Web caching and zipf-like distributions Evidence and implications
- 格式:pdf
- 大小:1.18 MB
- 文档页数:9
Vol.48,No.6Jun. 202 1第48卷第6期2 0 2 1年6月湖南大学学报)自然科学版)Journal of Hunan University (Natural Sciences )文章编号:1674-2974(2021 )06-0058-09 DOI : 10.16339/ki.hdxbzkb.2021.06.009深度优先局艺B 聚合哈希龙显忠g,程成李云12(1.南京邮电大学计算机学院,江苏南京210023;2.江苏省大数据安全与智能处理重点实验室,江苏南京210023)摘 要:已有的深度监督哈希方法不能有效地利用提取到的卷积特征,同时,也忽视了数据对之间相似性信息分布对于哈希网络的作用,最终导致学到的哈希编码之间的区分性不足.为了解决该问题,提出了一种新颖的深度监督哈希方法,称之为深度优先局部聚合哈希(DeepPriority Local Aggregated Hashing , DPLAH ). DPLAH 将局部聚合描述子向量嵌入到哈希网络 中,提高网络对同类数据的表达能力,并且通过在数据对之间施加不同权重,从而减少相似性 信息分布倾斜对哈希网络的影响.利用Pytorch 深度框架进行DPLAH 实验,使用NetVLAD 层 对Resnet18网络模型输出的卷积特征进行聚合,将聚合得到的特征进行哈希编码学习.在CI-FAR-10和NUS-WIDE 数据集上的图像检索实验表明,与使用手工特征和卷积神经网络特征的非深度哈希学习算法的最好结果相比,DPLAH 的平均准确率均值要高出11%,同时,DPLAH 的平均准确率均值比非对称深度监督哈希方法高出2%.关键词:深度哈希学习;卷积神经网络;图像检索;局部聚合描述子向量中图分类号:TP391.4文献标志码:ADeep Priority Local Aggregated HashingLONG Xianzhong 1,覮,CHENG Cheng1,2,LI Yun 1,2(1. School of Computer Science & Technology ,Nanjing University of Posts and Telecommunications ,Nanjing 210023, China ;2. Key Laboratory of Jiangsu Big Data Security and Intelligent Processing ,Nanjing 210023, China )Abstract : The existing deep supervised hashing methods cannot effectively utilize the extracted convolution fea tures, but also ignore the role of the similarity information distribution between data pairs on the hash network, result ing in insufficient discrimination between the learned hash codes. In order to solve this problem, a novel deep super vised hashing method called deep priority locally aggregated hashing (DPLAH) is proposed in this paper, which em beds the vector of locally aggregated descriptors (VLAD) into the hash network, so as to improve the ability of the hashnetwork to express the similar data, and reduce the impact of similarity distribution skew on the hash network by im posing different weights on the data pairs. DPLAH experiment is carried out by using the Pytorch deep framework. Theconvolution features of the Resnet18 network model output are aggregated by using the NetVLAD layer, and the hashcoding is learned by using the aggregated features. The image retrieval experiments on the CIFAR-10 and NUS - WIDE datasets show that the mean average precision (MAP) of DPLAH is11 percentage points higher than that of* 收稿日期:2020-04-26基金项目:国家自然科学基金资助项目(61906098,61772284),National Natural Science Foundation of China(61906098, 61772284);国家重 点研发计划项目(2018YFB 1003702) , National Key Research and Development Program of China (2018YFB1003702)作者简介:龙显忠(1985—),男,河南信阳人,南京邮电大学讲师,工学博士,硕士生导师覮 通信联系人,E-mail : *************.cn第6期龙显忠等:深度优先局部聚合哈希59non-deep hash learning algorithms using manual features and convolution neural network features,and the MAP of DPLAH is2percentage points higher than that of asymmetric deep supervised hashing method.Key words:deep Hash learning;convolutional neural network;image retrieval;vector of locally aggregated de-scriptors(VLAD)随着信息检索技术的不断发展和完善,如今人们可以利用互联网轻易获取感兴趣的数据内容,然而,信息技术的发展同时导致了数据规模的迅猛增长.面对海量的数据以及超大规模的数据集,利用最近邻搜索[1(Nearest Neighbor Search,NN)的检索技术已经无法获得理想的检索效果与可接受的检索时间.因此,近年来,近似最近邻搜索[2(Approximate Nearest Neighbor Search,ANN)变得越来越流行,它通过搜索可能相似的几个数据而不再局限于返回最相似的数据,在牺牲可接受范围的精度下提高了检索效率.作为一种广泛使用的ANN搜索技术,哈希方法(Hashing)[3]将数据转换为紧凑的二进制编码(哈希编码)表示,同时保证相似的数据对生成相似的二进制编码.利用哈希编码来表示原始数据,显著减少了数据的存储和查询开销,从而可以应对大规模数据中的检索问题.因此,哈希方法吸引了越来越多学者的关注.当前哈希方法主要分为两类:数据独立的哈希方法和数据依赖的哈希方法,这两类哈希方法的区别在于哈希函数是否需要训练数据来定义.局部敏感哈希(Locality Sensitive Hashing,LSH)[4]作为数据独立的哈希代表,它利用独立于训练数据的随机投影作为哈希函数•相反,数据依赖哈希的哈希函数需要通过训练数据学习出来,因此,数据依赖的哈希也被称为哈希学习,数据依赖的哈希通常具有更好的性能.近年来,哈希方法的研究主要侧重于哈希学习方面.根据哈希学习过程中是否使用标签,哈希学习方法可以进一步分为:监督哈希学习和无监督哈希学习.典型的无监督哈希学习包括:谱哈希[5(Spectral Hashing,SH);迭代量化哈希[6](Iterative Quantization, ITQ);离散图哈希[7(Discrete Graph Hashing,DGH);有序嵌入哈希[8](Ordinal Embedding Hashing,OEH)等.无监督哈希学习方法仅使用无标签的数据来学习哈希函数,将输入的数据映射为哈希编码的形式.相反,监督哈希学习方法通过利用监督信息来学习哈希函数,由于利用了带有标签的数据,监督哈希方法往往比无监督哈希方法具有更好的准确性,本文的研究主要针对监督哈希学习方法.传统的监督哈希方法包括:核监督哈希[9](Supervised Hashing with Kernels,KSH);潜在因子哈希[10](Latent Factor Hashing,LFH);快速监督哈希[11](Fast Supervised Hashing,FastH);监督离散哈希[1(Super-vised Discrete Hashing,SDH)等.随着深度学习技术的发展[13],利用神经网络提取的特征已经逐渐替代手工特征,推动了深度监督哈希的进步.具有代表性的深度监督哈希方法包括:卷积神经网络哈希[1(Convolutional Neural Networks Hashing,CNNH);深度语义排序哈希[15](Deep Semantic Ranking Based Hash-ing,DSRH);深度成对监督哈希[16](Deep Pairwise-Supervised Hashing,DPSH);深度监督离散哈希[17](Deep Supervised Discrete Hashing,DSDH);深度优先哈希[18](Deep Priority Hashing,DPH)等.通过将特征学习和哈希编码学习(或哈希函数学习)集成到一个端到端网络中,深度监督哈希方法可以显著优于非深度监督哈希方法.到目前为止,大多数现有的深度哈希方法都采用对称策略来学习查询数据和数据集的哈希编码以及深度哈希函数.相反,非对称深度监督哈希[19](Asymmetric Deep Supervised Hashing,ADSH)以非对称的方式处理查询数据和整个数据库数据,解决了对称方式中训练开销较大的问题,仅仅通过查询数据就可以对神经网络进行训练来学习哈希函数,整个数据库的哈希编码可以通过优化直接得到.本文的模型同样利用了ADSH的非对称训练策略.然而,现有的非对称深度监督哈希方法并没有考虑到数据之间的相似性分布对于哈希网络的影响,可能导致结果是:容易在汉明空间中保持相似关系的数据对,往往会被训练得越来越好;相反,那些难以在汉明空间中保持相似关系的数据对,往往在训练后得到的提升并不显著.同时大部分现有的深度监督哈希方法在哈希网络中没有充分有效利用提60湖南大学学报(自然科学版)2021年取到的卷积特征.本文提出了一种新的深度监督哈希方法,称为深度优先局部聚合哈希(Deep Priority Local Aggregated Hashing,DPLAH).DPLAH的贡献主要有三个方面:1)DPLAH采用非对称的方式处理查询数据和数据库数据,同时DPLAH网络会优先学习查询数据和数据库数据之间困难的数据对,从而减轻相似性分布倾斜对哈希网络的影响.2)DPLAH设计了全新的深度哈希网络,具体来说,DPLAH将局部聚合表示融入到哈希网络中,提高了哈希网络对同类数据的表达能力.同时考虑到数据的局部聚合表示对于分类任务的有效性.3)在两个大型数据集上的实验结果表明,DPLAH在实际应用中性能优越.1相关工作本节分别对哈希学习[3]、NetVLAD[20]和Focal Loss[21]进行介绍.DPLAH分别利用NetVLAD和Focal Loss提高哈希网络对同类数据的表达能力及减轻数据之间相似性分布倾斜对于哈希网络的影响. 1.1哈希学习哈希学习[3]的任务是学习查询数据和数据库数据的哈希编码表示,同时要满足原始数据之间的近邻关系与数据哈希编码之间的近邻关系相一致的条件.具体来说,利用机器学习方法将所有数据映射成{0,1}r形式的二进制编码(r表示哈希编码长度),在原空间中不相似的数据点将被映射成不相似)即汉明距离较大)的两个二进制编码,而原空间中相似的两个数据点将被映射成相似(即汉明距离较小)的两个二进制编码.为了便于计算,大部分哈希方法学习{-1,1}r形式的哈希编码,这是因为{-1,1}r形式的哈希编码对之间的内积等于哈希编码的长度减去汉明距离的两倍,同时{-1,1}r形式的哈希编码可以容易转化为{0,1}r形式的二进制编码.图1是哈希学习的示意图.经过特征提取后的高维向量被用来表示原始图像,哈希函数h将每张图像映射成8bits的哈希编码,使原来相似的数据对(图中老虎1和老虎2)之间的哈希编码汉明距离尽可能小,原来不相似的数据对(图中大象和老虎1)之间的哈希编码汉明距离尽可能大.h(大象)=10001010h(老虎1)=01100001h(老虎2)=01100101相似度尽可能小相似度尽可能大图1哈希学习示意图Fig.1Hashing learning diagram1.2NetVLADNetVLAD的提出是用于解决端到端的场景识别问题[20(场景识别被当作一个实例检索任务),它将传统的局部聚合描述子向量(Vector of Locally Aggregated Descriptors,VLAD[22])结构嵌入到CNN网络中,得到了一个新的VLAD层.可以容易地将NetVLAD 使用在任意CNN结构中,利用反向传播算法进行优化,它能够有效地提高对同类别图像的表达能力,并提高分类的性能.NetVLAD的编码步骤为:利用卷积神经网络提取图像的卷积特征;利用NetVLAD层对卷积特征进行聚合操作.图2为NetVLAD层的示意图.在特征提取阶段,NetVLAD会在最后一个卷积层上裁剪卷积特征,并将其视为密集的描述符提取器,最后一个卷积层的输出是H伊W伊D映射,可以将其视为在H伊W空间位置提取的一组D维特征,该方法在实例检索和纹理识别任务[23別中都表现出了很好的效果.NetVLAD layer(KxD)x lVLADvectorh------->图2NetVLAD层示意图⑷Fig.2NetVLAD layer diagram1201NetVLAD在特征聚合阶段,利用一个新的池化层对裁剪的CNN特征进行聚合,这个新的池化层被称为NetVLAD层.NetVLAD的聚合操作公式如下:NV((,k)二移a(x)(血⑺-C((j))(1)i=1式中:血(j)和C)(j)分别表示第i个特征的第j维和第k个聚类中心的第j维;恣&)表示特征您与第k个视觉单词之间的权.NetVLAD特征聚合的输入为:NetVLAD裁剪得到的N个D维的卷积特征,K个聚第6期龙显忠等:深度优先局部聚合哈希61类中心.VLAD的特征分配方式是硬分配,即每个特征只和对应的最近邻聚类中心相关联,这种分配方式会造成较大的量化误差,并且,这种分配方式嵌入到卷积神经网络中无法进行反向传播更新参数.因此,NetVLAD采用软分配的方式进行特征分配,软分配对应的公式如下:-琢II Xi-C*II 2=—e(2)-琢II X-Ck,II2k,如果琢寅+肄,那么对于最接近的聚类中心,龟&)的值为1,其他为0.aS)可以进一步重写为:w j X i+b ka(x i)=—e-)3)w J'X i+b kk,式中:W k=2琢C k;b k=-琢||C k||2.最终的NetVLAD的聚合表示可以写为:N w;x+b kv(j,k)=移—----(x(j)-Ck(j))(4)i=1w j.X i+b k移ek,1.3Focal Loss对于目标检测方法,一般可以分为两种类型:单阶段目标检测和两阶段目标检测,通常情况下,两阶段的目标检测效果要优于单阶段的目标检测.Lin等人[21]揭示了前景和背景的极度不平衡导致了单阶段目标检测的效果无法令人满意,具体而言,容易被分类的背景虽然对应的损失很低,但由于图像中背景的比重很大,对于损失依旧有很大的贡献,从而导致收敛到不够好的一个结果.Lin等人[21]提出了Focal Loss应对这一问题,图3是对应的示意图.使用交叉爛作为目标检测中的分类损失,对于易分类的样本,它的损失虽然很低,但数据的不平衡导致大量易分类的损失之和压倒了难分类的样本损失,最终难分类的样本不能在神经网络中得到有效的训练.Focal Loss的本质是一种加权思想,权重可根据分类正确的概率p得到,利用酌可以对该权重的强度进行调整.针对非对称深度哈希方法,希望难以在汉明空间中保持相似关系的数据对优先训练,具体来说,对于DPLAH的整体训练损失,通过施加权重的方式,相对提高难以在汉明空间中保持相似关系的数据对之间的训练损失.然而深度哈希学习并不是一个分类任务,因此无法像Focal Loss一样根据分类正确的概率设计权重,哈希学习的目的是学到保相似性的哈希编码,本文最终利用数据对哈希编码的相似度作为权重的设计依据具体的权重形式将在模型部分详细介绍.正确分类的概率图3Focal Loss示意图[21】Fig.3Focal Loss diagram12112深度优先局部聚合哈希2.1基本定义DPLAH模型采用非对称的网络设计.Q={0},=1表示n张查询图像,X={X i}m1表示数据库有m张图像;查询图像和数据库图像的标签分别用Z={Z i},=1和Y ={川1表示;i=[Z i1,…,zj1,i=1,…,n;c表示类另数;如果查询图像0属于类别j,j=1,…,c;那么z”=1,否则=0.利用标签信息,可以构造图像对的相似性矩阵S沂{-1,1}"伊”,s”=1表示查询图像q,和数据库中的图像X j语义相似,S j=-1表示查询图像和数据库中的图像X j语义不相似.深度哈希方法的目标是学习查询图像和数据库中图像的哈希编码,查询图像的哈希编码用U沂{-1,1}"",表示,数据库中图像的哈希编码用B沂{-1,1}m伊r表示,其中r表示哈希编码的长度.对于DPLAH模型,它在特征提取部分采用预训练好的Resnet18网络[25].图4为DPLAH网络的结构示意图,利用NetVLAD层聚合Resnet18网络提取到的卷积特征,哈希编码通过VLAD编码得到,由于VLAD编码在分类任务中被广泛使用,于是本文将NetVLAD层的输出作为分类任务的输入,利用图像的标签信息监督NetVLAD层对卷积特征的利用.事实上,任何一种CNN模型都能实现图像特征提取的功能,所以对于选用哪种网络进行特征学习并不是本文的重点.62湖南大学学报(自然科学版)2021年conv1图4DPLAH结构Fig.4DPLAH structure图像标签soft-max1,0,1,1,0□1,0,0,0,11,1,0,1,0---------*----------VLADVLAD core)c)l・>:i>数据库图像的哈希编码2.2DPLAH模型的目标函数为了学习可以保留查询图像与数据库图像之间相似性的哈希编码,一种常见的方法是利用相似性的监督信息S e{-1,1}n伊"、生成的哈希编码长度r,以及查询图像的哈希编码仏和数据库中图像的哈希编码b三者之间的关系[9],即最小化相似性的监督信息与哈希编码对内积之间的L损失.考虑到相似性分布的倾斜问题,本文通过施加权重来调节查询图像和数据库图像之间的损失,其公式可以表示为:min J=移移(1-w)(u T b j-rs)专,B i=1j=1s.t.U沂{-1,1}n伊r,B沂{-1,1}m伊r,W沂R n伊m(5)受FocalLoss启发,希望深度哈希网络优先训练相似性不容易保留图像对,然而Focal Loss利用图像的分类结果对损失进行调整,因此,需要重新进行设计,由于哈希学习的目的是为了保留图像在汉明空间中的相似性关系,本文利用哈希编码的余弦相似度来设计权重,其表达式为:1+。
