基于ROI编码的任意尺寸测量图像的压缩方法杨晓
- 格式:pdf
- 大小:1.58 MB
- 文档页数:4
基于感兴趣区域(ROI)图像的压缩编码研究的开题报告一、研究背景图像压缩编码技术在数字图像处理领域中,具有重要的应用价值。
随着数字图像应用的广泛开展,人们对高清晰度、高保真、低码率的图像压缩编码需求不断增强。
基于感兴趣区域(ROI)图像的压缩编码技术因其优异的压缩性能和易于人机交互的特点,近年来备受关注。
ROI图像是指图像中特定区域,如感兴趣的目标、重要的细节和边缘等,需要高保真度和高清晰度的部分。
基于感兴趣区域的图像压缩编码技术可以将ROI图像进行特殊的处理,保证其高保真度和高清晰度,同时压缩非ROI 图像以减小数据传输的容量,提高数据的传输速率和实时性。
二、研究内容本研究旨在基于感兴趣区域(ROI)图像的压缩编码技术,对数字图像压缩编码进行研究。
具体研究内容包括:1、ROI提取与分割算法研究根据图像的特点和需要,研究ROI提取和分割算法,设计出高效的算法对图像中的ROI进行提取,实现区域分割。
本研究以常见的分割算法为基础,结合ROI的特征和分析,研究基于感兴趣区域的图像分割算法,提高ROI图像的提取效率和准确性。
2、基于ROI的图像压缩编码算法研究结合ROI提取和分割算法,研究基于感兴趣区域的图像压缩编码算法。
本研究以JPEG算法为基础,针对ROI图像的特殊处理,研究ROI 编码策略和非ROI编码策略,实现对数字图像的有效压缩。
3、实验验证通过对比实验验证本研究的ROI压缩编码技术和传统图像压缩编码技术的压缩效果和编解码时间,评估研究成果的有效性和实用性。
本研究还将通过改进和优化ROI压缩编码技术,提高图像的压缩率和保真度。
三、研究意义本研究将深入探究基于感兴趣区域的图像压缩编码技术,针对数字图像处理领域中高清晰度、高保真度、低码率的需求,提出优秀的ROI图像压缩编码技术,为数字图像处理领域的发展做出贡献。
四、研究方法本研究采用实验研究和数据分析方法,设计基于感兴趣区域的图像压缩编码算法,实现对数字图像的有效压缩和处理。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810065820.7(22)申请日 2018.01.23(71)申请人 西南科技大学地址 621010 四川省绵阳市涪城区青龙大道中段59号西南科技大学(72)发明人 李小霞 肖娟 范振军 (51)Int.Cl.G06K 9/46(2006.01)G06K 9/32(2006.01)G06K 9/62(2006.01)(54)发明名称一种基于局部特征点的图像ROI快速检测方法(57)摘要针对现有图像感兴趣区域(R eg i o n of interest ,ROI )检测算法中存在算法原理较复杂、时间复杂度较大以及实时性较低的问题,本发明提出了一种新的基于局部特征点的ROI快速检测方法,本方法包括如下步骤:步骤1、图像预处理,即对输入图像生成金字塔影像;步骤2、在金字塔影像上提取ORB或SIFT特征点;步骤3、对所提特征点的坐标值按水平和垂直方向排序;步骤4、通过计算K个近邻点的均值来确定ROI的坐标;步骤5、提取图像ROI。
本方法具有高实时性且鲁棒性好,能够快速、准确地检测出图像感兴趣区域。
权利要求书2页 说明书4页 附图2页CN 108319961 A 2018.07.24C N 108319961A1.一种基于局部特征点的图像ROI快速检测方法,包括如下步骤:步骤1、图像预处理,即对输入图像生成金字塔影像;步骤2、在金字塔影像上提取ORB或SIFT特征点;步骤3、对所提特征点的坐标值按水平和垂直方向排序;步骤4、通过计算K个近邻点的均值来确定ROI的坐标;步骤5、提取图像ROI。
2.根据权利要求1所述的方法,其特征在于,步骤1为图像预处理,即对输入图像生成金字塔影像,具体实现方法为:(1)对图像降采样,生成金字塔影像。
3.根据权利要求1所述的方法,其特征在于,步骤2在金字塔影像上提取ORB或SIFT特征点,具体实现方法为:(1)初始化;假设提取的图像特征点的数目为S,保存特征点坐标值的矩阵记为,大小为,初值为零,即:(4)需要说明的是,特征点坐标仅保存在FK的主对角线上,其余位置始终置零。
可实现ROI功能的改进精细伸缩视频编码
徐向民;陈小川;周丰乐;全晓臣;陈育
【期刊名称】《桂林电子科技大学学报》
【年(卷),期】2006(026)002
【摘要】提出一种基于子带编码的可实现视频ROI功能的改进精细可伸缩视频编码方法.在增强层编码中,对DCT残差系数重排形成小波子带,通过对系数位平面进行最大提升法实现ROI功能,利用SPIHT编码方法消除数据冗余.实验表明改进增强层编码方法实现ROI具有较好的效果,比原来的FGS增强层编码方法具有更高的编码效率.
