14.1.4 整式的除法(2)
- 格式:ppt
- 大小:357.50 KB
- 文档页数:9
八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。
这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。
他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。
因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。
三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。
2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。
同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。
2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。
3.练习:学生进行练习,教师引导学生思考和解决问题。
4.总结:对本节课的内容进行总结,强调重点和难点。
5.作业布置:布置相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点。
我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
整式的除法1. 什么是整式在代数中,整式是由数字常数、变量和运算符组成的代数表达式。
它包括多项式和有理函数。
其中,多项式是整数次幂的变量和常数乘积的代数表达式。
2. 整式的除法概述整式的除法是指对两个或多个整式进行相除的运算。
这种运算在代数中非常常见,是解决实际问题和简化代数表达式的重要方法之一。
在整式的除法中,我们会遇到除数、被除数和商三个概念。
被除数是要被除的整式,除数是用来除被除数的整式,商则是除法运算的结果。
3. 整式的除法步骤整式的除法一般需要按照以下步骤进行:步骤一:整理被除数和除数首先,需要对被除数和除数进行整理,使其按照降幂排列,并且确保各项的变量次数相同。
步骤二:确定商的首项商的首项是指商中的第一项,需要根据被除数和除数的首项来确定。
首先取被除数的首项,然后除以除数的首项,得到商的首项。
步骤三:用商的首项乘以除数,并减去被除数用商的首项乘以除数,并将其结果减去被除数,得到一个新的多项式。
步骤四:重复上述步骤重复步骤二和步骤三,直到无法进行下去为止。
每一次重复都会得到一个新的多项式,其中商的项数增加一项,直到整个被除式被除尽。
步骤五:写出最终的商和余数经过重复步骤四后,最后得到的多项式为商,而剩下的无法再进行除法运算的多项式为余数。
4. 整式的除法示例下面通过一个示例来说明整式的除法步骤:被除数:3x^3 + 5x^2 + 2x + 1除数:x + 1首先,整理被除数和除数,它们都已经按照降幂排列,并且各项的变量次数相同。
然后,确定商的首项,根据被除数的首项3x3和除数的首项x计算得到商的首项为3x2。
接下来,用商的首项乘以除数,在这个例子中,3x^2乘以x + 1得到3x^3 + 3x2。
然后,将得到的结果减去被除数,即(3x3 + 3x^2) - (3x^3 + 5x^2 + 2x + 1),得到-2x^2 - 2x - 1。
经过第一次除法运算,得到的商为3x2,余数为-2x2 - 2x - 1。
14.1.4 整式的除法(二)教学目标:1、知识点:①多项多除以多项式的运算法则及其应用;②多项式除以单项式的算理。
2、能力:理解多项式除以单项式的除法算理,发展有条理地思考及其表达能力。
3、情感与价值观:经历探索多项式除以单项式的过程,培养教学学习能力,获得成功的体验。
教学重点:多项式除以单项式的运算法则及其应用,探求多项式的算法,培养创新能力。
教学难点:对多项式除以单项式的算法的理解及其应用。
教学过程:一、创设情景,引入新课。
(电脑幻灯)任意给一个数,按下列程序计算下去,写出输出结果:输入x是多项式除以单项式。
二、计算下列各题,说说你的理由(课题:多项式除以单项式)1、(ad+bd )÷d2、(2a b+3ab) ÷a3、(x 3y -2xy) ÷(xy)解法1:多项式除以一个单项式,可以看成多项式乘以这个单项式的倒数,再用这个倒数去乘以多项式的各项,所得结果相加(1)(ad+bd )÷d=(ad+bd)×d 1=ad ·d 1+bd ·d 1=d bd dad +=a+b (2)(2a b+3ab)÷a=(2a b+3ab)×a 1=2ab ·a 1+3ab ·a 1=a ab a b a 32+=ab+3b (3)(x 3y -2xy )÷(xy)=(x 3y -2xy)×xy 1=(x 3y )·xy 1-(2xy)·xy1=2y -2 解法2:利用乘法和除法互为逆运算(1)中(ad+bd )÷d 是多少?