1. 大数据的4V特征不包括以下哪一项?A. VolumeB. VelocityC. VarietyD. Visibility2. Hadoop生态系统中,用于存储结构化和半结构化数据的组件是?A. HDFSB. HiveC. HBaseD. Pig3. 在数据仓库中,ETL过程指的是什么?A. Extract, Transform, LoadB. Encrypt, Transfer, LoadC. Extract, Transfer, LoadD. Encrypt, Transform, Load4. 以下哪个不是NoSQL数据库的类型?A. Key-ValueB. Column-FamilyC. DocumentD. Relational5. 数据挖掘中的分类算法不包括以下哪一项?A. Decision TreesB. Neural NetworksC. ClusteringD. Support Vector Machines6. 在Hadoop中,MapReduce的主要作用是什么?A. 数据存储B. 数据处理C. 数据查询D. 数据可视化7. 以下哪个工具不是用于大数据分析的?A. RB. PythonC. ExcelD. Spark8. 在数据预处理中,数据清洗的主要目的是什么?A. 增加数据量B. 减少数据量C. 提高数据质量D. 提高数据速度9. 以下哪个不是大数据处理框架?A. FlinkB. KafkaC. StormD. Docker10. 在数据可视化中,热力图主要用于展示什么?A. 数据分布B. 数据关系C. 数据趋势D. 数据密度11. 以下哪个是大数据安全的关键技术?A. 数据加密B. 数据压缩C. 数据存储D. 数据传输12. 在数据分析中,OLAP是什么的缩写?A. Online Analytical ProcessingB. Online Application ProcessingC. Offline Analytical ProcessingD. Offline Application Processing13. 以下哪个不是数据仓库的特点?A. 面向主题B. 集成性C. 时变性D. 实时性14. 在数据挖掘中,关联规则挖掘主要用于发现什么?A. 数据模式B. 数据异常C. 数据关系D. 数据趋势15. 以下哪个不是大数据的应用领域?A. 金融B. 医疗C. 教育D. 娱乐16. 在Hadoop中,YARN的主要作用是什么?A. 数据存储B. 资源管理C. 数据处理D. 数据查询17. 以下哪个不是数据湖的特点?A. 存储原始数据B. 存储结构化数据C. 灵活的数据结构D. 支持多种数据类型18. 在数据分析中,数据集市是什么?A. 数据仓库的子集B. 数据仓库的超集C. 独立的数据仓库D. 数据仓库的备份19. 以下哪个不是数据治理的关键组成部分?A. 数据质量B. 数据安全C. 数据存储D. 数据政策20. 在数据挖掘中,聚类算法主要用于什么?A. 数据分类B. 数据分组C. 数据预测D. 数据关联21. 以下哪个不是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据分析D. 数据打印22. 在数据可视化中,散点图主要用于展示什么?A. 数据分布B. 数据关系C. 数据趋势D. 数据密度23. 以下哪个不是大数据分析的步骤?A. 数据收集B. 数据清洗C. 数据存储D. 数据分析24. 在数据仓库中,维度表和事实表的关系是什么?A. 一对一B. 一对多C. 多对一D. 多对多25. 以下哪个不是数据挖掘的应用场景?A. 市场篮分析B. 客户细分C. 风险评估D. 数据备份26. 在Hadoop中,HDFS的主要作用是什么?A. 数据存储B. 数据处理C. 数据查询D. 数据可视化27. 以下哪个不是数据湖的优势?A. 存储原始数据B. 灵活的数据结构C. 支持多种数据类型D. 实时数据处理28. 在数据分析中,数据立方体是什么?A. 数据仓库的子集B. 数据仓库的超集C. 数据仓库的备份D. 数据仓库的多维数据模型29. 以下哪个不是数据治理的目标?A. 提高数据质量B. 确保数据安全C. 提高数据速度D. 确保数据合规30. 在数据挖掘中,异常检测主要用于发现什么?A. 数据模式B. 数据异常C. 数据关系D. 数据趋势31. 以下哪个不是大数据的应用优势?A. 提高决策效率B. 降低成本C. 提高数据质量D. 提高服务质量32. 在Hadoop中,MapReduce的主要优势是什么?A. 数据存储B. 数据处理C. 数据查询D. 数据可视化33. 以下哪个不是数据湖的挑战?A. 数据管理B. 数据安全C. 数据处理D. 数据备份34. 在数据分析中,数据集成的目的是什么?A. 提高数据质量B. 确保数据安全C. 提高数据速度D. 确保数据合规35. 以下哪个不是数据挖掘的步骤?A. 数据收集B. 数据清洗C. 数据存储D. 数据分析36. 在数据仓库中,数据集成的关键技术是什么?A. 数据采集B. 数据存储C. 数据分析D. 数据清洗37. 以下哪个不是大数据分析的工具?A. RB. PythonC. ExcelD. Photoshop38. 在数据可视化中,折线图主要用于展示什么?A. 数据分布B. 数据关系C. 数据趋势D. 数据密度39. 以下哪个不是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据分析D. 数据打印40. 在数据仓库中,数据集成的关键技术是什么?A. 数据采集B. 数据存储C. 数据分析D. 数据清洗41. 以下哪个不是大数据分析的工具?A. RB. PythonC. ExcelD. Photoshop42. 在数据可视化中,折线图主要用于展示什么?A. 数据分布B. 数据关系C. 数据趋势D. 数据密度43. 以下哪个不是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据分析D. 数据打印44. 在数据仓库中,数据集成的关键技术是什么?A. 数据采集B. 数据存储C. 数据分析D. 数据清洗45. 以下哪个不是大数据分析的工具?A. RB. PythonC. ExcelD. Photoshop46. 在数据可视化中,折线图主要用于展示什么?A. 数据分布B. 数据关系C. 数据趋势47. 以下哪个不是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据分析D. 数据打印48. 在数据仓库中,数据集成的关键技术是什么?A. 数据采集B. 数据存储C. 数据分析D. 数据清洗49. 以下哪个不是大数据分析的工具?A. RB. PythonC. ExcelD. Photoshop50. 在数据可视化中,折线图主要用于展示什么?A. 数据分布B. 数据关系C. 数据趋势D. 数据密度51. 以下哪个不是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据分析D. 数据打印52. 在数据仓库中,数据集成的关键技术是什么?A. 数据采集B. 数据存储C. 数据分析D. 数据清洗53. 以下哪个不是大数据分析的工具?A. RB. PythonC. ExcelD. Photoshop54. 在数据可视化中,折线图主要用于展示什么?A. 数据分布C. 数据趋势D. 数据密度55. 以下哪个不是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据分析D. 数据打印56. 在数据仓库中,数据集成的关键技术是什么?A. 数据采集B. 数据存储C. 数据分析D. 数据清洗57. 以下哪个不是大数据分析的工具?A. RB. PythonC. ExcelD. Photoshop58. 在数据可视化中,折线图主要用于展示什么?A. 数据分布B. 数据关系C. 数据趋势D. 数据密度59. 以下哪个不是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据分析D. 数据打印60. 在数据仓库中,数据集成的关键技术是什么?A. 数据采集B. 数据存储C. 数据分析D. 数据清洗61. 以下哪个不是大数据分析的工具?A. RB. PythonC. ExcelD. Photoshop62. 在数据可视化中,折线图主要用于展示什么?A. 数据分布B. 数据关系C. 数据趋势D. 数据密度63. 以下哪个不是大数据处理的关键技术?A. 数据采集B. 数据存储C. 数据分析D. 数据打印答案1. D2. B3. A4. D5. C6. B7. C8. C9. D10. D11. A12. A13. D14. C15. D16. B17. B18. A19. C20. B21. D22. A23. C24. B25. D26. A27. D28. D29. C30. B31. C32. B33. D34. A35. C36. D37. D38. C39. D40. D41. D42. C43. D44. D45. D46. C47. D48. D49. D50. C51. D52. D53. D54. C55. D56. D57. D58. C59. D60. D61. D62. C63. D。
1+x初级云计算考试模拟题(附答案)一、单选题(共60题,每题1分,共60分)1、下列选项中哪个不是软件需求规格目标?A、便于软件维护B、控制系统的实施过程C、便于用户.分析员和软件设计人员进行理解及交流D、作为软件测试和验收以及维护的依据正确答案:A2、SQL线程通过读取______文件中的日志,并解析成具体操作,来实现主从的操作一致,最终达到数据一致。
A、i/o logB、binlogC、relay logD、sql log正确答案:C3、下面关于ADocker Image说法错误的是?A、镜像是一个只读模板B、由Dockerfile文本描述镜像的内容C、镜像定义类似面向用户的类D、构建一个镜像实际就是安装.配置和运行的过程正确答案:C4、Amazon SWF中的SWF代表什么?A、简单的工作流程B、简单的工作流程形成C、简单的Web表单D、简单的工作自动化正确答案:A5、下面哪个说法是正确的。
A、重新开发一个新系统通常要比再工程的成本要低B、只有质量差的软件产品才需要维护C、软件的不断修改将导致系统结构的恶化D、软件的维护成本通常比开发成本低正确答案:C6、以下Cinder命令可以查询云硬盘列表的是?A、cinder volume listB、cinder volume showC、cinder showD、cinder list正确答案:D7、Docker制作镜像的时候,通常使用以下哪种方式来构建A、DockerfileB、Docker composeC、Docker SwarmD、Docker Machine正确答案:A8、读写分离中以下哪个是从库负责的功能?A、查B、增C、删D、改正确答案:A9、下面哪个用户用于存放用户密码信息?A、/varB、/etcC、/devD、/boot正确答案:B10、您可以向一个帐户添加多少个S3存储桶?A、100B、默认为100,但是可以通过联系AWS来增加。
fassis 相似计算大规模计算大规模计算是指通过对大量数据进行处理和分析,以获取有用信息的一种计算方式。
随着互联网和信息技术的发展,大规模计算正在成为各个领域的重要工具。
在这篇文章中,我们将以fassis相似计算为切入点,探讨大规模计算的应用和意义。
让我们来了解一下fassis相似计算。
fassis相似计算是一种基于图像和视频内容的计算方法,通过对图像和视频进行特征提取和匹配,来判断它们之间的相似度。
这种计算方式可以广泛应用于图像搜索、视频监控、人脸识别等领域。
在大规模计算中,fassis相似计算起到了重要的作用。
大规模计算的应用非常广泛。
在金融领域,大规模计算可以用来进行风险评估和投资决策。
通过对大量的金融数据进行分析和计算,可以快速准确地评估风险,并提供决策支持。
在医疗领域,大规模计算可以用来进行疾病诊断和治疗方案设计。
通过对大规模的医学数据进行分析和计算,可以帮助医生更好地理解疾病的发展规律,提供更准确的诊断和治疗方案。
在交通领域,大规模计算可以用来进行交通流量预测和交通优化。
通过对大量的交通数据进行分析和计算,可以帮助交通管理部门更好地规划路网,提高交通效率。
在电商领域,大规模计算可以用来进行用户行为分析和个性化推荐。
通过对大量的用户数据进行分析和计算,可以帮助电商平台更好地理解用户需求,提供更精准的推荐服务。
大规模计算的意义在于它可以帮助我们更好地理解和利用大数据。
随着互联网和物联网技术的发展,我们正处在一个数据爆炸的时代,每天都会产生大量的数据。
这些数据蕴含着重要的信息,但如果不经过计算和分析,这些信息将无法被发现和利用。
大规模计算通过对大数据进行处理和分析,可以帮助我们从海量的数据中提取有用的信息,为决策和创新提供支持。
同时,大规模计算还可以帮助我们发现数据之间的关联和规律,从而更好地理解和解决实际问题。
然而,大规模计算也面临着一些挑战和问题。
首先,由于数据量庞大,大规模计算需要强大的计算资源和高效的算法。
基于机器学习的Web漏洞扫描技术研究近年来,随着互联网的普及和信息化的发展,Web应用程序也随之快速发展,并成为现代信息化社会的基本组成部分。
Web应用程序的特点是互联网上的各种服务和业务的实现,以及用户的互动,这些特点使得Web应用程序受到了很多安全风险的威胁。
Web漏洞是Web应用程序安全中最常见的风险之一,它们可能导致Web应用程序中的信息泄露和身份窃取等问题,严重危及用户的隐私和安全。
为了发现和修复Web应用程序中的漏洞,已经有许多工具和技术被开发出来,其中最重要的是基于机器学习的Web漏洞扫描技术。
机器学习是一种能够自我学习的人工智能技术,能够根据经验自动提升性能,进而提高Web漏洞扫描的准确度和效率。
传统的Web漏洞扫描方法使用的是手动的测试和分析,需要耗费大量时间和精力,而且难以保证测试和分析的完整性和准确性。
而基于机器学习的Web漏洞扫描技术则能够自动识别Web应用程序中存在的漏洞类型,并提供高质量的漏洞检测服务,大大提高了Web应用程序的安全性。
其主要由以下几个方面组成:一、数据收集基于机器学习的Web漏洞扫描技术需要大量的数据来训练机器学习算法。
数据可以从多种渠道获得,例如网络收集、公共数据集合、个人数据集合、以及安全测试工具的输出等。
获得的数据应该具有代表性,能够尽可能地覆盖Web应用程序存在的安全漏洞类型。
二、机器学习算法机器学习算法是基于机器学习的Web漏洞扫描技术的核心。
机器学习算法可以帮助机器根据数据自动分类和预测Web应用程序中的漏洞类型,并生成相关的测试和分析报告。
目前比较常用的算法包括基于决策树、神经网络、支持向量机等等,每一种算法都有其适用的场景和优缺点。
三、特征选择特征选择是机器学习算法中非常重要的一部分。
它通过特征值的排序和数据的筛选,确定哪些特征对Web漏洞分类和预测最有帮助。
特征选择需要根据具体的数据集和任务来进行,一般需要结合专家意见来确定。
四、漏洞检测漏洞检测是基于机器学习的Web漏洞扫描技术中最重要的步骤之一。
Cachedirectory 原理
cacheDirectory 是Babel 配置中的一个选项,它用于指定Babel 转译结果的缓存目录。
开启cacheDirectory 可以提高构建速度,因为它会缓存之前转译的结果,避免重复进行耗时的转译过程。
具体来说,当开启cacheDirectory 时,Babel 会将每个转译后的文件写入指定的缓存目录中。
在后续的构建过程中,Babel 会首先检查缓存目录中是否存在该文件的转译结果,如果存在并且文件没有发生变化,那么就直接使用缓存的结果,避免了重复转译的过程。
这样可以显著提高构建速度,特别是在大型项目中。
cacheDirectory 可以指定一个缓存目录路径,也可以设置为true,表示使用默认的缓存目录。
默认情况下,Babel 会使用一个基于当前工作目录的临时文件夹作为缓存目录。
总结来说,cacheDirectory 的原理是利用缓存机制来提高构建速度。
通过将转译结果缓存到指定的目录中,避免了重复的转译过程,从而提高了构建效率。
《Computer Networks and Internet》Chapter 21. Consider the following string of ASCII characters that were captured by Wireshark when the browser sent an HTTP GET message (i.e., this is the actual content of an HTTP GET message). The characters <cr><lf> are carriage return and line-feed characters (that is, the italized character string <cr> in the text below represents the single carriage-return character that was contained at that point in the HTTP header). Answer the following questions, indicating where in the HTTP GET message below you find the answer.GET /cs453/index.html HTTP/1.1<cr><lf>Host: <cr><lf>User-Agent: Mozilla/5.0 (Windows;U; Windows NT 5.1; en-US; rv:1.7.2) Gecko/20040804 Netscape/7.2 (ax) <cr><lf>Accept:ext/xml, application/xml, application/xhtml+xml, text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5<cr><lf>Accept-Language:en-us,en;q=0.5<cr><lf>Accept-Encoding: zip,deflate<cr><lf>Accept-Charset:ISO-8859-1,utf-8;q=0.7,*;q=0.7<cr><lf>Keep-Alive:300<cr><lf>Connection:keep-alive<cr><lf><cr><lf>a. What is the URL of the document requested by the browser?b. What version of HTTP is the browser running?c. Does the browser request a non-persistent or a persistent connection?d. What is the IP address of the host on which the browser is running?e. What type of browser initiates this message? Why is the browser type needed in anHTTP request message?考虑以下的ASCII字符字符串被Wireshark当浏览器发送一个HTTP GET消息(即。
