得到,由正方形的性质得到,推出,于是得到AF垂直平分,故B正确;根据余角的性质得到,于是得到∽,故C 正确;由于,但不一定等于,于是得到不一定是等腰三角形,故D错误.本题考查了旋转的性质,正方形的性质,相似三角形的判定,等腰直角三角形的判定,线段垂直平分线的判定,正确的识别图形是解题的关键.6. 解:,当或时,∽;当即时,∽.故选:A.根据相似三角形的判定定理进行判定即可.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.7. 解:,,∽,正确;,,∽,正确;,,∽,正确;由,或不能证明与相似.故选:A.由两角相等的两个三角形相似得出正确,由两边成比例且夹角相等的两个三角形相似得出正确;即可得出结果.本题考查了相似三角形的判定定理:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8. 解:根据题意得:设当以点A、D、E为顶点的三角形与相似时,运动的时间是x秒,若∽,则AD::AC,即x::12,解得:;若∽,则AD::AB,即x::6,解得:;所以当以点A、D、E为顶点的三角形与相似时,运动的时间是3秒或秒.故选B.根据相似三角形的性质,由题意可知有两种相似形式,∽和∽,可求运动的时间是3秒或秒.此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.9. 解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.根据相似三角形的判定定理对各选项进行逐一判定即可.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10. 解:A、,∽,,,,故A正确,不符合题意;B、过D作交AC于N,,,四边形BMDE是平行四边形,,,,于点F,,,,,故B正确,不符合题意;C、图中与相似的三角形有,,,,共有5个,故C错误.D、设,由∽,有.,故D正确,不符合题意.故选C.由,又,所以,故A正确,不符合题意;过D作交AC于N,得到四边形BMDE是平行四边形,求出,得到,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由∽,得到CD与AD的大小关系,根据正切函数可求的值,故D错误,符合题意.本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.11. 解:当∽时,,,解得:,当∽时,,,解得:,当AP的长度为4或9时,和相似.故答案为:4或9.分别根据当∽时,当∽时,求出AP的长即可.此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.12. 解:,或.理由:,,∽,当时,∽,∽.当时,,∽.故答案为,或.结论:,或根据相似三角形的判定方法一一证明即可.本题考查相似三角形的判定和性质平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13. 解:当时,,∽,此时;当时,,∽,此时;故答案为:或.若A,D,E为顶点的三角形与相似时,则或,分情况进行讨论后即可求出AE的长度.本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法,解题的关键是分两种情况进行讨论.14. 解:由,,,设,则,若∽,则,即,变形得:,即,因式分解得:,解得:,,所以或12cm时,∽;若∽,则,即,解得:,,综上,或12cm或时,∽.故答案为:或12cm或2cm.设出,由表示出PD的长,若∽,根据相似三角形的对银边成比例可得比例式,把各边的长代入即可列出关于x的方程,求出方程的解即可得到x的值,即为PB的长.此题考查了相似三角形的判定与性质,相似三角形的性质有相似三角形的对应边成比例,对应角相等;相似三角形的判定方法有:1、两对对应角相等的两三角形相似;2、两对对应边成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似,本题属于条件开放型探究题,其解法:类似于分析法,假设结论成立,逐步探索其成立的条件.15. 解:当时,∽.故答案为.利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似进行添加条件.本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.16. 解:,当时,∽.故答案为.利用有两组角对应相等的两个三角形相似添加条件.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.17. 解:,,又,∽,与的面积比:9,故答案为:1:9.由已知条件易证∽,根据相似三角形的性质即可求出与的面积比.本题考查了相似三角形的判定和性质,熟悉相似三角形的性质:相似三角形的面积比是相似比的平方是解题关键.18. 解:,以A、E、F为顶点的三角形与相似,有∽和∽两种情况:如图1:当时,∽时,即,解得:;如图2:当时,∽时,即,解得:.所以或.故答案为或.