试着想一下:( )×d=ad+bd ,反用乘法分配律可得出(a+b )×d=ad+bd ,所以(ad+bd )÷d=a+b ,同理(2)困(ab+3b )×a=2a b+3ab ,所以(2a b+3ab )+a=ab+3b ,(3)因(2y -2)·(xy )=x 3y -2xy ,所以(x 3y -2xy )÷(xy)= 2y -2 共同分析得出:(1)(ad+bd )÷d=a+b=(ab)÷d+(bd)÷d(2)(2a b+3ab )÷a=ab+3b=(2a b)÷a+(3ab)÷a(3)(x 3y -2xy )÷(xy)= 2y -2=(x 3y )÷(xy)-(2xy)÷(xy)2、法则:多项式除以多项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
《新课程课堂同步练习册·数学(华东版八年级上)》参考答案 第12章 数的开方§12.1平方根与立方根(一) 一、 1.B 2.A 3.B二、1. ±7 2. ±2, 3.-1; 4.0三、1.从左至右依次为: ±3,±4,±5, ±6,±7,±8,±9,±10,±11,±12,±13,±14,±15.2.(1)±25 (2)±0.01 (3)45± (4)29± (5)±100 (6) ±23.(1)±0.2 (2)±3 (3)79±(4) 17±4.(1)a >-2 (2)a =-2 (3)a <-2. §12.1平方根与立方根(二) 一、1.D 2.A 3.C二、1. 14±,142.(1)25.53 (2)4.11 4. 0或1.三、1.(1)80 (2)1.5 (3)114 (4)3;2.(1)-9 (2) 12± (3)4 (4)-53.(1)2.83 (2)28.09(3)-5.34 (4)±0.47.4. 正方形铁皮原边长为5cm . §12.1平方根与立方根(三) 一、1.D 2.A 3.C二、,-3 2. 6,-343 3.-4 4. 0,1,-1.三、1.(1)0.4 (2)-8 (3)56( 4)112- (5)-2 (6)100;2.(1)19.09(2)2.652(3)-2.098(4)-0.9016;3. 63.0cm 2;4.计算得:0.5151,5.151,51.51,515.1,得出规律:当被开方数的小数点向左(右)每移动2位,它的平方根的小数点就向左(右)移动1位.5151.§12.2实数(一) 一、1.B 2.C二、1. 略 2. ≥12-.三、1.(1)√(2)×(3)√(4)×(5)×(6)×(7)√(8)×;2.有理数集合中的数是:13,3.1415,2-5,0,⋅⋅43.6,0.8π,0.1010010001…; 3.A 点对应的数是-3,B 点对应的数是-1.5,C D E 点对应的数是π. §12.2实数(二) 一、 1.C 2.B 3.B二、1. (11(2)2三、1.(1)(2)--(3)12.(1)7.01 (2)-1.41 (3)2.743.略4. 7第13章 整式的乘除§13.1幂的运算 (一)一、1.C 2.B 3.D 二、1.1010 2. 6 ,8 3. 9三、1.(1)10a (2)9a (3)6a (4)10()x y + (5)82x (6)51n b+2.可进行1410次运算 3. 2 §13.1幂的运算(二) 一、1.D 2.B 3.C二、1.10m ,18x 2.14x 3.62y ;4. 2三、1.(1)9a (2)21x (3)215a (4)123a (5)0 (6) 23n a + 2.b >a >c§13.1幂的运算(三) 一、1. C 2.D 3.A二、1. 4109x y ,96318a b c 2. 44m ,54a b 3. 216三、1.(1) 3327x y (2)464x y (3) 85a (4)927a2. (1) 1- (2) 3 3.x =5 4.52 §13.1幂的运算(四) 一、1.C 2.A 3.B二、1.8a ,2a 2. y ,5y 3.22x y ,5x -三、1.(1)3a (2)3m (3) 5x - (4) 4x (5)1 (6) 4y 2. 12x y == §13.2 整式的乘法(一) 一、1.B 2.D 二、1.232x y 2.-5412x y z 3.5312x y - 三、1.(1)1254a b (2)-23x y (3)-4044a b (4)-18628a b c (5)10()x y - (6)3.6⨯1710 2.2.37⨯710 3. 11,,23a b c ==-=-§13.2整式的乘法(二)一、1.B 2.C二、1.263m n mn -,4362x x -+ 2.1832a b -2723a b ,33a b +3. 