longest prefix suffix matching "Longest Prefix-Suffix Matching: Uncovering the Hidden Similarities"Introduction:In the realm of computer science, algorithms play a crucial role in solving complex problems efficiently. One such algorithm that has garnered attention is the longest prefix-suffix matching algorithm. This algorithm aims to find the longest matching prefix and suffix in a given string, helping in various applications such as pattern matching, text compression, and bioinformatics. In this article, we will delve deep into this algorithm, exploring its intricacies and understanding its applications.1. Understanding Prefix and Suffix:To comprehend the longest prefix-suffix matching algorithm, we must first understand the basic concepts of prefix and suffix. In a string, a prefix is a sequence of characters that appear at the beginning, whereas a suffix is a sequence of characters that occur at the end. For example, in the string "computer," the prefixes are "c," "co," "com," etc., while the suffixes are "r," "er," and "ter."2. Defining the Problem:The longest prefix-suffix matching algorithm addresses the problem of finding the longest common substring that appears both at the beginning and the end of a string, effectively combining the concept of prefix and suffix. For instance, in the string "abcabcxyz," the longest prefix-suffix is "abc."3. Naive Approach:A simple, yet inefficient way to solve this problem is by using a naive approach. We can iterate through all possible substrings, starting from the longest and gradually decreasing their length. For each substring, we can check if it appears both at the beginning and the end of the string. This approach has a time complexity of O(n^2), making it unsuitable for large strings.4. The KMP Algorithm:To overcome the drawbacks of the naive approach, the Knuth–Morris–Pratt (KMP) algorithm offers an efficient solution. The KMP algorithm utilizes a pre-processing step to build an auxiliary array, known as the Longest Proper Prefix (LPP) array, used during the pattern matching phase. This array stores the longest proper prefix that is also a suffix for each substring encountered.5. Building the LPP Array:The construction of the LPP array involves traversing the string and comparing characters to determine the length of the longest proper prefix that is also a suffix. By exploiting previously calculated values, the KMP algorithm minimizes unnecessary comparisons, significantly improving the time complexity to O(n).6. Matching Prefix and Suffix:Once the LPP array is constructed, it can be used to efficiently match the prefixes and suffixes of the string. By comparing the LPP values at each position, we can identify the longest matching prefix and suffix. This breakthrough allows for various applications such as string compression, text indexing, and DNA sequence analysis.7. Applications in Pattern Matching:Pattern matching is a common application for the longestprefix-suffix matching algorithm. By identifying the longest matching prefix and suffix, we can efficiently locate occurrences of a specific pattern within a large string. This application proves invaluable in search engines, text editors, and data mining applications.8. Applications in Text Compression:Text compression techniques, such as Lempel-Ziv-Welch (LZW), utilize the longest prefix-suffix matching algorithm to achieve optimal compression ratios. By finding the longest matching prefix and suffix, redundant information can be eliminated, leading to efficient storage and transmission of textual data.9. Applications in Bioinformatics:In the evolving field of bioinformatics, DNA sequence analysis often requires identifying hidden patterns within genetic data. The longest prefix-suffix matching algorithm aids in recognizing recurring motifs, revealing essential insights into genetic evolution, disease diagnosis, and drug discovery.Conclusion:The longest prefix-suffix matching algorithm unveils the hidden similarities between prefixes and suffixes in a given string. From its humble beginnings to its diverse applications in pattern matching, text compression, and bioinformatics, this algorithm continues to play a pivotal role in various domains of computer science. Throughthe understanding and utilization of this algorithm, we can unlock efficient solutions to complex problems, advancing our technological capabilities.。
A zipf-like distribution of popularity and hits in the mobile web pages with short life timeToshihiko YamakamiResearch and Development,ACCESS 2-8-16Sarugaku-cho,Chiyoda-ku,Tokyo,Japanyam@access.co.jpAbstractThe mobile Internet quickly penetrates the society.The mobile clickstream is a valuable resource to identify the per-sonal web access behaviors.The author makes an empiri-cal study on the mobile clickstream to identify the difference between the mobile information with limited life time and the traditional PC web information with long life time.The observation shows that the mobile web access indicates a zipf-like distribution even though the each web content has a limited life time.The author discusses the implications of this similarity from the view point of the mobile user behav-ior characteristics.1IntroductionThe mobile Internet quickly penetrates the everyday life. After the early adoption phase,the mobile Internet com-merce is one of the key application areas.In order to pro-mote the mobile Internet commerce,it is critical to develop methodologies to identify the user behavior.The mobile In-ternet users show the easy-come and easy-go phenomenon. Various constraints and capabilities different from PCs lead to different user behaviors.The mobile clickstream is one of the valuable sources to identify the differences between mobile users and PC users.The author attempts to identify the leading effect of the free information on the mobile web using the half-free/half-charged mobile Internet services. 2Background and Research Motivations The mobile Internet users show easy-come,easy-go be-haviors.The time-scale of the user session is relatively short [7].It is critical to capture the user behavior characteristics to enclose the mobile Internet commerce users.The aim of this research is to identify the user mobile clickstream pat-terns using the command transition patterns and command interval.Skewed distribution and power law frequently appear in clickstream analysis.A popular distribution with this prop-erty was discussed by Zipf in1949with rank-frequency plots[9].He showed that the rank-frequency plots fro many pieces of text a power law with slope close to-1.In the PC Internet clickstream study,the popularity of the resources (distinct URLs)has been characterized by Zipf-like dis-tribution.The most frequently referenced resource is as-signed a rank of1;the Nth most frequently referenced re-source is assigned a rank of N.The rank-frequency plot is the plot of the occurrence frequency f r versus the rank r in logarithmic-logarithmic scales.The rank-frequency version of Zipf’s law isf r∝1/r(1)In log-log scale,the zipf distribution gives the slope value -1.The generalized Zipf distribution(zipf-like distribution) is defined asf r∝1/rθ(2)where log-log scale,the slope value is-θ.Zipf’s law is used when there is strong human choice influence like use of words.It is also studies in the WWW caching strategies because the locality shown in Zipf-like law can be exploited in order to improve the performance with cache use.3AssumptionsThere are multiple constraints in the mobile web access. The micro-browser needs to cope with the limited display size and limited input capabilities.The limited display size leads to the compact descriptions of information and links. It also demonstrates the difference when compared to the aggregated nature of common PC webs.The constraint brings difficulty to keep many links in one screen.It is a common practice to keep the screen with the most updatedinformation.In some cases,the out-of-dated information is quickly removed from the screen in order to bring end users’focus on the latest information.4MethodThis study uses a clickstream log from January2001to December2001from mobile handsets to a mobile Inter-net news service.The service was provided in the three different carriers,as premium services with monthly sub-scription fees.During the observation,the subscribed users changed every month,but the total number of them was relatively unchanged.There are40-50news updates ev-ery week.Each news article life time was approximately two weeks,which means the news article became inacces-sible after the life time.This constraint is