根据相似三角形的相似比求AF,注意分情况考虑.本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理,分情况讨论是解决本题的关键.19. 解:如图1,当时,则∽,故,则,解得:,如图2所示:当时,又,∽,,即,解得:,故答案为:4或6.分别利用当时以及当时,得出相似三角形,再利用相似三角形的性质得出答案.此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.20. 解:,,,,,,,,,,,,,,,与不相似;,,,∽;,,,∽;,,,,,,与不相似.故答案为3.先利用勾股定理计算出,,,,,,然后利用三组对应边的比相等的两个三角形相似依次判断,,,,与是否相似.本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似也考查了勾股定理.21. 由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;由第一问的全等三角形的对应角相等,根据等量代换得到,再由对顶角相等,利用两对角相等的三角形相似即可得证.此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.22. 可得到三组三角形相似;先利用两组对应边的比相等且夹角对应相等的两个三角形相似证明∽,则,再利用有两组角对应相等的两个三角形相似证明∽,然后利用相似比和比例的性质求的值.本题考查了相似三角形的判断:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.23. 解:,,,,,,,,∽;,,,,∽,故答案为:DAB;BCD;DCE.由AB垂直于BD,CD垂直于BD,得到一对同旁内角互补,利用同旁内角互补两直线平行得到AB与CD 平行,同理EF与AB平行,且与CD平行,根据EF与AB平行,利用两直线平行同位角相等得到两对角相等,确定出三角形DEF与三角形DAB相似;同理得到三角形BEF与三角形BCD相似;由两直线平行得到两对内错角相等,得到三角形ABE与三角形DEC相似.此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24. 由,可得∽,再由相似得出对应边成比例,即可得出与相似,由于它们有位似中心点O,所以它们也具有位似形的特征.本题主要考查了相似三角形的判定以及位似图形的问题,应熟练掌握位似与相似之间的联系及区别.25. 设经过y秒后相似,由于没有说明对应角的关系,所以共有两种情况:∽与∽本题考查相似三角形的判定,解题的关键是分两种情况进行讨论,本题属于中等题型.26. 根据两组对应边的比相等且夹角对应相等的两个三角形相似进行求解;根据,,即可得出,进而得到;先根据,,判定∽,即可得出,进而得到.本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.。
初三数学相似三角形测试题及答案1、若b m m a 2,3==,则_____:=b a 。
2、已知653z y x ==,且623+=z y ,则__________,==y x 。
3、在等腰Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m . 4、反向延长线段AB 至C ,使2AC =AB ,那么BC :AB = 。
5、△ABC ∽△A ′B ′C ′,相似比为3:2,它们周长的差为40厘米,则△A ′B ′C ′的周长为 厘米。
7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC = 。
若BC =6,AB =10,则BD = ,CD = 。
8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3。
5cm,且MN ∥PQ ∥AB , DM =MP =PA,则MN = ,PQ = 。
9、如图,四边形ADEF 为菱形,且AB =14,BC =12,AC =10,那BE = 。
10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。
11、下面四组线段中,不能成比例的是( )A 、4,2,6,3====d c b aB 、3,6,2,1====d c b aC 、10,5,6,4====d c b aD 、32,15,5,2====d c b a12、等边三角形的中线与中位线长的比值是( )A 、1:3B 、2:3C 、23:21 D 、1:3CB DAD C NPN QAB14、已知直角三角形三边分别为b a b a a 2,,++,()0,0>>b a ,则=b a :( ) A 、1:3 B 、1:4 C 、2:1 D 、3:115、△ABC 中,AB =12,BC =18,CA =24,另一个和它相似的三角形最长的一边是36,则最短的一边是( ) A 、27 B 、12 C 、18 D 、20 16、已知c b a ,,是△ABC 的三条边,对应高分别为cb a h h h ,,,且6:5:4::=c