3223122a b a b ab -+,32232212812x y x y x y -- 三、1.(1)2155x xy - (2)3222612a b a b -+ (3) 3223423x y x y xy -+(4) 42241827m n m n - (5)222322a b a b - (6)222x y xy + 2. 12x =-3.提示:n (2n +1)-2n (n -1)=2n ²+n -2n ²+2n =3n . §13.2整式的乘法(三) 一、1.B 2.D 3.C二、1.22124m mn n -- 2.22276x xy y -+ 3.-6三、 1.(1)221x x +- (2)249x - (3)2456x x -- (4)22672m mn n -+-(5)48x + (6)2278x y + 2. -3§13.2整式的乘法(四) 一、1.D 2.B 3.C二、1.-2 2. 2 3.2(123)x cm - ,233cm 三、1. 化简得252x x --,多项式的值为14- 2.(1)x =5 (2)6x <3.(1)①2710x x ++②2710x x -+③2310x x --④2310x x +- (2)2()x a b x ab +++ (3)①21128x x ++ ②26m m +-§13.3 乘法公式(一) 一、1.C 2.B二、1.22925a b -,229x y -; 2.2249b a -,224x y -; 3. 22()()a b a b a b +-=- 三、1.(1)229a b - (2)22161y x -(3) x 2-9y 2 (4) x 2-4 (5) 2mn (6) 5x -9 2.(1) 44a -, 8 (2)25x -, -26 §13.3乘法公式(二)一、1.A 2.D 3.C 二、1. 5 2. 1 ,89993.3x y + 三、1.(1)2125y - (2)29y (3)2121a a +- (4)81x - (5)9999 (6)8359992.1282§13.3乘法公式(三) 一、1.A 2.D 3.A二、1.2244m mn n -+,2244x xy y -+ 2.224493a ab b ++,2214a ab b -+ 3.222()2a b a ab b -=-+三、1.(1)2961m m ++ (2)21424x x -+(3)229124x xy y ++(4) 224129x xy y --- (5)9604 (6) 121042.(1) 23x -,6 (2) 22a b -,21 3.1528 §13.3乘法公式(四) 一、1.B 2.C二、1.924x -,2441a a ++;2.6±;3. 6x ±或4814x 三、1.(1)42242x x y y -+ (2)31x -+ (3)2319a a -+ (4)8xy 2(1)2 (2)3 §13.4整式的除法(一) 一、1.D 2.B 3.B二、1.42x ,5xy - 2. 34mn ,25()x y - 3. 4 ,3 三、1.(1) 2x (2)4m - (3) 224x y (4) 54ab 2.225a b -,-1 ;3. 45.410⨯倍 §13.4整式的除法(二) 一、1.C 2.C 3.C二、1.32a b - 2.24x -+ 3. 4m -2n 三、1.(1)2322x xy -(2)222m n mn - (3)2351m m -+ (4)23212ab b -+- 2.(1)2ab -,1 (2) xy -,5 3.2,4x y ==- ,-24 §13.4整式的除法(三)一、1.B 2.C二、1.27510⋅⨯ 2.221510x y xy - 3.(464)a b ab ++cm 三、1.(1) 23()x y + (2) -b (3)5463x y - (4)22x - 2.14x ≤- 3. 429156x x x -+ §13.4整式的除法(四) 一、1.C 2.B 3.A二、1.2233ab b -+- 2.-5 3.18,4 三、1.(1)422a b a b +(2)2322x x --+ (3)123y x - (4) 261a b -2.(1) 任一单项式与它前面的单项式的商都为2x - (2)10512x - §13.5因式分解(一)一、1.D 2.B二、1. ab 2.a (a -2) ,3xy (4x -1) 3.-12三、1.(1)a (a +2b ) (2)3ab(b-2a-3) (3)(x -2) (6-x ) (4)3x (a +b )(a +b -2y )(5)2x 2(x -5)(6)x (x +4) 2. (1)220 (2) 2.732 §13.5因式分解(二)一、1.A 2.A 3.D二、1.-(x -2y )2,3 (a -4)2 ;2.②③④⑤; 3.(x -3) 三、1.