partially forced by the limited screen size,which is a fundamental constraint in the mobile Internet.The site was constructed as a single-source multiple presentation site.HDML was designed to shorten the turn-around time in a slow mobile network;a single deck can contain multiple cards to reduce the inter-action to a server.In this case study,an HDML page has only one card,which is similar to HTML in the interac-tion viewpoint.It enables a server-side clickstream analysis without losing the interactions at a local client side.Thefirst research question is whether this short life time of each ar-ticle produces different user behaviors.If this is confirmed, the second research question is what will explain the differ-ence.If this is not confirmed,the second research question is what will explain the similarity despite of life time differ-ence.A key element in this study is a large scale of empir-ical analysis of clickstream data in the real mobile Internet world.The clickstream log contains the time stamp,unique user identifier,command name,and the article name.5ResultThe popularity-frequency plot was conducted from the mobile clickstream data for the new services.The result from a Compact HTML[1]site is shown in Fig.1,which shows the two monthly results in January2001(a)and De-cember2001(b),with one whole-year result from2001(c). The linear systemfit line was drawn using R[5].The result from an MML site is shown in Fig.2,which shows the two monthly results in January2001(a)and De-cember2001(b),with one whole-year result from2001(c).The result from an HDML[3]site is shown in Fig.3, which shows the two monthly results in January2001(a) and December2001(b),with one whole-year result from 2001(c).These results consistently shows the general zipf-like curves with slope=-1.However,the Compact HTML case0123456246x = log(popularity)ylog(hits)y = −1.2606 * x + 10.2481(a)January20010123452468x = log(popularity)ylog(hits)y = −1.4989 * x + 10.4445(b)December2001024624681x = log(popularity)ylog(hits)y = −1.4025 * x + 13.4223(c)January-December2001Figure1.Popularity vs.Hits in a CompactHTML-siteindicates a slightly larger slope(-1.4to-1.5).In the MML case and the HDML case,the slope’s absolute values in-creased from January to December,from-1to-1.2.The yearly observation,the slopes are in the range of-1.3to-1.4in all cases.6DiscussionsThis zipf-like behavior leads to the several considera-tions.First,it is somehow surprising that the limited num-ber of articles with limited life time shows the similar pat-tern in the web without such constraints.Second,we have to investigate the validity of the observation.We can think of the at least two issues to be investigated as follows:0123451234x = log(popularity)y l o g (h i t s )y = −0.9986 * x + 6.6198(a)January 2001012345012345x = log(popularity)y l o g (h i t s )y = −1.1645 * x + 7.3553(b)December 20010246246x = log(popularity)y l o g (h i t s )y = −1.3439 * x + 10.7001(c)January-December 2001Figure 2.Popularity vs.Hits in an MML-site•Limitations of the number of articles,and •Limitations of the number of access.When we have millions of mobile web news articles,should we witness different access patterns?The author’s expecta-tion is no difference because the 1-month pattern and 12-month shows similarity.However,it is a future study is-sue.When we have millions of mobile users,should it show different patterns?The author’s expectation is the same as above,however,it is a future study issue.Third,we have to investigate that the result is aligned to the PC web data.We have an intuition that the very small number of frequent ac-cess and the large number of infrequent access come from a large mass of information sources.Montgomery studied PC web access in a viewpoint of zipf patterns and stated that the01234560123456x = log(popularity)y l o g (h i t s )y = −0.9870 * x + 7.7462(a)January 2001123452468x = log(popularity)y l o g (h i t s )y = −1.2060 * x + 8.5328(b)December 200102460246810x = log(popularity)y l o g (h i t s )y = −1.2914 * x + 12.0581(c)January-December 2001Figure 3.Popularity vs.Hits in an HDML-sitezipf pattern sustained over time with monthly analysis [4].This may link to the observation,but we need further stud-ies.Roadknight et al discussed file popularity distribution [6].Fourth,we need to consider the model to deliver the zipf patterns.In the PC web,it is believed that the frequent revisits accumulate and that formulate zipf-like patterns.The multiple links from various sources also contribute it.In the mobile web case with limited life time,it is difficult to think about the frequent revisits.Kelly reported rank-popularity distribution and reported low slope with 0.938in the proxy case [2].This study’s slope is slightly different from the previous one.The primary reason of the zipf-like distribution is that the first-glance choice of the mobile web news articles.The latter cause,the multiple links from various sources are farmore realistic.Therefore,the result can be lead to the new behavior model on the limited life time webs.Fifth,the slope is not always close to-1.The implication of this slope value is for further studies at the moment.The author reported that the user behavior seems to fol-low user-specific time-zone-based patterns[8].The author considers that the zipf-like pattern also indicates that the strong selection process works during the mobile Internet access.It is against the legacy mobile Internet user behav-ior models like a starvation model or a time-killing model. The author assumes that a starvation model is a user be-havior pattern where a user has only very limited access to the Internet restricted by a mobile handset with eagerness to consume any available information source.The time-killing model is a user behavior pattern where a user has nothing to do except the mobile Internet access during commuting or other restricted contexts.In those models,the highly selec-tiveness shown in the zipf-like curve does notfit.At the launch of the mobile Internet in the late1990’s, content providers believed that the subscribed premium users consumed most of the content because the number of the content and size of each content were limited.It was assumed that the end users will navigate most of the articles when they pay.The obtained zipf-like curve indicates that this legacy assumption was ers seem to be selec-tive even when each article has only several lines of text that can be consumed in less than a minute.The author assumes a combination model.Even with the premium services withfixed monthly payment,the end users are volatile and not well bound to a certain service. When theyfind a mobile web not interesting,they leave the web site.A major part of mobile clickstreams comes from the volatile users with a small number of web visits.This explains the resulting zipf-like curve indicating the strong choice process in the users.This is not intuitive for pre-mium service content providers,however,it is a reasonable explanation for the zipf-like curve in the short-lived news article web site.Also,even with the regular(not-volatile) users,each user seems to have extensive choice process.In this case,the user behavior model can be a combination of mass volatile user selections and regular user selection.It is a further study to identify how much contributions come from mass volatile part and from regular user selection part. 7ConclusionThe author provides an experimental observation on the web access patterns with the limited life time constraint. The limited life time constraint could give a pattern dif-ferent from common PC web patterns,e.g.zipf-like pat-terns in rank-frequency plots.The early observation shows that the time constraint mobile web demonstrates the sim-ilar zipf-like patterns in rank-frequency plots.This shows a highly selective access pattern generated by user choices. The author provides some initial thoughts on this observa-tion,about limitations and an indication to a new behavior model in mobile Internet web sites with the short-lived web pages.References[1]pact HTML for small informationappliances.W3C Note,09Feb1998,Available at:/TR/1998/NOTE-compactHTML-19980209,February1998.[2]T.Kelly and J.Mogul.Performance workload char.and adap-tation:Aliasing on the world wide web:prevalence and per-formance implications.In ACM WWW’02,pages281–292,May2002.[3]P.King and T.Hyland.Handheld device markup lan-guage specification.W3C Note09May1997,Avail-able at:/TR/NOTE-Submission-HDML-spec.html,May1997.[4] A.Montgomery and ing click-stream data to identify world wide web browsingtrends.GSIA Working Paper#2000-E20,Available at:/user/alm3/papers/web%20trends.pdf, June2000.[5]R Development Core Team.R:A language and environmentfor statistical computing.R Foundation for Statistical Com-puting,Vienna,Austria,2005.ISBN3-900051-07-0.[6] C.Roadknight,I.Marshall,and D.Vearer.File popularitycharacterisation.ACM SIGMETRICS Performance Evalua-tion Review,27(4):510–518,March2000.[7]T.Yamakami.Unique identifier tracking analysis:A method-ology to capture wireless internet user behaviors.In ICOIN-15,pages743–748,Beppu,Japan,February2001.IEEEComputer Society.[8]T.Yamakami.A mobile clickstream time zone analysis:im-plications for real-time mobile collaboration.In Proceed-ings of KES2004(Volume II),volume LNCS3214of LectureNotes in Computer Science,pages855–861.Springer Verlag,September2004.[9]G.K.Zipf.Human Behavior and Principle of Least Effort:An Introduction to Human Ecology.Addison Wesley,Cam-bridge,Massachusetts,1949.。