【总页数】4页(P89-92)
【作者】徐向民;陈小川;周丰乐;全晓臣;陈育
【作者单位】华南理工大学,电子与信息学院,广东,广州,510640;华南理工大学,电子与信息学院,广东,广州,510640;华南理工大学,电子与信息学院,广东,广州,510640;华南理工大学,电子与信息学院,广东,广州,510640;华南理工大学,电子与信息学院,广东,广州,510640
【正文语种】中文
【中图分类】TN919.8
【相关文献】
1.精细可伸缩性视频编码的研究 [J], 韩涛;王群生;杨春玲
2.基于H.264的精细可伸缩性视频编码及实现 [J], 王朝华;余松煜;钱团结
3.一种改进的精细可伸缩视频编码方法 [J], 刘健;姜昱明
4.完全可伸缩视频编码的实现和改进 [J], 向友君;张克新;吴宗泽;谢胜利
5.精细空间可伸缩视频编码方案实现 [J], 南敬昌;王英博
因版权原因,仅展示原文概要,查看原文内容请购买。
基于ROI的压缩域多谱段遥感图像的检索
牛蕾;倪林;Miao;Yuan
【期刊名称】《中国图象图形学报》
【年(卷),期】2005(010)010
【摘要】根据JPEG2000对感兴趣区域优先编码,以及感兴趣区域的形状可随意选取的特点,提出了一种在JPEG2000压缩码流不完全解码的情况下,实现多谱段遥感图像感兴趣目标的检索方法,该方法利用了遥感图像的性质,根据例子图像的谱特征对感兴趣区域的内容进行分析,并设计了一套相似性度量的方法.实验结果表明,此方法有较理想的图像检索效果和很高的检索效率,解决了应用上对实时性的高要求与遥感图像库数据海量性之间的矛盾.
【总页数】6页(P1212-1217)
【作者】牛蕾;倪林;Miao;Yuan
【作者单位】中国科学技术大学电子工程与信息科学系,合肥,230026;中国科学技术大学电子工程与信息科学系,合肥,230026;School of Computer Science and Mathematics, Victoria University, Australia
【正文语种】中文
【中图分类】TP391.3
【相关文献】
1.基于频率域信息的遥感图像数据库水体检索 [J], 李轶鲲;胡玉玺;杨萍
2.基于小波域压缩感知的遥感图像超分辨算法 [J], 杨学峰;程耀瑜;王高
3.基于FFT稀疏压缩感知域内遥感图像融合 [J], 王番;魏超;刘智;付琼莹;李延杰
4.NSST域内基于压缩感知和PCNN的遥感图像融合 [J], 赵学军;刘静
5.基于广义RoI的遥感图像压缩 [J], 李峰;彭嘉雄;桑红石
因版权原因,仅展示原文概要,查看原文内容请购买。
一种自动感兴趣区域遥感图像压缩编码算法
王誉捧;刘厚泉
【期刊名称】《微计算机信息》
【年(卷),期】2010(026)021
【摘要】感兴趣区域(ROI)编码技术具有在不丢失重要信息的同时又有效地压缩数据量的特点,非常适用于遥感图像的压缩.根据遥感图像的特点,目标建筑等边缘特征明显,在小波变换前,采用Canny算子对原始图像进行边缘检测,无需人为参与而自动提取感兴趣区域.通过用不同的小波和比特率对感兴趣区域和背景区域分开进行小波变换和SPIHT编解码,进一步提高了感兴趣区图像压缩编码算法的压缩性能.另外,无需计算感兴趣区域掩膜,减少了编解码的时间和复杂度.
【总页数】3页(P218-219,177)
【作者】王誉捧;刘厚泉
【作者单位】221116,徐州,中国矿业大学计算机科学与技术学院;221116,徐州,中国矿业大学计算机科学与技术学院
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.一种半自动高分辨率遥感图像屋脊线提取算法——以徐州市郊区为例 [J], 王信信
2.一种与JPEG图像压缩编码结合的细胞自动机域盲水印算法 [J], 吴慧琳;周激流;
龚小刚;李炳法;文扬;尹皓
3.一种感兴趣区域寻优搜索的全自动图像拼接算法 [J], 王勇;何晓川;刘清华;许录平
4.一种遥感图像中多感兴趣区域的压缩算法 [J], 薄秋慧;龚育昌;岳丽华;李同钧
5.一种改进的Ribbon Snake遥感图像道路自动生成算法 [J], 胡阳;祖克举;李光耀;Kacem CHEHDI
因版权原因,仅展示原文概要,查看原文内容请购买。
三维图像的任意形状ROI小波零块压缩编码算法
吴家骥;吴成柯;吴振森
【期刊名称】《电子学报》
【年(卷),期】2006(034)010
【摘要】感兴趣区(ROI)编码是在JPEG2000中提出的一种重要的技术,然而JPEG2000算法却无法同时支持任意形状ROI和任意提升因子.本文提出了一种基于任意形状ROI和3D提升小波零块编码的3D体数据图像压缩算法.新的算法支持ROI内外从有损到无损的编码.一种简单的任意形状无损ROI掩码(Mask)生成方法被提出.考虑到3D子带的特点,我们采用改进的3DSPECK零块算法对变换后的系数进行编码.一些其它支持任意形状ROI编码的算法也在本文中被评估,试验显示本文算法具有更好的编码性能.