(1)(x +2y )(x -2y ) (2)(9+m)(9-m) (3)(m -5)2 (4)(3a+4b)2(5)3(x +4)(x -4) (6)(x +y )2(x -y )2 (7)(x -2)2 (8)(2a -3b )2 2. (1)2000 (2) 59853.∵4x 2-4x +2= 4x 2-4x +1+1=(2x-1)2+1>0, ∴ 4x 2-4x +2的值恒为正数.第14章 勾股定理§14.1 勾股定理(一)一、1.B 2.D 二、1.(1)13 (2)12 (3)24 (4)63 2. 2 3. 1三、1.30cm 2 2.28米 3.AB=§14.1 勾股定理(二) 一、1.B 2.D 3.D 二、1. a ²+c ²=b ² 2.13603.5 三、1. 略 2. 169 cm 2 3.36 §14.1 勾股定理(三)一、1.C 2.B 3.C 二、1. 6.93 2. 3.2 3. 5三、1. 1米 2. 2.2米 3.(略) §14.1 勾股定理(四)一、1.B 2.C 3.B二、1.22`1 2. 10三、1. 提示:利用勾股定理的逆定理检验2.(1)面积为12.5,周长为1851320+++ (2)∠BCD 不是直角 3.∵a 2+b 2=(n 2-1)2+(2n)2 =n 4-2n 2+1+4n 2 =n 4+2n 2+1=(n 2+1)2 ∴ a 2+b 2=c 2 ∴ △ABC 是直角三角形 §14.2 勾股定理的应用(一) 一、1.A 2.D二、三、1. BF=12,AD=13,ED=2.6 2.略; 3. 10. §14.2 勾股定理的应用(二) 一、1. 12≤a ≤13 2.8153. 150 二、1. 34海里 2. 因为小汽车的速度为72千米/时 ,所以小汽车超速 3.996.9m 2第15章 平移与旋转§15.1平移(一)一、1.D 2.C 3.B二、1.B B '的方向 线段B B '的距离(答案不唯一) 2.形状 大小 位置 3.2cm 三、1.略 2.图略 §15.1平移(二)一、1.D 2.D 3.C二、1.A , Q 2. 72° 3. 7,7三、1.CF=4cm CD=3cm DF=3 cm EF=2 cm 2.图略3.(1)图略(2)重叠部分的面积与原长方形ABCD 面积的41§15.1平移(三) 一、1.D 2.C二、1. 13㎝ 2.B B ' ,C C ',D D ';B A '',D C '' ,CD ,不能 3.相等,相等三、1.图略 ;2.(1)相等,理由如下:由题意可知,AB ∥CD ,AD ∥BC ,所以∠DAC=∠BCA ,∠BAC=∠ACD ,所以∠B=∠D 3.4个 ,9个 §15.2旋转(一) 一、1.D 2.C二、1.中心 ,方向 ,角度 2.180°3.点C,∠ACD(答案不唯一)的度数,D 、E ,EC ,∠DCE三、1.(1)点A , 60° (2)AC 边上的中点(3)等边三角形2.能 ,点A , 120°3.(1)垂直 (2)13㎝2§15.2旋转(二) 一、1.C 2.D 3.B二、1.中心,角度,距离 2.点B ,点C ,BC 边的中点3. 4,△ABO 与△CDO 、△ADO 与△CBO 、△ABC 与△CDA 、△ABD 与△CDB4.60三、1.略 2.略§15.2旋转(三)一、1.C 2.D 3.B 二、1.略 2.120 3.2π三、1.(1)点D (2)正方形 , 64 (3)30C DC '∠=,CDA '∠=60° 2.略§15.2旋转(四) 一、1.B 2.C二、1.轴对称,平移,旋转 2.B , D ,旋转3.线段的中点 , 180°,对角线的交点, 90°,180°,270°,圆心 ,任何度数4. 4.5 三、1.图略 2.CG=CE ,理由如下:由题意可知,DE=BF=BG ,∵四边形ABCD 是正方形,∴BC=CD=AD=AB ,∵CG=BC-BG ,CE=CD-DE ,∴CG=CE §15.3中心对称(一) 一、1.B 2.D二、1. A ,B 2.略 3. HINOXZ, BCHIMOUX , HIOX三、1.图略 2.能,对称中心是点C ,对应线段有:DC 与CE ,AD 与EF ,AB 与GF ,BC 与GC ;对应角有:∠D 与∠E ,∠A 与∠F ,∠B 与∠G ,∠DCB 与∠GCB 3.图略 4.图略 §15.3中心对称(二) 一、1.A 2.B二、1.OA=OD ,OB=OC 2.2㎝ , 1.5㎝ 3.关于点O 成中心对称 三、1.图略; 2.图略; 3.图略 , 成中心对称 ; 4. 图略 §15.4图形的全等 一、1.C 2.B二、1.12; 2.55; 3.120 , 4 ; 4.①②③④三、1.(1)△ADE ≌△ABC ,对应边有:AB 与AD , BC 与DE , AC 与AE ,对应角有:∠BAC 与∠DAE ,∠B与∠D ,∠C 与∠E (2)∠C=30° ∠B=110° ∠BAE=100°2.