hashFS:Applying Hashing to Optimize File Systems for Small File ReadsPaul Lensing Paderborn Center for Parallel Comp.University PaderbornPaderborn,Germanyplensing@uni-paderborn.deDirk MeisterPaderborn Center for Parallel Comp.University PaderbornPaderborn,Germanydmeister@uni-paderborn.deAndr´e BrinkmannPaderborn Center for Parallel Comp.University PaderbornPaderborn,Germanybrinkman@uni-paderborn.deAbstract—Today’sfile systems typically need multiple disk accesses for a single read operation of afile.In the worst case,when none of the needed data is already in the cache, the metadata for each component of thefile path has to be read in.Once the metadata of thefile has been obtained,an additional disk access is needed to read the actualfile data. For a target scenario consisting almost exclusively of reading smallfiles,which is typical in many Web2.0scenarios,this behavior severely impacts read performance.In this paper, we propose a newfile system approach,which computes the expected location of afile using a hash function on thefile path.Additionally,file metadata is stored together with the actualfile data.Together,these characteristics allow afile to be read in with only a single disk access.The introduced approach is implemented extending the ext2file system and stays very compatible with the Posix semantics.The results show very good random read performance nearly independent of the organization and size of thefile set or the available cache size.In contrast,the performance of standardfile systems is very dependent on these parameters.I.I NTRODUCTIONToday many differentfile systems exist for different pur-poses.While they include different kinds of optimizations, most aim to be”general purpose”file systems,supporting a wide range of application scenarios.Thesefile systems treat smallfiles very similar to gigabyte-sized databasefiles. This general approach,however,has a severe impact on performance in certain scenarios.The scenario considered in this paper is a workload for web applications serving smallfiles, e.g.thumbnail images for high-traffic web servers.Real world example of such scenarios are given at different places and scales. Jason Sobel reports that Facebook accesses small profile pictures(5-20KB)at a rate of more than200k requests per second,so that each unnecessary disk seek has to be avoided1.Another example for such a scenario is“The Internet Archive”,whose architecture has been described by Jaffe and Kirkpatrick[1].The Internet Archive is built up from2500nodes and more than6000disks serving over a PB of data at a rate of2.3Gb/sec.1A summary of Jason Sobel’s talk can be found at http://perspectives. /default,date,2008-07-02.aspxSuch workloads have very different properties from usual desktop or server workloads.Our main assumptions are that thefiles are small(4–20KB)and that thefile size distribution is nearly uniform.This is different from web traffic that is shown to have a heavy-tailed size distribution [2].Additionally,we assume that the ratio between the available main memory and the disk capacity is small,which limits the amount of cache that can be used for inodes, directory entries andfiles.We also assume that:•accesses are almost exclusively reads.•filenames are nearly randomly generated or calculated(e.g.based on the user id,a timestamp or a checksum ofthe contents)and have no inherent meaning and also do not constitute an opportunity for name-based locality.A directory-based locality as used by most generalpurposefile systems cannot be used with hashFS.•the traffic is generated by a high number of concurrent users,limiting the ability to use temporal-locality.•maintaining the last access time of afile are not important.The design goal for thefile system presented in this paper has been to optimize smallfile read-accesses,while still retaining a fully functionalfile system that supports features like largefiles and hard links without much performance loss.While caching web server data in memory is an immense help,it is usually impossible to buffer everything due to the sheer amount of existing data.It has been shown that web requests usually follow a Zipf-like distribution[3],[2].This means that,while the traffic is highly skewed,the hit-ratio of caches grows only logarithmically in the cache size,so that very large caches would be necessary to absorb most requests.A similar argument can be made based on results presented for the Internet Archive data[1]. Accordingly,it is important to optimize smallfile hard disk accesses.Accessingfiles with state-of-the-artfile sys-tems typically results in multiple seeks.Atfirst the location of the metadata(inode)has to be located using directory information,which results–if not cached–in multiple seeks.After the metadata is read,another head movement is required to read the actualfile data.In a scenario,where2010 International Workshop on Storage Network Architecture and Parallel I/Osa huge number of smallfiles needs to be accessed,these head movements can slow access times tremendously.Of course,the caches of the operating system(block cache, inode cache,dentry cache)can avoid some or most of these lookups.We will show,however,that the caches themselves are not sufficient for efficient smallfile reads.Contributions of this paper::In this paper,we show that extending an existingfile system by a hashing approach for thefile placement is able to significantly improve its read throughput for smallfiles.Based on the ext2file system,we use randomized hashing to calculate the(virtual)track of a file based on its name and path.Adding additional metadata for each(virtual)track,we are able to access most small files with a single head movement.Ourfile system can be used without any changes on existing applications and infrastructure.Also existingfile management tools(evenfile system checks)work out of the box,which significantly reduces administration overhead. In contrast to other approaches to improve smallfile read access,we do neither need a huge memory cache nor solid state disks to achieve a very good performance,independent from the total number offiles.After discussing related work in Section II,we present our ext2extensions in Section III.The analysis of the approach is based on simulations and experiments.The results presented in Section IV show that our hashing approach improvesfile system performance by a factor of more thanfive in realistic environments without requiring any additional hardware.II.F ILE S YSTEM B ASICS AND R ELATED W ORKIn this section,we discuss somefile system design basics, as well as some general-purposefile systems and related approaches for smallfile read performance.A.Hard Disk GeometryIn order to understand the arguments for thefile system proposed in Section III,a basic understanding of hard disks themselves is necessary.A hard disk(also called magnetic disk drive)basically consists of one or more plates /disks containing concentric tracks,which are themselves subdivided into sectors.While there are several possible configurations,the most commonly used consists of two read/write heads for each plate,one hovering above the plate and another beneath it.All heads are locked together in an assembly of head arms,which means that they can only be moved together.The set of all tracks that can be accessed with afixed head position is referred to as a cylinder. When an I/O request needs to be served,the service time is the sum of the head positioning time(seek time),which is the time required to move the head from its current position