b a ,那么cb a h h h ::等于( )A 、4:5:6 B 、6:5:4 C 、15:12:10 D 、10:12:1517、一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为( ) A 、44厘米 B 、40厘米 C 、36厘米 D 、24厘米 18、下列判断正确的是( )A 、不全等的三角形一定不是相似三角形B 、不相似的三角形一定不是全等三角形C 、相似三角形一定不是全等三角形D 、全等三角形不一定是相似三角形19、如图,△ABC 中,AB =AC ,AD 是高,EF ∥BC ,则图中与△ADC 相似的三角形共有( ) A 、1个 B 、2个 C 、3个 D 、多于3个20、如图,在平行四边形ABCD 中,E 为BC 边上的点,若BE :EC =4:5,AE 交BD 于F ,则BF :FD 等于( ) A 、4:5 B 、3:5 C 、4:9 D 、3:821、已知()3:2:=-y y x ,求y x yx 2352-+的值。
相似三角形测试题1. 基础概念题:- 判断题:两个三角形,如果它们的对应角相等,对应边成比例,那么这两个三角形是相似的。
()2. 比例计算题:- 已知三角形ABC与三角形DEF相似,AB:DE = 2:3,BC:EF = 4:5,求AC:DF的比例。
3. 角度问题:- 若三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 70°,求∠C和∠F。
4. 面积比问题:- 已知三角形ABC与三角形DEF相似,且相似比为3:5,若三角形ABC的面积为9平方厘米,求三角形DEF的面积。
5. 实际应用题:- 一座塔的高度为50米,从地面上的一点观察,塔顶与观察点的夹角为30°。
如果从另一个点观察,塔顶与该点的夹角为45°,求第二个观察点到塔的距离。
6. 证明题:- 证明:如果一个三角形的内角平分线将对应边分成的线段成比例,则这个三角形是等腰三角形。
7. 综合应用题:- 在平面直角坐标系中,点A(1,2),B(4,6),C(7,8)构成三角形ABC。
若点D(2,4),E(5,8),F(8,10)构成三角形DEF,判断三角形ABC 与三角形DEF是否相似,并说明理由。
8. 变换问题:- 已知三角形ABC与三角形DEF相似,如果将三角形DEF沿x轴正方向平移3个单位,再沿y轴正方向平移2个单位,判断平移后的三角形与三角形ABC是否相似。
9. 作图题:- 作一个三角形ABC,使得∠A = 60°,AB = 6厘米,AC = 8厘米。
然后在三角形ABC内作一个与它相似的三角形PQR,使得PQ:AB = 1:2。
10. 探索性问题:- 探索并证明:如果两个三角形的对应边成比例,且其中一个三角形的对应角是另一个三角形对应角的两倍,那么这两个三角形是否相似?。
相似三角形》单元测试题(含答案) 相似三角形》单元测试题一、精心选一选(每小题4分,共32分)1.下列各组图形有可能不相似的是(。
C )。
A)各有一个角是50°的两个等腰三角形B)各有一个角是100°的两个等腰三角形C)各有一个角是50°的两个直角三角形D)两个等腰直角三角形2.如图,D是⊿ABC的边AB上一点,在条件(1)△ACD=∠B,(2)AC=AD·AB,(3)AB边上与点C距离相等的点D有两个,(4)∠B=△ACB中,一定使⊿ABC∽⊿ACD的个数是(。
B )。
A)1.(B)2.(C)3.(D)43.如图,∠ABD=∠ACD,图中相似三角形的对数是(。
B )。
A)2.(B)3.(C)4.(D)54.如图,在矩形ABCD中,点E是AD上任意一点,则有(。
B )。
A)△ABE的周长+△CDE的周长=△BCE的周长B)△ABE的面积+△CDE的面积=△BCE的面积C)△ABE∽△DECD)△ABE∽△EBC5.如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为(。
C )。
A.9:4.B.2:3.C.3:2.D.81:166.下列两个三角形不一定相似的是(。
C )。
A.两个等边三角形。
B.两个全等三角形C.两个直角三角形。
D.两个等腰直角三角形7.若⊿ABC∽⊿A B C,∠A=40°,∠B=110°,则∠C=(。
D )。
A。
40°。
B。
110°。
C。
70°。
D。
30°8.如图,在ΔABC中,AB=30,BC=24,CA=27,AE=EF=FB,EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形的周长之和为(。
D )。
A、70.B、75.C、81.D、80二、细心填一填(每小题3分,共24分)9.如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于△ABC。