(1)AC=BD AO=OB OC=OD (2)∠D=32° (3)AC ∥BD ,∵AO=OB ,CO=OD , ∴ △AOC 与△BOD 是关于点O 成中心对称的, ∵AC ∥BD.3.CD=3㎝第16章 平行四边形§16.1平行四边形的性质(一) 一、1.D 2.B 3.B二、1.110,70,110 2.120,60 3.115°三、1. ∠A=50°,∠B=130°,∠C=50°,∠D=130°;2. ∠ADE=30°,∠EDF=60°,∠FDC=30°.3. AE⊥BE,∵∠DAB+∠ABC=180°,∴12∠DAB+12∠ABC=90°,即∠EAB+∠ABE=90,∴∠AEB=90°,即AE⊥BE§16.1平行四边形的性质(二)一、1.D 2.C二、1.2cm 2.16 3.5,7三、1. 21cm 2. 8cm;3.8cm§16.1平行四边形的性质(三)一、1.B 2.D二、1.10 2.40° 3.7.三、1. 24cm; 2. 略; 3.略§16.1平行四边形的性质(四)一、1.B 2.B二、1.55 2.3 3.100°,80°三、1.16 2. 略§16.2矩形、菱形与正方形的性质(一)一、1.C 2.A 3.B二、1.7 2.28 3.90,45三、1. 2cm; 2. 5cm 3.45°§16.2矩形、菱形与正方形的性质(二)一、1.A 2.B二、1.32 cm 2.60°,120°, 60°,120° 3.30 4.5三、1. 8cm;2. 面积24cm2,周长20cm3.60°,120°,60°,120°.§16.2矩形、菱形与正方形的性质(三)一、1.C 2.B二、1.22.5° 2.67.5三、1.15°;2. 提示:因为四边形EFOG为矩形,所以EF=OG,只要说明EG=GB即可. §16.2矩形、菱形与正方形的性质(四)一、1.D 2.B二、1.4cm 2.5cm 3.1 4.12三、1.20cm 2.150° 3.(1)提示:∠FBC=∠BCE=45°(2)AE=DF ,理由略. §16.3 梯形的性质(一) 一、1.D 2.C二、1. 60 2.10 3. 26 4.110 三、1. 60°,120°, 60°,120° ;2. 24cm §16.3 梯形的性质(二) 一、1.B 2.B二、1.6 2.9 3. 5<a <13三、1.(1)等边三角形,理由略 (2)25; 2. 108°,72°,108°,72° ; 3.(1)略 (2)∠A=108°,∠B=72°,∠C=72°,∠ADC=108°4.∵CE ∥BD ,AE ∥DC ,∴四边形BECD 是平行四边形,∴DB=CE ,又∵梯形ABCD 是等腰梯形,∴AC=BD ,∴AC=CE ,即三角形CAE 是等腰三角形5.2(10cm。
整式的除法整式的除法是指将一个多项式被另一个多项式除,得到商和余数的过程。
具体步骤如下:1. 将被除式和除式按照降幂的顺序排列。
2. 将两个多项式的最高次项对齐,即将高次项的系数乘以一个倍数,使得两个多项式的最高次项的系数相等。
3. 用被除式的最高次项去除以除式的最高次项,得到商的最高次项的系数。
4. 将此商的最高次项乘以除式,然后与被除式进行相减,得到一个新的多项式。
5. 重复以上步骤,直到剩余的多项式的次数小于除式的次数为止。
6. 最后剩下的多项式即为余数,而之前得到的各次的商的系数组成的多项式即为商。
例如,计算多项式 (4x^3 + 3x^2 - 2x + 1) 除以 (2x^2 -x + 3) 的过程如下:最高次项对齐,即 (4x^3 + 3x^2 - 2x + 1) 除以 (2x^2 -x + 3)。
首先用被除式的最高次项 4x^3 除以除式的最高次项 2x^2,得到商的最高次项系数 2x。
然后将 2x 乘以除式,得到 4x^3 - 2x^2 + 6x。
将这个新的多项式与被除式相减,得到 (3x^2 - 8x + 1)。
接着用被除式的最高次项 3x^2 除以除式的最高次项 2x^2,得到商的次高次项系数 1.5,即1.5x。
将 1.5x 乘以除式,得到 3x^2 - 1.5x + 4.5。
将这个新的多项式与被除式相减,得到 (-9.5x - 3.5)。
用被除式的最高次项 -9.5x 除以除式的最高次项 2x^2,得到商的次次高次项系数 -4.75,即-4.75x。
将 -4.75x 乘以除式,得到 -9.5x^2 + 4.75x - 14.25。
将这个新的多项式与被除式相减,得到 (10x - 12.75)。
最后剩下的多项式 10x - 12.75 即为余数,而之前得到的各次的商的系数组成的多项式 2x + 1.5 + (-4.75) 即为商。
因此,多项式 (4x^3 + 3x^2 - 2x + 1) 除以 (2x^2 - x + 3) 的结果为商:2x + 1.5 + (-4.75) 余数:10x - 12.75。