【总页数】5页(P1828-1832)
【作者】吴家骥;吴成柯;吴振森
【作者单位】西安电子科技大学智能信息处理研究所,陕西,西安,710071;西安电子科技大学ISN国家重点实验室,陕西,西安,710071;西安电子科技大学理学院,陕西,西安,710071
【正文语种】中文
【中图分类】TN919.81
【相关文献】
1.基于SPIHT的ROI图像压缩编码新算法 [J], 刘号;董育宁
2.基于小波变换的ROI图像压缩改进算法研究 [J], 王晓芳;邱书波;张绪光
3.基于分形与小波的图像ROI自动提取算法 [J], 吴志强;吴乐华;袁宝峰
4.基于小波与分形理论的图像压缩编码算法 [J], 张爱华;何雨虹;张璟
5.用整数小波和非均匀移位算法实现ROI编码 [J], 李天伟;贾传荧;李春鑫
因版权原因,仅展示原文概要,查看原文内容请购买。
I.J.Modern Education and Computer Science, 2011, 5, 33-39Published Online August 2011 in MECS (/)A New Diagnosis Loseless Compression Method for Digital Mammography Based on MultipleArbitrary Shape ROIs Coding FrameworkPing Xu1, Yan Zuo2, Wei-Dong Xu1, and Hua-Jie Chen21: College of Life Information Science & Instrument Engineering, Hangzhou Dianzi UniversityHangzhou, Zhejiang, ChinaE-MAIL:xuping@, temco@2: College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, ChinaE-MAIL:yzuo@, chj247@Abstract— With the rapidly growing use of digital images in medical archival and communication, image compression technology, especially diagnosis lossless compression technology, plays a more and more important role for medical applications. In this thesis, a novel diagnosis loseless compression algorithm is presented for digital mammography. The mammogram is divided into breast region, pectoral muscle and background using the CAD technology. Then mutiple arbitrary shape ROIs coding framework is used to compress the mammogram in which the breast region and pectoral muscle are compressed losslessly and lossily respectively, and the background can be discarded or compressed lossily as user’s will. Experimental results show that the proposed method offer potential advantage in medical applications of digital mammography compression.Index Terms—digital mammography; diagnosis lossless compression; CAD; ROII.I NTRODUCTIONIn the latest twenty years, the mammogram cancer has become one of the most dangerous malignant tumors of women whose death ratio has been more than forty percent. With the rapid development of living standard and requirements of health care, doctors advise women to take mamograms twice every year. It is estimated that approximately 10%-30% of breast cancer cases are missed by radiologists[1][2]. Computer-aid diagnosis (CAD) systems have been widely used to help improve the detection precision[5][6]. Diagnosis information of digital mammography need be saved losslessly in CAD. Without compression, the size of each digital mammogram can be more than 4 MB. This brings a huge challenge to the current medical system.Several lossless and lossy compression method have been presented to resolve this problem[7-18]. However, lossless compression has brought about at most only 4:1 compression ratio. Most lossy compression algorithms need take into account the special clinical issue to be dealt with[8-17]. Receiver operation characteristic(ROC) analysis on lossy compression show that it is promising to use lossy techniques in medical image compres- sion[8].In recent years, digital mammography compression has become a research focus in the field of medical image processing. Previous studies have evaluated, with CAD systems or observer’s performance studies, lossy compression in digital mammography. Good and Zheng assessed the detection of masses and clustered microcalcifications in JPEG mammograms by means of ROC study[9][10]. Kocsis found that compressed mammograms with wavelet transform algorithm at 40:1 compression ratio provided perceptually lossless compression[11]. Perlmutter et al. found no significant differences between original and compressed images at 80:1 compression ratio of 57 digital mammograms compressed with the set partitioning in hierarchical trees (SPIHT) algorithm[12]. Sung, Suryanarayanan and Penedo compared the performance of detection of primary signs of breast cancer using original images and images reconstructed at 20:1 compression ratio after JPEG2000 compression[13-15]. In a similar study, Suryanarayanan et al. obtained that JPEG2000 does not affect the CAD scheme for detecting masses, but detection cluster of microcalcifications is affected with compression at 30:1 compression ratio[16]. Idris found that false positive rate of microcalcifications was as high as 66 percent and some details with lessons ignored at 100:1 compression ratio after JPEG2000 compression, which may lead to unnecessary misdiagnosis[17]. Penedo found that detection of microcalcification clusters and masses was not failure when segmented breast region is compressed