《相像三角形》单元测试题一、精心选一选(每题4分,共32分)1. 以下各组图形有可能不相像的是( ).各有一个角是50°的两个等腰三角形各有一个角是100°的两个等腰三角形各有一个角是50°的两个直角三角形两个等腰直角三角形22.如图,D是⊿ABC的边AB上一点,在条件(1)△ACD=∠B,(2)AC=AD·AB,(3)AB边上与点C距离相等的点D有两个,(4)∠B=△ACB中,必定使⊿ABC∽⊿ACD的个数是()A)1(B)2(C)3(D)43.如图,∠ABD=∠ACD,图中相像三角形的对数是()(A)2(B)3(C)4(D)54.如图,在矩形 ABCD中,点E是AD上随意一点,则有()A)△ABE的周长+△CDE的周长=△BCE的周长B)△ABE的面积+△CDE的面积=△BCE的面积C)△ABE∽△DECD)△ABE∽△EBC5.假如两个相像多边形的面积比为9:4,那么这两个相像多边形的相像比为()A.9:4B.2:3C.3:2D.81:166.以下两个三角形不必定相像的是()。
A.两个等边三角形 B.两个全等三角形C.两个直角三角形 D.两个等腰直角三角形7.若⊿ABC∽⊿ABC,∠A=40°°,∠B=110,则∠C=()A.40°B110°C70°D30°8.如图,在ABC中,AB=30,BC=24,CA=27,AE=EF=FB,EG∥FD∥BC,FM∥EN∥AC,则图中暗影部分的三个三角形的周长之和为()A、70B、75C、81D、80二、仔细填一填(每题3分,共24分)如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延伸线于点E,则⊿BAE相像于______.110、在一张比率尺为1:10000的地图上,我校的周长为18cm,则我校的实质周长为。
11、假如两个相像三角形对应高的比为4:5,则这两个三角形的相像比是,它们的面积的比是。
相似三角形第1题. 某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为( ) A.5.3米 B.4.8米 C.4.0米 D.2.7米答案:B第2题. 如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD AB CD ,∥,2m AB =,5m CD =,点P 到CD 的距离是3m ,则点P 到AB 的距离是( ) A.56m B.6m 7C.6m 5D.10m 3答案:C第3题. 如图,D E ,分别是ABC △的边AB AC ,上的点,请你添加一个条件,使 ABC △与AED △相似,你添加的条件是 . 答案:AED B =∠∠或ADE C =∠∠或AD AEAC AB=第4题. 如图,已知A B C D B E △∽△,68AB DB ==,, 则:ABC DBE S S =△△ .答案:9:16第5题.如图,E 是平行四边形ABCD 的边BA 延长线上的一点,CE 交AD 于点F ,下列各式中错误的是( )A .AE EFAB CF = B .CD CFBE EC = C .AE AFAB DF=D .AE AFAB BC= 答案:DA B PCDBA BDCE第6题. 如图,90C E ∠=∠=,3AC =,4BC =,2AE =,则AD =.答案:103第7题.如图,A B C D E G H M N ,,,,,,,,都是方格纸中的格点(即小正方形的顶点),要使DEF△与ABC △相似,则点F 应是G H M N ,,,四点中的( ) A .H 或N B .G 或H C .M 或ND .G 或M答案:C第8题. 图中_______x =. 答案:2第9题 已知111ABC A B C △∽△,11:2:3AB A B =,则ABC S △与111A B C S △之比为 .答案:4:9第10.题 如图,在正方形ABCD 中,点E 是BC 边上一点,且:2:1BE EC =,AE与BD 交于点F ,则AFD △与四边形DFEC 的面积之比是_________. 答案:9:11第11题 由三角形三条中位线所围成的三角形的面积是原三角形面积的 . 答案:14E30 45 30105124xA DFB EC第12 题如图,在ABC △中,90C =∠,在AB 边上取一点D ,使BD BC =,过D 作DE AB ⊥交AC于E ,86AC BC ==,.求DE 的长.答案:解:在ABC △中,9086C AC BC ===,,∠,10AB ∴=.又6BD BC == ,4AD AB BD ∴=-=. DE AB ⊥ ,90ADE C ∴== ∠∠.又A A = ∠∠,AED ABC ∴△∽△. DE AD BC AC∴=. 4638AD DE BC AC ∴==⨯= .第13题点D E ,分别是ABC △的边AB AC ,的中点,则:ADE ABC S S =△△( )A .12 B .13C .14D答案:C第14题如图,矩形ABCD 中,BE AC ⊥于F ,E 恰是CD 的中点,下列式子成立的是( )A .2212BF AF = B .2213BF AF =C .2212BF AF >D .2213BF AF <答案:A第15题.如图,要使ACD ABC △∽△,只需添加条件 (只要写出一种合适的条件即可).答案:1ABC ∠=∠或2ACB ∠=∠或2AC ADAB =·(答案不唯一)ABCE FD。