14.1.4.5同底数幂的除法一、学习目标:1、单项式除以单项式的运算法则及其应用。
2、多项式除以单项式的运算法则及其应用。
二、学习重点:熟练运用单项式除以单项式的运算法则进行计算三、学习难点:会将多项式除以单项式的运算转化成单项式除以单项式的运算,进一步体会转化思想在数学中的重要作用。
四、学习过程: (一)复习引入: 1、同底数幂的乘法法则是:____mnaa =(m n 、都是正整数)2、单项式乘以多项式的运算法则是什么?3、填空:(1)2a ·4a 2=( ) (2)3xy ·2x 2=( ) (3)3ab 2·4a 2x 3=( ) (4)m ·(a+b )=( ) (5)a ·(a+b)=( ) (6)2xy ·(2x+y)=( )(二)、新知探究:整式的除法 探究一:单项式除以单项式:1、根据除法与乘法互为逆运算,由“复习引入”第3题(1)—(3)的结果填空:(1)382_____;a a ÷= (2)363___;x y xy ÷= (3)3232123____.a b x ab ÷= 2、归纳:单项式除以单项式的法则单项式相除,把 与 分别相除作为商的因式,对于只在被除式里含有的 ,则连同它的指数作为商的一个因式.探究二:多项式除以单项式1、由“复习引入”第3题(4)—(6)的结果填空(1)—(3),独立计算完成(4)—(6):(1)(am+bm)÷m= (4)am ÷m+bm ÷m= (2)(a 2+ab)÷a= (5)a ÷a 2+ab ÷a 2= (3)(4x 2y+2xy 2)÷2xy= (6)4x 2y ÷2xy+2xy 2÷2xy=2、思考:对比(1)与(4)、(2)与(5)、(3)与(6)的计算结果,看看发现什么结论?3、归纳:多项式除以单项式的法则多项式除以单项式,先把这个多项式的 除以这个单项式,再把所得的 相 。
整式的除法例1. 计算:(1);(2);(3) a a ÷4()()25ab ab ÷88m m ÷例2. 计算(1);(2) y x y x 324728÷⎪⎭⎫ ⎝⎛÷z xy z y x 3432361例3. 计算:;()x x x x 41262034÷+-例4 计算: ()()abz abz z b a z b a -÷-+-23253355A 档(巩固专练)1.下列计算不正确的是( ).(A)x 3m ÷x 3m -1=x (B)x 12÷x 6=x 2(C)x 10÷(-x)2÷x 3=x 5 (D)x 3m ÷(x 3)m =12.如果将a 8写成下列各式,那么正确的有( ).①a 4+a 4 ②(a 2)4 ③a 16÷a 2 ④(a 4)2 ⑤(a 4)4 ⑥a 4·a 4 ⑦a 20÷a 12 ⑧2a 8-a 8(A)7个 (B)6个 (C)5个 (D)4个3.28a 4b 2÷7a 3b 的结果是( ).(A)4ab 2 (B)4a 4b (C)4a 2b 2 (D)4ab4.25a 3b 2÷5(ab)2的结果是( ).(A)a (B)5a (C)5a 2b (D)5a 25.下列计算正确的是( ).(A)(-3x n +1y n z)÷(-3x n +1y n z)=0 (B)(15x 2y -10xy 2)÷(-5xy)=3x -2y(C) (D) x xy xy y x 216)63(2=÷-231123931)3(x x x x x n n n +=÷+-++6.已知7x 5y 3与一个多项式之积是28x 7y 3+98x 6y 5-21x 5y 5,则这个多项式是( ).(A)4x 2-3y 2 (B)4x 2y -3xy 2(C)4x 2-3y 2+14xy 2 (D)4x 2-3y 2+7xy 37.下列计算中正确的是( ).(A)x a +2÷x a +1=x 2 (B)(xy)6÷(xy)3=x 2y 2(C)x 12÷(x 5÷x 2)=x 9 (D)(x 4n ÷x 2n )·x 3n =x 3n +28.若(y 2)m ·(x n +1)÷x·y =xy 3,则m ,n 的值是( ).(A)m =n =1 (B)m =n =2(C)m =1,n =2 (D)m =2,n =19.的结果是( ). )21(43224yz x z y x -÷-(A)8xyz (B)-8xyz (C)2xyz (D)8xy 2z 210.下列计算中错误的是( ).(A)4a 5b 3c 2÷(-2a 2bc)2=ab (B)(-24a 2b 3)÷(-3a 2b)·2a =16ab 2(C) (D) 214)21(4222-=÷-⋅y x y y x 3658410221)()(a a a a a a =÷÷÷÷B 档(提升精练)一、填空题1.直接写出结果:(1)(-a 5)÷(-a)3=_______; (2)-a 4÷(-a)2=_______;(3)x 10÷x 4÷x 2=_______; (4)10n ÷10n -2=_______;(5)(a 3)m ÷a m =_______; (6)(y -x)2n ÷(x -y)n -1=_______.2.