to its target track,the rotation latency,which is the time until the desired sector has rotated under the head and the transfer time,which is needed to read or write the data[4].superblockblockdescriptorsblockbitmapinodebitmapinodetabledatablocksFigure1.Structure of an Ext2Block GroupB.Linux Virtual File System(VFS)The virtualfile system(VFS)is part of the Linux kernel and many other Unix operating systems and defines the basic conceptual interfaces between the kernel and thefile system implementations.Programs can use generic system calls like open(),read()or write()forfile system operations regardless of the underlying physical medium orfile system.These are passed to the VFS where the appropriate method of thefile system implementation is invoked.C.ext2File SystemThe second extendedfile system was one of thefirst file systems for Linux and is available as part of all Linux distributions[5].The ext2file system is divided into block groups.Figure1shows the composition of an ext2block group. Information stored in the super block includes,for example, the total number of inodes and blocks in thefile system and the number of free inodes left in thefile system.The block descriptors contain pointers to the inode and block bitmaps as well as the inode tables of all block groups.The block and inode bitmaps represent usage of data blocks/entries in the inode table.This enables each block to store its usage in a quickly accessible manner.The inode table stores the actual inodes offiles stored in this block.Because a bigfile can span multiple block groups,it is possible that the inode that corresponds to the data blocks of a block group is stored in another block group.An ext2inode of afile contains all metadata information for thisfile as well as pointers to the data blocks allocated to thefile.Since an ext2inode has afixed size of128bytes, it cannot store direct pointers to all data blocks of afile. Therefore,each inode only stores12direct data pointers to thefirst12data blocks of afile.If thefile is bigger than 12data blocks,the inode also contains an indirect pointer. This is a pointer to a data block that contains pointers to the data blocks allocated to thefile.Because the block size is normally four kilobytes,an indirect block can store1024 pointers.If this is still not enough,there exists a double and a triple indirect pointer.D.Additional General Purpose File SystemsThe third extendedfile system ext3adds journaling modes to ext2,but stays otherwise completely compatible to ext2 [6].The newest member of the ext family is ext4,which addresses several performance limits of ext3and removes the 16TB maximumfilesystem and the2TBfile size limit[7].Most otherfilesystems use B+trees or B*trees to manage their metadata.They either provide a global tree(ReiserFS [8],btrfs[9]),one tree for each directory(JFS[10]),or for each allocation group(XFS[11],[12]).ReiserFS and btrfs additionally provide an efficient packing for very smallfiles.E.Related WorkThere are several existing approaches to improve small file performance.Ganger and Kasshoek proposed two im-provements,which are both based on name-based locality. Firstly,they embed inodes into the directory entries of the parent directory and secondly,they co-locate relatedfiles on adjacent disk locations[13].Because theses improvements are based on a name-based locality,they will fail in our scenario.Another approach,proposed as“Same Track File system(STFS)”,optimizes smallfile writes by always stor-ingfile metadata andfile contents in the same track[14].The basic approach can be compared to the hashFSfile system, which is proposed in this paper.Nevertheless,not reading the complete track,they have to use standard directory lookup procedures,which adds a significant overhead in scale-out environments.Additional related research can be found in the context of web cachefile systems,which are based on similar,but not identical assumptions.The web cache scenario differs from our scenario concerning1)Data reliability:If afile is lost in a web cache scenario,it can be re-fetched from the original source.2)Scalability:It is allowed for a web cachefile systemto replace oldfiles using a cache replacement strategy, if the amount offiles in afile system gets too large 3)Locality:In an highly distributed scale-out scenario,we cannot allow to bet on any kind of locality.Existing caching layers in form of content delivery networks (CDN)in front of the actualfile delivery servers often remove all kind of locality.D´a melo!is a web cache user-spacefile system,which does without directories and is based on user-defined group numbers,where the same group number implies locality [15].It is focused on smallfiles and largefiles are stored in a separate general purposefile system.Similar to our approach,they prefetch larger chunks of16KB to256KB. Another reduced functional,specialized web cachefile system is UCFS[16].They hash thefilepath to an in-memory table storing a mapping to a cluster of32KB to256 KB size.Similar to the other web cache approach,related files are stored on adjacent disk locations by grouping them in a cluster.While this approach,similar to ours,eliminates disk accesses during lookup,the cluster table gets prohibitive large for largerfile systems,requiring96MB RAM for each 4Mfiles.The Hummingbirdfile system is also a specializedfile system for web caches,which co-locates relatedfiles in clusters and does its own memory cache management in the proxy to avoid unnecessary copies[17]. Independently from our work,Badam et al.presented the HashCache user-level storage system that also hashes to bins containing multiplefiles and used in its basic version no in-memory index structure[18].This makes it suitable for servers with a large Disk/RAM ratio.However,HashCache also is highly specialized for caching and does not provide a fullfilesystem interface.The evaluation of HashCache compares it to web proxies.We think that a comparison with file systems and with an eye on the differentfile systems caches is insightful.Jaffe and Kirkpatrick examined,how an SSD-based cache is able to reduce the IO load of the backend storage[1].In contrast to them,we aim to improve the performance without additional hardware.DualFS is a journalingfile system that separates metadata and data and stores them on different disks[19].Especially,if metadata is stored on solid state disks with high random read performance,it might improve the overall performance at moderate costs,while compared to our report still requiring additional hardware.III.D ESIGN AND I MPLEMENTATIONThe design and implementation of a newfile system from scratch has not been within the scope of this paper.For this reason,thefile system extensions are based on the ext2file system,which has been the most practical candidate.Its implementation is relatively simple while still showing good benchmarking results.Furthermore,its main missing feature –journaling–does not impact the results of our evaluation. It should be noted that our design is not limited to ext2and can be incorporated into otherfilesystems,too.It is important to notice that our approach stays,with one exception,completely POSIX compliant.The only differ-ence is that we are not able to evaluate the directory access rights of afile path duringfile operations,while we are still able to evaluate the access rights to thefile itself.We assume that these missing directory access checks are not an issue. In our scenario,security is handled at the application layer, not at thefile system.It will not update the last access times of the directory in the pathnames of thefile.The aim of afile system targeted to improve smallfile read performance is to decrease the number of necessary seeks. The main idea of the proposedfile system is to perform only one seek to the metadata and data.Therefore,the proposed file system stores all necessary metadata together with the actual data,enabling one read operation to read both parts of information.To circumvent additional disk accesses needed tofind the location of this information,a hash function on the complete path name is used in order to compute the expected location.Accordingly,thefile system will be referred from now on as“hashFS”.A.File System LayoutThe simplest and most accurate way to describe a location on a hard drive is by using a sector number.It is,however, not practical in our case.Hash collisions can occur and future hash results cannot be predicted.Accordingly,it is impossible to keep sectors needed by future writes