一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF AC=BC FE例6:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM⊥BC 于点E ,交BA 的延长线于点D 。
例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。
过D 点作DG∥AB 交FC 于G 则△AEF∽△DEG。
(平行于三角形一边的直线截其它两边或两边的延长线所得三角形与原三角形相似) (1)∵D 为BC 的中点,且DG∥BF∴G 为FC 的中点则DG 为△CBF 的中位线,(2)将(2)代入(1)得:三、如何用相似三角形证明两角相等、两线平行和线段相等。
边AB 和AD 上的点,且。
求证:例8:已知:如图E 、F 分别是正方形ABCD 的∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线,••DG AFDE AE =BF DG 21=FBAF BF AF DE AE 221==31==AD AF AB EB A B C D E FG 1234ABC D AB C D E FK A B CD E FCDRAC E ABCDEFO 123ABCDFGE求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BF(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
相似三角形单元检测题一.选择题(1)△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( )A.DB AD =EC BF B.AC AB =FCEFC.DB AD =FCBFD.EC AE =BFAD(2)在△ABC 中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是( )A.138B.346C.135D.不确定(3)在△ABC 中,AB=AC,∠A=36°,∠ABC 的平分线交AC 于D ,则构成的三个三角形中,相似的是( )A.△ABD ∽△BCDB.△ABC ∽△BDCC.△ABC ∽△ABDD.不存在(4)将三角形高分为四等分,过每个分点作底边的平行线,将三角形分四个部分,则四个部分面积之比是( )A.1∶3∶5∶7B.1∶2∶3∶4C.1∶2∶4∶5D.1∶2∶3∶5(5)下列命题中,真命题是( )A.有一个角为30°的两个等腰三角形相似B.邻边之比都等于2的两个平行四边形相似C.底角为40°的两个等腰梯形相似D.有一个角为120°的两个等腰三角形相似 (6)直角梯形ABCD 中,AD 为上底,∠D=Rt ∠,AC ⊥AB ,AD=4,BC=9,则AC 等于( )A.5B.6C.7D.8(7)已知CD 为Rt △ABC 斜边上的中线,E 、F 分别是AC 、BC 中点,则CD 与EF 关系是( )A.EF >CDB.EF=CDC.EF <CDD.不能确定(8)下列命题①相似三角形一定不是全等三角形 ②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O 是△ABC 内任意一点.OA 、OB 、OC 的中点连成的三角形△A ′B ′C ′∽△ABC 。
其中正确的个数是( )A.0个B.1个C.2个D.3个(9)D 为△ABC 的AB 边上一点,若△ACD ∽△ABC ,应满足条件有下列三种可能①∠ACD=∠B ②∠ADC=∠ACB ③AC 2=AB ·AD ,其中正确的个数是( )A.0个B.1个C.2个D.3个(10)下列命题错误的是( )A.如果一个菱形的一个角等于另一个菱形的一个角,则它们相似B.如果一个矩形的两邻边之比等于另一个矩形的两邻边之比,则它们相似二、填空题(1)比例的基本性质是________________________________________(2)若线段a=3cm,b=12cm,a、b的比例中项c=________,a、b、c的第四比例线段d=________(3)如下图,EF∥BC,若AE∶EB=2∶1,EM=1,MF=2,则AM∶AN=________,BN∶NC=________(4)有同一三角形地块的甲乙两地图,比例尺分别为1∶200和1∶500,则甲地图与乙地图的相似比为________,面积比为________(5)若两个相似三角形的面积之比为1∶2,则它们对应边上的高之比为________(6)已知CD是Rt△ABC斜边AB上的高,则CD2=________(7)把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的____倍,周长扩大为原来的______倍.(8)Rt△ABC中,∠C=90°,CD为斜边上的高。
相似三角形试题及答案一、选择题1. 在相似三角形中,对应角相等的条件是:A. 边长成比例B. 面积相等C. 周长相等D. 角相等答案:A2. 下列选项中,哪一项不是相似三角形的性质?A. 对应边成比例B. 对应角相等C. 面积比等于边长比的平方D. 周长比等于边长比答案:B二、填空题3. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则三角形ABC的面积与三角形DEF的面积之比是________。