by JPEG2000 and OB-SPIHT (object-based set partitioning in hierarchical trees) at the compression ratio of 40:1 and 80:1[18].In this paper, a new diagnosis lossless compression algorithm based on CAD technology and mutiple arbitrary shape region of interests(ROIs) coding framework is proposed for digital mammography toThis work was supported by The National Natural Science Foundation of China (61004119, 60705016,30800248), and The Natural Science Foundation of Zhejiang Province (Y1080674)34A New Diagnosis Loseless Compression Method for Digital Mammography Based onMultiple Arbitrary Shape ROIs Coding FrameworkΩCoding Stream{}i Dmax _RFig.1 Flow diagram of mutiple arbitrary shape ROIs coding frameworkhigh compression ratio while maintaining the diagnosis information losslessly.This paper is organized with Section II presenting the proposed compression method. Section III provides the experimental results. Section IV draws the conclusion.II. P ROPOSED METHODA. Multiple, arbitrary shape ROIs coding framework Mutiple, arbitrary shape ROIs coding framework isgiven as shown in Figure.1. The coding framework can be summarized as follows: Firstly, the image plane is partitioned into multiple ROIs with different priorities which are marked by a gray mask, in which the higher gray value of the region, the higher priority of the ROIs will be; Secondly, different ROIs are transformed into independent region bit streams by the integer-to-integershape adaptive discrete wavelet transform(ISA-DWT)[17]in accordance with the order from highest to lowestpriority respectively;Lastly, ROIs with the same proprity are coding by themodified SPIHT algorithm [18] to generate the codingstream under their target distortion constraint and thetarget bit rate.1) Gray mask of ROIs:The image plane Ω is partitioned into N subsetsN i ROI i ,,1,L =.The N different ROIs need to be encoded with different priorities. The set of N prioritiescan be expressed as },,,,{321N ROI ROI ROI ROI P P P P H L = (1)where iROI P is the priority assigned to the i th ROI. The priority iROI P assigned to the i th ROI determinates the relative importance of the region in the entire image. A higher priority results in earlier isolated bit stream. Because different ROIs may have the same priority, M different priorities are produced as M P P P P <<<<L 321 (2)where iP is the i th priority. A gray mask is used toshow the priorities of different ROIs, in which the largergray value of the region means the higher priority. So the mask region of the background is black and those ROIs with the same priority have the same gray value.2) Estimation of the quality of the reconstructed ROIs: During the encoding process, for each priority, a separate distortion constraint is employedmax _i iD D ≤ (3)Where iD and max _i D are the distortion and the maximum allowable distortion of the i th priority, respectively. ROIs with the same priority has the same distortion constrains. ROIs with different priorities are separately represented by ISA-DWT to produce independent region bit streams. ISA-DWT maps the ROIs with the same priority into a set of transform coefficients defined over i Λ with Λ⊆ΛiwhereΛ is the wavelet coefficient plane corresponding to the conventional wavelet representation of image plane Ω. According to Parseval’s theorem of energy preservation, energy in the image domain is equal to that in its wavelet domain for the orthonormal wavelet transform, and almost equal for the biorthogonal wavelet transform. So the energy in the image domain can be estimated by that in its wavelet domain. We use orthonormal (or biorthogonal) wavelet basis which yields:i D D i Λ≈ (4) where i D Λis the distortion of ROIs, which can bemeasured by parameters such as MSE, with the i th priority measured in the wavelet domain. Therefore, wecan use orthonormal (or biorthogonal) wavelet basis toobtain the estimated quality of the reconstructed ROI by measuring the region distortion without addition computational cost of obtaining the reconstructed image. The wavelet coefficients are encoded by the modified SPITH with an additional task for the encoder to get the reconstructed wavelet coefficients. For the value of nwhen a coordinate is moved to the LSP, it is known that 12],[2+<≤n n j i c , where ][⋅c is the waveletcoefficient of the original image.Plus the sign bit and set the estimated reconstructedwavelet coefficient nj i c25.1],[ˆ×±=, where ][ˆ⋅c is the estimated wavelet coefficient of reconstructedimage. During