free.For this reason,the track number has been chosen as the target for the hash function to identify the location of afile.This has multiple benefits:1)A whole track can be read in at once without produc-ing multiple head movements.2)Multiplefiles can be written to the same track untilthe track runs out of free blocks.3)It is possible to reserve space on a track for futurewrites.Disk Geometry Information:Iffiles are to be hashed to track numbers,some information about the disk geometry has to be known:At least the total number of tracks and their start and end sectors are necessary to identify a target range for the hash function.This information can be extracted using tools like the“Disk Geometry Analyzer(DIG)”[20]. During this paper,we work with“virtual tracks”,where we assume that each track has the same number of sectors.Block Allocation:Allocating blocks for afile on the computed track is not as trivial as it appears atfirst glance. It might not be possible to store all blocks of thefile on the specified track because the size of each track is limited.A one megabytefile already spans up to four tracks on today’s disks.Furthermore,if space is reserved on a track for future writes,then the number of sectors on that track which can be assigned to a singlefile is further limited.At the same time,thefile system approach can only promise performance gains if afile is completely stored on its hashed track. The described design conflict–reserving sectors on a track for later use and at the same time trying to store files completely on their hashed track–can only be solved with reference to the expected workload.The target scenario consists almost exclusively of reads to smallfiles.Therefore, the important point is to succeed in storing smallfiles on their respective tracks,while largerfiles can be handled differently.The size of a smallfile,however,is not explicitly defined by the scenario.It depends on the particular applica-tion case.Accordingly,the size offiles which are considered to be“smallfiles”should be configurable.The following block allocation strategy,which we will call“Free Percentage Algorithm”,is the result of these considerations:Thefirst x blocks of afile are allocated on the hashed track,where x defines the maximumfile size for which thefile system is optimized.If afile is larger than x blocks,then the remaining blocks are only allocated on the same track if after the allocation the remaining space on the track would be sufficient for future writes.The percentage of a track that is reserved in this way depends on thefile system load.At the beginning,50%of each track will be reserved,and,as the hard diskfills up,the reserved space will shrink reflecting the diminishing total free space.It is, of course,still possible that a track runs out of free space.In this case,all blocks would have to be allocated on a different track.Tracks that arefilled with standard ext2metadata,as,for example,copies of the super block or group descriptors,are an additional ing default ext2settings1.63%of all tracks on the disks used are completelyfilled with ext2 metadata,additional0.26%are partiallyfilled.Files hashed to these tracks cannot be stored there,which results in a decrease of performance.However,since the allocation of this ext2metadata is done statically during the formatting,it is easy to calculate these tracks and remove them from the disk geometry information.As a result nofiles are hashed to these tracks.Track Metadata:Metadata and data for eachfile have to be stored on the same track to optimize read performance. We store this metadata in a data structure called“track inode”at the beginning of each track.Everyfile has a track inode on its hashed track.The normal ext2inodes are used as normal to support otherfile system operations and to handle largefiles.A track inode is not a simple copy of a normal ext2inode, because not all information contained in an ext2inode is needed.Even a few unnecessary bytes in a track inode will have a severe impact in our scenario.The track inode stores the inode number,thefile size,the security attributes and direct pointers to thefirst x blocks of thefile and the hash value for thefile’s path.Another hash of the path is necessary to identify the correct track inode for afile out of all track inodes on the same track.It is not possible to store the pathname directly for identification purposes,because it can be arbitrarily large. To rely on hashing for pathname comparison creates the possibility for hash collision problems.The hash length must be chosen so that a collision of the track hash and of the name has is nearly impossible,e.g.by using a combined hash length of96bits on a10TB disk written full with1 KBfiles results in probability of6.3e−12of a data loss due to hash collisions(birthday paradox).B.Lookup OperationsWe will now describe the pathname lookup operation of hashFS.In Linux,the default lookup strategy is to read in the metadata of every component of thefile path iteratively, until the meta data of the actualfile hasfinally been read. This is necessary,as the location of the metadata of a path component is stored in the previous path component,which corresponds to the directory enclosing the current path com-ponent.The pathname lookup strategy used by hashFS,in contrast,simply hashes the complete pathname to a track and reads the complete track.If the track inode correspondingFigure2.Lookup Strategy with Pathname Lookup Approachto the path is found,the real on-disk inode is not read separately.Because the lookup strategy is implemented in the Virtual File System(VFS)layer,it has been expanded to allow for an alternative,pathname based lookup approach by the underlyingfile systems.The general logic of a pathname lookup operation is presented in Figure2.If the pathname lookup is successful, the whole iterative lookup process for each path component can be completely bypassed and it therefore requires exactly one read operation.Similar to the original strategy,a dentry data structure(a cached,in-memory representation of a directory entry)is created for thefile.However,because the path components are not processed independently,the hierarchical information normally available is missing.This is solved by interpreting the pathname starting from the mountpoint as afilename. So the dentry of the mountpoint is used as parent directory. Therefore,the dentry cache works as usual.It is worth noticing that other POSIXfile operations(like renames offiles and directories,links)as well as larger files are still supported by HashFS using the normal ext2 metadata.Files that have not been stored at the hashed location will be found using the default ext2lookup.IV.E VALUATIONThis section presents simulation results as well as the experimental evaluation of hashFS.Inside the simulation part of this section,we discuss fundamental properties of the hashing approach,e.g.the number of hash conflicts for certain utilization degrees.The behavior of the properties is much more difficult to evaluate in real experiments and simulation offers an opportunity to evaluate many different settings.The results for our hashFS implementation are described in the experimental part of this section.Table ID EVELOPMENT OF T RACK I NODE E RRORS FOR D IFFERENT N UMBEROF F ILESM Files Disk Average Track Per Mille ValuesUtil.Inode Errors Average Conf.Interval 1-12<64.5%0.00‰[0.0,0.0]1369.6%0.00‰[0.0,0.0]1474.7% 1.9<0.001‰[0.0,0.0]1579.8%25.70.002‰[0.002,0.002]1684.9%277.90.017‰[0.017,0.018]1790.0%1946.60.115‰[0.113,0.116]1895.1%10170.00.565‰[0.561,0.569]A.SimulationPrior to the implementation of thefile system,a simulation tool was used to analyze different hashing properties.The simulation tool initially reserves the same blocks on the virtual disk,which are reserved for ext2metadata during file system creation.Additionally,it reserves the track inode block for each track and simulates block allocation accu-rately.It does not simulate normal ext2directory creation, however,and thus fails to allocate the data blocks of each directory.As a result,the observed disk utilization is slightly below the disk utilization that would occur in reality.Nev-ertheless,simulations allow examining allocation problems for a high number of possiblefile sets,which would be impractical using only the actualfile system.The simulation uses the geometry of a WDC WD800BB-00CCB0hard disk,extracted using the DIG track boundary detection tool.This80GB hard disk has225,390tracks, whose size varies between500and765sectors