答案:4:94. 若三角形ABC与三角形A'B'C'相似,且∠A=∠A'=60°,则∠B与∠B'的关系是________。
答案:相等三、简答题5. 解释为什么在相似三角形中,对应边长的比等于对应角的正弦值之比。
答案:在相似三角形中,由于对应角相等,根据正弦定理,对应边长的比等于对应角的正弦值之比。
这是因为正弦值与角的大小成正比,而相似三角形的对应角大小相同,因此它们的正弦值之比也相同。
四、计算题6. 在三角形ABC中,已知AB=5cm,AC=7cm,∠A=60°,求三角形ABC的面积。
答案:首先,利用余弦定理计算BC的长度。
根据余弦定理,BC²= AB² + AC² - 2AB*AC*cos∠A。
代入已知值,得到BC² = 5² +7² - 2*5*7*(1/2) = 25 + 49 - 35 = 39,所以BC = √39 cm。
然后,利用三角形的面积公式S = (1/2)AB*AC*sin∠A,代入已知值,得到S = (1/2)*5*7*(√3/2) = 17.5√3 cm²。
7. 若三角形ABC与三角形DEF相似,且AB:DE=3:5,求三角形ABC与三角形DEF的面积比。
答案:由于相似三角形的面积比等于边长比的平方,所以三角形ABC与三角形DEF的面积比为(3:5)² = 9:25。
相似三角形测试题及答案### 相似三角形测试题及答案#### 测试题一:基础概念题题目:下列哪组三角形是相似的?A. 等腰三角形和直角三角形B. 两个等腰直角三角形C. 两个等边三角形D. 两个不同形状的三角形答案:B、C解析:相似三角形的定义是两组对应角相等,且两组对应边的比相等的两个三角形。
选项B中的两个等腰直角三角形,它们的两个锐角相等,且两组对应边的比相等,因此是相似的。
选项C中的两个等边三角形,它们的三个角都相等,并且三组对应边的比也相等,因此也是相似的。
#### 测试题二:计算题题目:已知三角形ABC与三角形DEF相似,且AB:DE = 3:2,求AC:EF 的比值。
答案:AC:EF = 3:2解析:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,它们的对应边的比值是相等的。
因此,AC与EF作为对应边,它们的比值也应该是3:2。
#### 测试题三:应用题题目:在平面直角坐标系中,三角形PQR的顶点坐标分别为P(1,2),Q(4,6),R(1,6)。
点S(2,4)是否在以PQ为斜边的相似三角形PQS的内部?答案:是的,点S(2,4)在以PQ为斜边的相似三角形PQS的内部。
解析:首先计算PQ的长度,使用距离公式得到PQ = √[(4-1)² + (6-2)²] = √13。
然后计算PS和QS的长度,PS = √[(2-1)² + (4-2)²] = √2,QS = √[(2-4)² + (4-6)²] = √13。
由于PS < PQ < QS,根据三角形的不等式定理,点S在以PQ为斜边的三角形PQS 的内部。
#### 测试题四:证明题题目:若三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,请证明∠C = ∠F。
答案:根据相似三角形的性质,如果两个三角形相似,那么它们的对应角相等。
已知∠A = ∠D,∠B = ∠E,根据三角形内角和定理,三角形ABC的内角和为180°,即∠A + ∠B + ∠C = 180°。
初三数学相似试题及答案
一、选择题
1. 两个三角形相似的条件是()
A. 面积相等
B. 周长相等
C. 边长成比例
D. 角度相等
答案:C
2. 如果两个三角形的对应角相等,那么这两个三角形()
A. 全等
B. 相似
C. 不一定相似
D. 无法判断
答案:B
二、填空题
1. 若△ABC与△DEF相似,且AB:DE = 2:3,那么AC:DF = _______。
答案:2:3
2. 三角形的相似比为3:5,若三角形的一边长为9cm,则另一边长为_______ cm。
答案:15cm
三、解答题
1. 如图所示,△ABC与△DEF相似,已知AB = 6cm,AC = 8cm,DE = 9cm,求BC和EF的长度。
解:由于△ABC与△DEF相似,根据相似三角形的性质,我们有: AB:DE = AC:DF = BC:EF
将已知数值代入比例中,得到:
6:9 = 8:DF = BC:EF
解得DF = 12cm,BC = 10cm。
2. 已知两个相似多边形的面积之比为9:16,求它们的周长之比。
解:设两个相似多边形的周长分别为P和Q,面积分别为A和B。
根据相似多边形的性质,我们知道:
A/B = (P/Q)^2
已知A/B = 9/16,代入公式得:
(9/16) = (P/Q)^2
解得P/Q = 3/4。
结束语
通过本试题的练习,同学们可以加深对相似三角形和相似多边形的理解,掌握它们的性质和计算方法。
希望同学们能够认真练习,提高自己的数学能力。
《相似三角形的判定》测试题(一)填空:1.若3x-7y=0, 则y∶x=_______, =________。