the refinement pass, ],[ˆj i cis added or subtracted by 12−n when it inputs the bits of the binaryrepresentation of ],[j i c .3) Arbitarary shape ROI lossy and lossless compression algorithmA gray mask is induced to mark the priorities of ROIs. The priorities decide the order of the processing for coefficients of the ROIs at the encoder and the decoder. Those ROIs with the same priority are transformed as one ROI. Because of its good coding performance for lossy and lossless compression of arbitrary shape region, the ISA-DWT is used to transform arbitarary shape ROI into independent region bit streams. Then the modified SPIHT algorithm is used to coding each region to generate coding stream under its target distortion constraint and the target bit rate. So each ROI can achieve its target reconstructed quality by estimating the distortion of its wavelet coefficients in the encoder.B. The proposed diagnosis loseless compressionmethod for digital mammographyThe diagram of the proposed compression scheme, which mainly includes CAD and multiple arbitrary ROIs coding framework, is shown in Fig.2. The original mammogram is divided into breast region, pectoral muscle and background by the CAD technology. CAD extracts breast at first and then pectoral muscle to get the priority mask in which region of higher priority is marked with higher gray value. Then mutiple arbitrary shape ROIs coding framework is used to coding all ROIs. Specifically, the breast region is compressed losslessly by arbitrary shape ROI compression algorithm; thepectoral muscle region is compressed lossily under givendistortion constraint; the background can be discarded or compressed lossily as user’s will.C. Extracting the breast regionThe breast is extracted by a four-step method [21] as Fig.3 shows.Step 1: Iterative thresholding is used to seperate breast from the background and line scan to locate the breast;Step 2: Column scan and utilizing the least square estimation(LSE) to detect the orientation of horizontal frame;Step 3: Elastic thread technique is applied to cut the conglutination of the breast and the frame;Step 4: Watershed method is used to refine the breast boundary;D. Segmenting the pectoral muscleA model-based algorithm [22] is used to segment the pectoral muscle from the breast as Fig.4 shows. Two contour line models are set up to describe the intensity distribution of surrounding area of pectoral muscle. After the medilateral oblique(MLO) of each mammogram is adjusted to make pectoral muscle at the same position such as the lower right corner, a series of ROIs with different sizes are applied upon the region surrounding the pectoral muscle to obtain the optimal threshold and mean square error (MSE) curve. The model type of current pectoral muscle region can be determined according to MSE curve shape, and the optimal threshold of the pectoral muscle boundary be computed by its model’s character. After thresholding, the boundary of main threshold region is extracted, then zonal hough transform is used to approach the edge of the pectoral muscle in optimal ROI. The maximum gradient of the optimal ROI can be got by line scan and the second fitting line be used to form a two-stage fitting line by zonal hough transform. At last, elastic thread and polygon approaching techniques are carried out to refineits boundary.The intensity distribution of breast and pectoral muscle is quite different for different mammograms. Two models with different characters are used to avoid the difficulties of segmentation pectoral muscle as the traditional approach meets.E. compression algorithm for breast region andpectoral muscleBecause breast region contains important diagnosis information, it needs to be compressed losslessly. Breast region is transformed by ISA-DWT, and then encoded by the modified SPIHT to produce the ultimate coding stream, as Fig.5 shows.For pectoral muscle region, it is not quite possible that there is diagnosis information in it. So it can be compressed lossy with relatively high compression ratio, as Fig.6 shows. It subjects to the following restrict condition:D < D max (5)Where D is the reconstructed distortion in wavelet domain and D max is the target one.Fig.3 Flow diagram of extracting the breast regionM ammogramFig.4 Flow diagram of segmenting the pectoral muscleFigure 5. Flow diagram of ROI coding of breast regionDFig.6 Flow diagram of ROI coding of pectoral muscleIII. Experimental resultsA set of mammograms are tested with