若2(x -2)0有意义,则x______________.二、计算题1.(a 6)2÷a 5. 2.(x 2)3÷(x 3)2.3.(ab 2)4÷(ab 2)2. 4.[(a 2)3]4÷a 5.5.x 4m ÷x m ·x 2m . 6.(x 3·x 2·x 2)÷x 6.三、计算题1.[(x 3)2·(-x 4)3]÷(-x 6)3. 2.(x m ·x 2n )2÷(-x m +n ).3.(m -2n)4÷(2n -m)2. 4.(m -n)4÷(n -m)3.四、计算题1.-8x 4÷3x 2. 2.(-12a 5b 2c)÷(-3a 2b).3. 4. .2383342ab b a ÷.5.0)21(2242y x y x ÷-5.10a 3÷(-5a)2. 6.(4x 2y 3)2÷(-2xy 2)2.五、计算题1.(1.2×107)÷(5×104). 2.(2a)3·b 4÷12a 3b 2.3.7m 2·(4m 3p 4)÷7m 5p . 4.(-2a 2)3[-(-a)4]2÷a 8. 5. 6. ].)(21[)(122+++÷+n n y x y x ⋅⨯⨯m mm m 42372六、计算题1. .53)1095643(354336ax ax x a x a ÷-+-2.[2m(7n 3m 3)2+28m 7n 3-21m 5n 3]÷(-7m 5n 3).3.[(m +n -p)(m +p +n)-(m +n)2]÷(-p).七、计算题1.[(m +n)(m -n)-(m -n)2+2n(m -n)]÷4n .2. .9]31)3(2)3[(8723223242y x y y x x x y x ÷⋅-⋅-八、(1)已知10m =3,10n =2,求102m -n 的值. (2)已知32m =6,9n =8,求36m -4n 的值.九、 学校图书馆藏书约3.6×104册,学校现有师生约1.8×103人,每个教师或学生假期平均最多可以借阅多少册图书?十、先化简,再求值:[5a 4·a 2-(3a 6)2÷(a 2)3]÷(-2a 2)2,其中a =-5.C 档(跨越导练)1.直接写出结果:(1)[(-a 2)3-a 2(-a 2)]÷(-a )2=____________;(2)(-81x n +5+15x n +1-3x n -1)÷(-3x n -1)=_____________;(3)(____________)·(-4x 2y 3)=8x 5y 4-2x 4y 5-12x 2y 7.2.若M (a -b )3=(a 2-b 2)3,那么整式M =____________.3.若2x =3,2y =6,2z =12,求x ,y ,z 之间的数量关系.4.若(a -1)a =1,求a 的值.5.已知,,那么P ,Q 的大小关系怎样?为什么? 999999=P 909911=Q 6.若,求m ,n 的值. 22372288b b a b a n m =÷7.已知x 2=x +1,求代数式x 5-5x +2的值.8.当,b =-1时,求(a 2b -2ab 2-b 3)÷b -(a +b )(a -b )的值. 21=a 9.已知多项式A =1343x -258,B =x 2+5x -1,C =2x 3-10x 2+51x -259,D =2x 5-x 3+6x 2-3x +1,你能用等号和运算符号把它们连接起来吗?整式的除法参考答案例1. 解:(1) 3144a aa a ==÷-(2) ()()()()3332525b a ab ab ab ab ===÷- (3) 108888===÷-m mm m 例2. 解:(1)()xy y x y x y x 47287281234324=⋅⋅÷=÷-- (2) y x z y x z xy z y x 21134133439123612361=⎪⎭⎫ ⎝⎛÷=⎪⎭⎫ ⎝⎛÷---例3. 解:()323541246420412620233434+-=÷+÷-÷=÷+-x x x x x x x x x x x x例4. 解:()()()()()13553553552422325323253+-=-÷--÷+-÷-=-÷-+-z ab b a abz abz abz z b a abz z b a abz abz z b a z b aA 档(巩固专练)1.B 2.C 3.D 4.B 5.D 6.C 7.C 8.D 9.A 10.DB 档(提升精练)一、填空题1.(1)a 2;(2)-a 2;(3)x 4;(4)100;(5)a 2m ;(6)(x -y)n +1 2.x ≠2.二、计算题1.a 7 2.1 3.a 2b 4 4.a 19 5.x 5m 6.x三、计算题1.1 2.