2.若a=7, b=4, c=5, 则b, a, c的第四比例项d=_______。
3.若线段a=4, b=6, 则a, b的比例中项为________。
4.已知:===, 则=______,=_________。
5.已知:a∶b∶c=3∶4∶5, a+b-c=4, 则4a+2b-3c=________。
6.若=, 则 x=_______。
7.已知:ΔABC中,DE//BC交AB于D,AC于E,AB=10,AD-DB=2,BC=9,则DE=________。
8.已知:RtΔABC中,∠ACB=90°,CD⊥AB于D,AD=4,BD=2,则CD=________,AC=_________。
9.ΔABC中,∠ACB=90°,CD是高,AC=3,BC=4,则CD=_______,AD=_________,BD=_________。
10.ΔABC中,AB=AC=10,∠A=36°,BD是角平分线交AC于D,则CD=_________。
11.等边三角形的边长为a,则它的内接正方形的边长为_________。
12.ΔABC中,DE//BC,DE交AB,AC于D,E,AD∶DB=5∶4,则S梯形BCED∶SΔADE=________。
13.两个相似多边形面积比是1∶3,则周长比是_______。
14.两个相似多边形的面积比为25∶9,其中一个多边形的周长为45,则另一个多边形的周长为_________。
15.如果两个相似多边形的最长边分别为35cm和14cm,它们的周长差为60cm,那么这两个多边形的周长分别为__________。
(二)选择题:1.在ΔABC中,DE//BC交AB于D,AC于E,若四边形DECB的面积为ΔADE面积的3倍,则DE∶BC=()A、1∶3B、1∶9C、3∶1D、1∶22.如图,在ΔABC中=,=,设AD与CE的交点为P,则CP∶PE=()。
相似三角形测试题一、选择题(40分)1.如图1,已知AB CD EF∥∥,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD= C.CD BCEF BE=D.CD ADEF AF=图4图3 图3图12.如图2所示,给出下列条件:①B ACD∠=∠;②ADC ACB∠=∠;③AC ABCD BC=;④2AC AD AB=.其中单独能够判定ABC ACD△∽△的个数为()A.1 B.2 C.3 D.43.如图3,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有:()A.0个B.1个C.2个D.3个4. 若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为()A.1∶4 B.1∶2 C.2∶1 D5. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上但有限D.有无数个6.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图4,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm7. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC△相似的是()8. 在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图5所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A.9.5 B.10.5 C.11 D.15.59. 如图6,在Rt ABC△中,90ACB∠=°,3BC=,4AC=,AB的垂直平分线DE交BC的A.延长线于点E ,则CE 的长为( ) A .32 B .76 C .256D .2图5 图6 图7 10. 如图7,AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为( )A .23B .32C D .2二、填空题(30分)11.如图8是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割.已知AB =10cm ,则AC 的长约为 cm .(结果精确到0.1cm )图8 图9 图10 12. 如图9,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②D F C F =;③A D E F D B △∽△;④B F D C A F ∠=∠.其中正确的结论是 (填写所有正确结论的序号).13. 如图10,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD= . 14. 如图11,锐角△ABC 中,BC =6,,12=∆ABC S 两动点M 、N 分别在边AB 、AC 上滑动,且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y (y >0),当x = ,公共部分面积y 最大,y 最大值图11 图12 图1315. 