per track. For all simulations,a block size of4KB and a configured maximum size of four blocks for“small”files is ing that configuration,113track inodes can be stored in a single track inode block.Observed results are given as average values and95%confidence intervals of30runs.Taking into account the modified geometry information, two possible causes for allocation problems remain,which might slow down the hashingfile system:Track Inode Miss:No free track inode remains in the track inode,where thefile has been hashed to.Data block Miss:Not enough blocks remain at the hashed trackto allow the allocation of the minimal configuredamount of data blocks.Thefirst problem results in a failure of the pathname lookup approach for the associatedfile.The resulting normal lookup operation can cause one disk access for each path pared to that,the second problem incurs a lesser performance decrease:Because the data location is still obtained from the read in track inode,only a single additional disk access is needed to read the corresponding data blocks.4KB8KB 12KB 16KB0%1%2%3%4%5%6%7%Allocation Problems30%40%50%60%70%80%90%Disk UtilizationFigure 3.Development of Allocation Problems for Different File SizesRelation of Track Inode Misses to the Number of Files:At first,we examine track inode misses.These misses solely depend on the number of files hashed to a track,and therefore the total number of file allocated in the file system.Because the size of a track inode is constant,the actual size of the allocated files is non-significant.The file size is fixed at four kilobytes for the first set of simulations.All files are in the same directory,because the directory structure makes no difference for these simulations.Table I shows the results of the simulation for different numbers of files.Because the observed number of track inode misses was too small to be expressed as a percent-age value compared to the total number of files,they are expressed as a per mille value.The percentage of files for which no track inode could be generated is less than 0.057%for 18million files,which corresponds to a disk utilization of 95%,which is also the worst case in our setting.If the average file size would be 8KB,less than 10million files could be stored on the disk.As can be seen in the table,no track inode misses are expected in this case.Simulations without removing the ext2metadata tracks from the disk geometry show a 1.63%higher track allocation miss rate.This shows how important it is to handle these metadata collisions separately.Relation of Allocation Problems to the Size of Files:The following simulations examine the impact of differing file sizes on the failure rate on the allocation of data blocks on the hashed track.File sets are generated in the same manner as for the previous simulation runs,differing only in the size of the allocated files.Because each file occupies a multiple of the block size,we have examined the file sizes 4,8,12,and 16KB.The obtained average values are plotted in Figure 3in order to compare the results.All observed confidence intervals are less than 0.02%and are therefore not additionally shown.The allocation problems increases with increasing file size.The explanation for this phenomenon is that the increased allocation requirements for each file causes the file system to become less forgiving towards a less-than-optimal distribution.Viewed from another perspective,the allocation of a file with a file size of 8KB is the same asFlat File SetDeep File Set50100Read Operations /Second020406080100x 1000Files ReadFigure 4.Ext2Performance starting with a Cold Cacheallocating two 4KB files to the same track.Thus,achieving a certain disk utilization with 8KB files is the same as using every computed hash value twice for 4KB files.Deviations from an optimal distribution are thus increasingly worse for increasing file sizes.B.Experimental ResultsThe benchmarks used to evaluate hashFS performance are based on “SolidFSBench”,a benchmark environment specifically developed to benchmark very large file sets.Existing benchmark tools,e.g.filebench [21],have shown weaknesses when dealing with millions of different files.The file set generation is configurable by the root directory of the file set,the number of files,the size and size distribu-tion of the files,the number of directories and the maximum directory depth.The created directory tree is a balanced n -ary tree with n chosen in a way so that the maximum depth is not exceeded.Since no in-memory representation of the whole tree is kept,there is no limit besides disk space and file system limits regarding the maximum number of directories or files created.Differently from filebench the workload generation is done offline instead of online during the workload execution.Main advantages of this approach are that it is now possible to execute exactly the same workload multiple times and that it is no longer necessary to have knowledge of the whole file set during workload execution,which circumvents limits regarding the possible workload size.Furthermore,the usage of computation in-tensive randomization during workload generation has no impact on the benchmark performance.Each file set configuration is benchmarked 10times.The file systems are mounted with the noatime and nodiratime options,preventing unnecessary write accesses.The benchmarks were run on four test platforms,each having exactly the same hardware and software configuration with two WDC WD5002ABYS-0500GB hard disks.The benchmarked file sets were located on a dedicated hard drive.In order to limit the size of the file sets needed to achieve high disk utilizations and the hardware requirements,partitions with a size of 90GB,beginning at sector 0,were created.In order to have realistic disk/RAM ratios。
稳定的扩散WebUI原理1. 简介稳定的扩散WebUI是一种用于管理和监控分布式系统的界面,它提供了一种可视化的方式来查看和操作系统的各个组件。
它的原理是基于稳定的扩散算法,该算法通过使用网络连接来实现系统的自动调节和平衡,从而确保系统的稳定性和可靠性。
2. 稳定的扩散算法稳定的扩散算法是一种用于管理分布式系统的方法,它通过使用网络连接来实现系统的自动调节和平衡。
该算法的原理是通过将系统的各个组件连接在一起,形成一个稳定的网络。
这样,当一个组件出现故障或负载过高时,其他组件可以自动接管其工作,从而实现系统的自动平衡和稳定。
3. WebUI界面稳定的扩散WebUI提供了一个用户友好的界面,用户可以通过该界面来监控系统的各个组件。
界面通常包括系统的整体状态、各个组件的负载情况、以及系统的运行日志等信息。
用户可以通过界面来进行系统的操作,例如重新分配组件的负载、重启故障组件等。
4. 工作原理稳定的扩散WebUI的工作原理是将系统的各个组件连接在一起,形成一个稳定的网络。
当一个组件出现故障或负载过高时,其他组件可以自动接管其工作。
系统会根据各个组件的负载情况自动调节和平衡,以确保系统的稳定性和可靠性。
用户可以通过WebUI界面来监控和操作系统的各个组件,从而实现对系统的实时管理和监控。
5. 应用领域稳定的扩散WebUI广泛应用于各种分布式系统的管理和监控中,例如云计算、大数据处理等领域。
它为用户提供了一种可视化的方式来管理和监控系统,极大地简化了操作流程,提高了工作效率。
6. 总结稳定的扩散WebUI是一种基于稳定的扩散算法的管理和监控界面,它通过将系统的各个组件连接在一起,形成一个稳定的网络,从而实现了系统的自动调节和平衡。
用户可以通过WebUI界面来监控和操作系统的各个组件,从而实现对系统的实时管理和监控。
该技术在各种分布式系统中得到了广泛的应用,并为用户带来了极大的便利。
稳定的扩散WebUI在现代分布式系统中起着非常重要的作用,它为用户提供了一种直观简便的方式来管理和监控系统的各个组件。
软考高级架构师技术选型40题1. In a large-scale e-commerce project, which of the following cloud computing services is most suitable for handling the peak traffic during the shopping festival?A. IaaSB. PaaSC. SaaSD. Serverless答案:A。
解析:IaaS( 基础设施即服务)提供了最大的灵活性和对底层基础设施的控制,能够根据需求快速扩展资源以应对高峰流量。
PaaS( 平台即服务)侧重于提供平台环境,对于处理突发的大规模流量扩展相对受限。
SaaS(软件即服务)是已经成型的应用服务,难以针对特定的高峰流量需求进行定制化扩展。
Serverless 适用于一些特定的短时间、低资源需求的任务,对于持续的高峰流量处理可能不够稳定。
2. For a financial company that needs to ensure high data security and compliance, which cloud computing model is the best choice?A. Public cloudB. Private cloudC. Hybrid cloudD. Community cloud答案:B。
解析:Private cloud(私有云)提供了最高级别的控制和安全性,能够满足金融公司对数据安全和合规性的严格要求。
Public cloud( 公有云)共享资源,安全性和合规性可能难以完全满足金融公司的特殊需求。
Hybrid cloud( 混合云)结合了公有云和私有云,但在数据安全和合规方面仍不如私有云直接和可控。
Community cloud( 社区云)共享程度较高,安全性和定制化程度不如私有云。
3. When choosing a cloud computing provider for a startup with limited budget and rapid growth expectations, which factor should be given the highest priority?A. CostB. ScalabilityC. SecurityD. Support services答案:B。
软件下载中的Zipf定律张义丰 张栋(河海大学,南京 江苏 210098)摘要:通过对各网站软件下载排行中数据的分析,得出其统计规律,发现软件下载频率分布基本符合Zipf 定律,并统计得到软件下载频率分布中Zipf 指数一般在0.6~1.3范围之间。
关键词:网络信息;下载频率分布;Zipf 定律1 引言在网络传播领域中,一个较早被人注意的现象是网站的用户数和访问量的分布基本符合Zipf 定律。
随着因特网的日益普及,网络对公众的影响也越来越大。
由于网络信息较之于传统媒体具有信息总量巨大、内容快捷及时、获取成本低廉、信息检索方便、交流反馈自由等特点,使得越来越多的人把网络作为获取信息的主要媒介。
软件下载为广大受众提供了方便,这同时就要求网站及软件开发商必须有较强的针对性和实用性。
为了提高网络信息应用效率,对软件下载中的一些统计数据进行分析,寻找其一般性的规律是必要的。
Zipf 定律最初由G.K.Zipf 发现于语言学中[1],表现为如果将语言中的词汇按照出现的频率由高到低排序,那么某个词汇出现的频率与该词汇所对应的序号之间有着如下的简单关系:αrcr P =)( 其中,表示某个词汇出现的频率,r 表示该词汇所对应的序号。
在某种具体的分布中,α为一个正的常数,称为Zipf 指数,大小仅取决于具体的分布,与其他参数无关,在英语中1≈α 。
这就是说,英语中使用频率最高的词汇the 的使用频率两倍于排在第二位的of 。
这一规律表明在语言中经常被使用的词汇只占词汇总量的很少一部分,而绝大部分词汇则很少被使用。
)(r P 除语言学之外,在其他众多的社会科学和自然科学领域内,也发现了大量的类似现象。
例如在原子核破裂中发现了Zpif 定律正好出现在核液气相变温度处的碎片等级分布的排序中[2], 即此时碎片的平均电荷(或质量)正好反比于碎片从大到小的排列次序。
这种核碎片分布中的Zpif 定律可以作为原子核液气相变的新判据。