the proposed method. Fig.7 shows the original mammogram of 1760×2304 pixels at 8 bit. After extracting the breast and pectoral muscle, the mask is obtained to show different regions, in which larger gray value means higher priority as Fig.8 shows. The integer-to-integer 5/3 and 9/7-F wavelet are used in ISA-DWT. The distortion is evaluated by means of PSNR in wavelet domain. The target PSNR is set as 36dB and the background is discarded completely. Table I gives the compression ratio comparison for different compression methods, where lossless compression is adopted in JPEG2000. It is evident that integer-to-integer 5/3 and 9/7-F wavelet can achieve better compression efficiency than JPEG2000 and 5/3 wavelet shows the best one. Fig.9 shows the reconstructed mammogram for integer-to-integer 5/3 wavelet. The ROI with lessons marked in Fig.6 is magnified in Fig.10(a). The reconstructed region with integer-to-integer 5/3 wavelet shows completely the same effect as the original one in Fig.10, which means that the proposed method can achieve quite good compression performance while not bringing any diagnosis information loss.Fig.7 The original mammogramFig.8 mask after extracting the breast and pectoral muscleTABLE I.COMPRESSION RATIO COMPARISONJPEG2000 IWT-5/3IWT-9/7-FCompression ratio2.8386.4124.641Fig.9 the reconstructed mammogram(a) The original region (b) the reconstructed regionFig.10 ROI containing lessonsIV.C ONCLUSIONIn this paper, the CAD technology and multiple arbitrary shape ROIs compression framework are combined to realize diagnosis lossless compression for digital mammography. Primary experimental results show quite good compression efficiency while keeping the diagnosis information lossless, especially for integer-to-integer 5/3 wavelet. Motivated by the results obtained here, our next study is going to carry out the clinical evaluation of the proposed method for digital mammography.R EFERENCES[1] R. G. Bird, T. W. Wallace, and B. C. Yankaskas, Analysisof cancers missed at screening mammography, Radiology,vol. 184, pp. 613–617,1992.[2] H. Burhenne, L. Burhenne, F. Goldberg, T. Hislop, A. J.Worth, P. M.Rebbeck, and L. Kan, Interval breast cancers in the screening mammographyprogram of British Columbia: Analysis and classification, Am. J. Roentgenol.,vol. 162, pp. 1067–1071, 1994.[3] K. Doi, H. MacMahon, S. Katsuragawa, R. M. Nishikawa,and Y. Jiang, Computer-aided diagnosis in radiology: Potential and pitfall, Eur. J.Radiol., vol. 31, pp. 97–109, 1999.[4] H. Li, K. J. Liu, and S. Lo, Fractal modeling andsegmentation for the enhancement of microcalcifications in digital mammograms, IEEE Trans. Med. Imag., vol. 16, no.6, pp. 785–798, Dec. 1997.[5] Bradley J. Erickson M D, Irreversible Compression ofMedical Images, J. Digit. Imag., 15(1): 5-14,2002.[6] Ishigaki T, Sakuma S, Ikeda M et al, Clinical evaluation ofirreversible image compression: Analysis of chest imaging with computed radiography, J. Radiol., 175:739–743, 1990. [7] Slone R M, Foos D H, Whiting B R et al, Assessment ofvisually lossless irreversible image compression: Comparison of three methods by using an image comparison workstation, Radiology-Computer Applications, 215(2):543–553, 2000.[8] Penedo M, Pearlman W A, Tahoces P G et al, Region-basedwavelet coding methods for digital mammography. IEEE Trans Med Imaging, 22:1288–1296, 2003.[9] Good W F, Sumkin J H, Ganott M et al, Detection ofmasses and clustered microcalcifications on data compressed mammograms: an observer performance study.AJR Am J Roentgenol, 175:1573–1576, 2000.[10] Zheng B, Sumkin J H, Good W F et al, Applyingcomputer-assisted detection schemes to digitized mammograms after JPEG data compression: an assessment. Acad Radiol, 7:595–602, 2000.[11] Kocsis O, Costaridou L, Varaki L et al, Visually losslessthreshold determination for microcalcification detection inwavelet compressed mammograms. Eur Radiol, 13: 2390–2396, 2003.[12] Perlmutter S, Cosman P, Gray Ret al, Image quality inlossy compressed digital mammograms. Signal Process,59:189–210,1997.[13] Sung M M, Kim H J, Kim E K et al, Clinical evaluation ofJPEG2000 compression for digital mammography. IEEETrans Nucl Sci, 49: 827–832, 2002.[14] Suryanarayanan S, Karellas A, Vedantham S et al, Aperceptual evaluation of JPEG 2000 image compressionfor digital mammography: contrast detail characteristics. JDigit Imaging, 17:64–70, 2004.