如图12,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 . 16.将三角形纸片(△ABC )按如图13所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .三、解答题(80分)17.(本题8分)如图14,在△ABC 中,DE ∥BC ,EF ∥AB , 求证:△ADE ∽△EFC .图1418.(本题8分)如图15,已知AB 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连结AC . (1)求证:ABC POA △∽△;(2)若2OB =,72OP =,求BC 的长.图1519. (本题8分)如图16,在矩形ABCD 中,点E F 、分别在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.图1620(本题10分)如图17,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的 高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.图17图18FB∙ABCD EO21(本题10分)如图18,⊙O 中,弦AB CD 、相交于AB 的中点E , 连接AD 并延长至点F ,使DFAD =,连接BC 、BF .(1)求证:CBE AFB △∽△;(2)当58BE FB =时,求CB AD的值22(本题12分)已知:如图19,在Rt △ABC 中,∠ABC =90°,以AB 上的 点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D . (1)求证:BC =CD ;(2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长. 图1923(本题12分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△; (2)设B Mx =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式; 当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.24(本题12分)如图,在Rt ABC △中,906024BAC C BC ∠=∠==°,°,,点P 是BC 边上的动点(点P 与点B C 、不重合),过动点P 作PD BA ∥交AC 于点D .(1)若ABC △与DAP △相似,则APD ∠是多少度?(2)试问:当PC 等于多少时,APD △的面积最大? 最大面积是多少?(3)若以线段AC 为直径的圆和以线段BP 为直径 的圆相外切,求线段BP 的长.。
1、 如图,△ABC和△DEF的三边长分别为7、2、6和12、4、14,且两三角形相似,则∠A=___,∠B=___,∠C=___,)()()(AC DF AB ==.
2、如图,在△ABC中,DE∥BC,则△ADE∽△____,∠A=∠___,∠ADE=∠___,∠ACB=∠___,______==BC DE ,若AD=5cm,DB=3cm,则△ADE与△ABC的相似比为_.
3、如图,△ABC∽△AFE.
写出三对对应角: = , = ,
=,并且
___
___
)
(
=
=
AF
.若△ABC与△AFE的相比是3:
2,EF=8cm,则BC=___cm.从题设可推得∠CAE=∠___.
4、下列命题中不正确的是()A.如果两个三角形全等,那么这两个三角形相似
B.如果两个三角形相似,且相似比为1,那么这两个三角形全等C.如果两个三角形都与第三个三角形相似,那么这两个三角形相似D.如果两个三角形相似,那么这两个三角形全等
5、给出下列四个命题:
(1)等腰三角形都是相似三角形;(2)直角三角形都是相似三角形;
(3)等腰直角三角形都是相似三角形;(4)等边三角形都是相似三角形.
其中真命题有()A.1个B.2个C.3个D.4个
6、如图,AD∥BC,AB、CD相交于点E,过E作EF∥AD,
交AC于点F.写出图中所有相似三角形,并说明理由
7、如图,△ABC中,EF∥BC,DG∥ABEF和DG相交于点H.则图中相似三角形共有( )
A.3对 B.4对 C.5对 D.6对
8、如图,梯形ABCD中,AC、BD相交于O,EF过O点且平行于BC.
(1) 写出图中所有的相似三角形:___∽_____,_____∽_____,____∽___,___∽___,___∽___.
(2) )()()(OF BD AO BC EO ===,进而可推得OE=OF.
9、已知:△ABC,试在△ABC的形内作三个三角形,使它们与△ABC都相似,且相似比分别为1:4、1∶2、3:4.
10、如图,菱形EFGH内接于平行四边形ABCD,并且EF∥AC∥HG,FG∥BD∥EH,AC=a,BD=b.求菱形的边长.
11、已知:如图,在△ABC中,D为AC的中点,在BC上截取BN=AB,连结AN交BD于E.
求证:AE NE BC AB (用6种不同方法证明) .。