[15] Penedo M, Carreira J M, Tahoces P G et al, Effects ofJPEG2000 data compression on an automated system fordetecting clustered microcalcifications in digital mammograms, IEEE Trans Inf Technol Biomed, 10(2):354–361, 2006.[16] Suryanarayanan S, Karellas A, Vedantham S et al,Detection of Simulated Lesions on Data compressedDigital Mammograms, Radiology, 236:31–36, 2005. [17] Idris F M, AlZubaidi N I, Detection of breast cancer in theJPEG2000 domain, Trans Eng, Comput Technol, 8:1305-5313, 2005.[18] Penedo M, Souto M, Tahoces P G et al, FROC evaluationof JPEG2000 and object-based SPIHT lossy compressionon digitized mammograms, Radiology, 237: 450–457,2005.[19] Ahmed Abu-Hajar and Ravi Sankar, “Integer-to-integershape adaptive wavelet transform for region of interestimage coding”, Digital Signal Processing Workshop,pp:94 – 97, Oct. 2002.[20] Zhongmin Liu et al., “Cascaded differential and waveletcompression of chromosome images”, IEEE Transactionon Biomedical Engineering, 49(4),pp. 372-383, Apr.2002.[21] Xu W, Study on computer-aided diagnosis of ammograms,Ph.D. dissertation, Dept. Biomedical Engineering,Zhejiang Univ, Hangzhou, China, 2006. (in Chinese) [22] Xu W, Xia S, A model based algorithm to segment thepectoral muscle in mammograms, in proc IEEE Int.Neural Networks & Signal Processing Conf, pp.1163-1169, Dec 2003.Ping Xu was born in 1978. He received the Ph.D degree in control theory and control engineering from Zhejiang University, Hangzhou, China, in 2006. He has been an Associate professor of College of Life Information Science & Instrument Engineering of Hangzhou Dianzi University since 2008. His current research interest include image compression, compressive sensing, and biomedical image processing.Yan Zuo was born in 1980. She received the Ph.D degree in control theory and control engineering from Shanghai Jiao Tong University, Shanghai, China, in 2007. She has been an Associate professor of College of automation of Hangzhou Dianzi University since 2009.Wei-Dong Xu was born in 1977. He received the Ph.D degree in biomedical engineering from Zhejiang University, Hangzhou, China, in 2006. He has been an Associate professor of College of Life Information Science & Instrument Engineering of Hangzhou Dianzi University since 2008. His current research interest include computer-aided diagnosis, and biomedical image processing.Hua-Jie Chen was born in 1978. He received the Ph.D degree in control theory and control engineering from Zhejiang University, Hangzhou, China, in 2006. He has been an Associate professor of College of Life Information Science & Instrument Engineering of Hangzhou Dianzi University since 2008. His current research interest include image processing and computer vision.。
ROI的海洋监视卫星遥感图像压缩算法隋玉萍;何昕;魏仲慧【期刊名称】《光学精密工程》【年(卷),期】2008(016)007【摘要】针对海洋监视卫星遥感图像的特点,提出了一种基于感兴趣区域(ROI)的自适应海洋遥感图像近无损压缩算法.对图像进行了形态Harr小波最大提升后,在一个分辨率低的高频子带中利用阈值和八邻域连通分析方法检测出目标,使用外接矩形与环面的交集来描述ROI,其他分辨率高频子带的ROI通过Mosaic放大得到.高频子带中的ROI采用Rice无损熵编码方法,非ROI进行比特平面编码.低频子带采用DPCM和Rice结合的无损编码方法.实验结果表明,该算法能有效地划分ROI,且没有明显的ROI分割痕迹.在中低比特率时,本文算法的峰值信噪比(PSNR)比JPEG2000的高2~5 dB,在高比特率时,两者的PSNR均在45 dB以上.本文算法计算复杂度低,易于硬件实现,且具有自适应性和数据包独立的优点,适用于海洋监视卫星遥感图像的近无损压缩.【总页数】7页(P1323-1329)【作者】隋玉萍;何昕;魏仲慧【作者单位】中国科学院,长春光学精密机械与物理研究所,吉林,长春,130033;中国科学院,研究生院,北京,100039;中国科学院,长春光学精密机械与物理研究所,吉林,长春,130033;中国科学院,长春光学精密机械与物理研究所,吉林,长春,130033【正文语种】中文【中图分类】TP751【相关文献】1.面向海洋机动目标跟踪监视的卫星重构组网优化与仿真 [J], 赵程亮;张占月;李志亮;刘瑶2.中国海洋一号卫星遥感图像GPS地理定位算法研究与实现 [J], 孙从容3.海洋监视卫星在海洋科技中日显重要 [J],4.浅谈大幅面海洋卫星遥感图像的目标检测技术 [J], 许欣欣;秦超5.海洋卫星遥感图像对比度特征同步检测方法研究 [J], 王小芬因版权原因,仅展示原文概要,查看原文内容请购买。
基于ROI自动提取的SAR图像压缩张军;黄英君;高贵;李国辉【期刊名称】《信号处理》【年(卷),期】2009(25)1【摘要】在机载SAR应用中,基于感兴趣区域(ROI)保护的有损压缩是解决传输实时性的有效方法,而ROI的自动提取则是制约系统整体性能的关键环节.本文提出了一种基于ROI自动提取与保护的SAR图像压缩策略,首先将图像进行分解,然后在结构分量内对包含潜在目标的区域进行检测,生成敏感目标区域掩码,然后对图像的结构和纹理分量分别使用基于小波和多尺度几何分析的方法来进行压缩编码,在压缩时对ROI区域进行保护性的低损压缩,对背景杂波区域进行有损压缩.本文方法针对航拍SAR图像中易于在压缩中产生模糊的小型人造目标区域进行保护性压缩.在同样的码率条件下,恢复后的图像与标准的JPEG2000算法相比具有更好的视觉效果,适用于依赖于人眼判读与反应能力的人在回路应用.【总页数】5页(P1-5)【作者】张军;黄英君;高贵;李国辉【作者单位】国防科技大学,信息系统与管理学院系统工程系,湖南长沙,410073;国防科技大学,信息系统与管理学院系统工程系,湖南长沙,410073;国防科技大学,信息系统与管理学院系统工程系,湖南长沙,410073;国防科技大学,信息系统与管理学院系统工程系,湖南长沙,410073【正文语种】中文【中图分类】TP391【相关文献】1.基于ROI的图像压缩算法研究 [J], 李靖2.基于分形与小波的图像ROI自动提取算法 [J], 吴志强;吴乐华;袁宝峰3.基于细胞显微图像特征的ROI自动提取算法 [J], 黄良孟;孙玲玲;李训根;周磊4.基于ROI自适应的JPEG2000图像压缩算法 [J], 孙佳全5.基于Hu矩模板匹配和目标跟踪的ROI实时自动提取 [J], 姚卫杰;朱华炳;殷玉龙因版权原因,仅展示原文概要,查看原文内容请购买。
一种基于ROI区域生长的医学图像压缩方法
孙晓平;吴健;马建林;崔志明
【期刊名称】《计算机应用与软件》
【年(卷),期】2009(26)3
【摘要】为了克服传统基于ROI的压缩方法提高不了含有狭长的不规则ROI图像的压缩比等缺点,提出一种基于ROI区域生长的医学图像压缩方法.该方法使用区域生长的方法,将医学图像的ROI分割提取后,对ROI和非感兴趣区域(RONI)采用无损和有损相结合的方法,较好地解决了医学图像的高压缩比和高质量的矛盾,缩短了压缩时间.同时该方法还提供了良好的人机交互方式,便于操作,并能够很好地适用于其他场合的压缩.
【总页数】3页(P26-28)
【作者】孙晓平;吴健;马建林;崔志明
【作者单位】苏州大学智能信息处理及应用研究所,江苏,苏州,215006;苏州大学智能信息处理及应用研究所,江苏,苏州,215006;苏州大学智能信息处理及应用研究所,江苏,苏州,215006;苏州大学智能信息处理及应用研究所,江苏,苏州,215006
【正文语种】中文
【中图分类】TP3
【相关文献】
1.一种基于ROI的自适应3维医学图像插值方法 [J], 马建林;崔志明;龚声蓉;吴健;叶峰
2.一种基于自适应预测的医学图像高效无损压缩方法 [J], 张晓玲;沈兰荪
3.一种基于上下文的医学图像ROI分类方法 [J], 郭乔进;李宁;谢俊元
4.一种适用于医学图像ROI编码的改进SPIHT算法 [J], 徐向民;邢晓芬;刘伟;全晓臣
5.一种基于随机回归辨识理论的医学图像无损压缩方法 [J], 刘文胜;邓振生;刘新明;蒋大宗
因版权原因,仅展示原文概要,查看原文内容请购买。
一种支持干涉多光谱图像ROI的压缩编码方法
肖江;邓家先;吴成柯;相里斌;黄鸣
【期刊名称】《光子学报》
【年(卷),期】2003(32)4
【摘要】提出了一种基于EBCOT (率失真优化截取内嵌码块编码 )算法的矩形ROI(感兴趣区域 )编码的干涉多光谱卫星遥感图像压缩方法该方法不需要对小波域的系数进行提升 ,而是在码流组织时通过对多光谱区域的误差跟踪提高恢复图像的质量误差的跟踪完全是自适应的 ,可以根据用户给定的恢复图像多光谱区域的峰值信噪比最低要求自动实现码流的组织 ,解码器不需要知道该图像是否存在ROI ,而且该方法保留了EBCOT的优良特性实验结果表明。
【总页数】4页(P481-484)
【关键词】干涉多光谱图像;EBCOT;ROI;航天遥感;图像压缩;率失真优化截取内嵌码块编码算法;图像编码
【作者】肖江;邓家先;吴成柯;相里斌;黄鸣
【作者单位】西安电子科技大学综合业务网国家重点实验室;中国科学院西安光学精密机械研究所
【正文语种】中文
【中图分类】V443.5;TN919.81
【相关文献】
1.基于帧间预测和联合优化的干涉多光谱图像压缩感知重建算法 [J], 孔繁锵;井庆丰;计振兴
2.多光谱遥感图像压缩系统中的ROI编码方法 [J], 肖江;吴成柯;邓家先;李云松
3.基于运动估计和ROI编码的干涉多光谱图像压缩 [J], 雷杰;李云松;周有喜;吴成柯
4.一种新的高效干涉多光谱图像压缩算法 [J], 雷杰;周有喜;吴成柯;李云松;孔繁锵
5.一种干涉高光谱图像的3DSPIHT结合ROI压缩算法 [J], 马冬梅;马彩文;王阿妮因版权原因,仅展示原文概要,查看原文内容请购买。
基于ROI区域的极低比特率编码算法
刘剑秋;阮秋琦
【期刊名称】《信号处理》
【年(卷),期】2003(019)0z1
【摘要】在极低比特率视频编码算法中,对感兴趣区域(ROI)优先进行编码能够获得更好的重建图像质量.在本文中,我们讨论了一种基于彩色直方图的人脸跟踪技术,它能够在头肩像图像序列中简单有效的准确定位ROI区域(人脸区域),并且,本文还提出了一种被称为小波块集合划分(SPWB)的小波编码算法用来对视频序列进行帧内编码,编码试验的结果表明,在同样的压缩比下,SPWB编码器能够获得比H.26L帧内编码器更好的重建图像质量.
【总页数】4页(P203-206)
【作者】刘剑秋;阮秋琦
【作者单位】北方交通大学信息科学研究所,北京,100044;北方交通大学信息科学研究所,北京,100044
【正文语种】中文
【中图分类】TN91
【相关文献】
1.一种适于ROI区域的图像编码算法的研究 [J], 席志红;许新利;刘利彬;王姜铂
2.JPEG2000标准中ROI感兴趣区域编码的改进算法 [J], 康慧斌;吴文
3.基于BWT和FVQ的极低比特率图像编码算法 [J], 王磊;戚飞虎;赵雪春
4.ROI感兴趣区域编码算法与仿真分析 [J], 艾娟
5.PhotoShop与ROI感兴趣区域编码算法的融合应用实践 [J], 向世前
因版权原因,仅展示原文概要,查看原文内容请购买。