-x m +3n 3.m 2-4mn +4n 2 4.-m +n四、计算题1. 2.4a 3bc 3. 4.-y 2 5. 6.4x 2y 2 238x -ab 41a 52五、计算题1.240 2.3.4p 3 4.-8a 6 5.2(x +y)n +1 6.1. 232b 六、计算题1. 2.-14m 2n 3-4m 2+3. 3.p .23245225x x a a -+-七、计算题1. m -n . 2.-1八、(1);(2). 29827九、 20册十、 -25.C 档(跨越导练) 1.(1)-a 4+a 2;(2)27x 6-5x 2+1;(3) .32124223y y x y x ++-2.(a +b )33.2y =x +z .4. a =0或a =2.5. P =Q6. m =4;n =3.7.58.1.9.B ·C +A =D .。
整式的除法整式的除法是指对两个多项式进行除法运算,得到商式和余式的过程。
首先,将被除式和除式按照一定的顺序排列,通常是按照指数的降序排列。
例如,要计算多项式P(x)除以多项式Q(x),可以按照以下步骤进行:1. 检查P(x)和Q(x)的次数。
如果被除式的次数小于除式的次数,则商式为0,余式为被除式。
2. 将被除式的首项与除式的首项相除,得到商式的首项。
3. 将得到的商式的首项乘以除式的所有项,并将结果与被除式进行减法运算,得到一个新的多项式。
4. 检查新的多项式的次数,重复步骤2和步骤3,直到新的多项式的次数小于除式的次数。
5. 重复步骤2和步骤3,直到不能再进行除法运算为止。
此时,得到的商式为所有商式的和,余式为最后剩下的多项式。
例如,将多项式P(x)=3x^3+2x^2+5x-6除以多项式Q(x)=x^2+2x-3,可以按照以下步骤进行:1. P(x)的次数为3,Q(x)的次数为2,可以进行除法运算。
2. 将P(x)的首项3x^3与Q(x)的首项x^2相除,得到商式的首项为3x。
3. 将3x乘以Q(x)的所有项,得到3x^3+6x^2-9x。
4. 将得到的多项式与P(x)进行减法运算,得到新的多项式6x^2+14x-6。
5. 新的多项式的次数为2,继续进行除法运算。
6. 将6x^2与Q(x)的首项x^2相除,得到商式的次项为6x。
7. 将6x乘以Q(x)的所有项,得到6x^2+12x-18。
8. 将得到的多项式与新的多项式进行减法运算,得到新的多项式2x+12。
9. 新的多项式的次数为1,继续进行除法运算。
10. 将2x与Q(x)的首项x相除,得到商式的次项为2。
11. 将2乘以Q(x)的所有项,得到2x+4。
12. 将得到的多项式与新的多项式进行减法运算,得到新的多项式8。
13. 新的多项式的次数为0,无法进行除法运算,得到的商式为3x+6,余式为8。
因此,多项式P(x)除以多项式Q(x)的结果为商式为3x+6,余式为8。
可编辑修改精选全文完整版第十四章整式乘法与因式分解单元教学第一篇:第十四章整式乘法与因式分解单元教学第十四章整式的乘法与因式分解单元教学计划14.3因式分解。
小结复习。
一、教学内容:14.1整式的乘法。
14.2乘法公式。
二、教学目标:知识与技能:1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。
使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。
2、使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。
3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运算运算律与乘法公式简化运算4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。
过程与方法:1、通过探索、猜测,进一步体会学会推理的必要性,发展学生过程与方法〕初步推理归纳能力;2、通过揭示一些概念和法则之间的联系,对学生进行创新精神和实践能力的及主观能动培养.情感态度与价值观:1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主、合作精神,激发学生乐于探索的热情。
三、教学重点:掌握整式的乘法公式。
四、教学难点:掌握因式分解的方法。
五、课时分配:教学时间约需 14 课时,具体分配如下:14.1整式的乘法6课时。
14.2乘法公式3课时。
14.3因式分解3课时。
小结复习2课时。
第二篇:因式分解与整式乘法的关系因式分解与整式乘法的关系【知识点】整式乘法与因式分解一个是积化和差,另一个是和差化积,是两种互逆的变形.即:多项式整式乘积【练习题】1.下列因式分解正确的是①②③④⑤2.下列因式分解正确的是①②③④⑤3.下列因式分解正确的是①②③④⑤4.下列因式分解正确的是①②③④⑤5.下列因式分解正确的是①②③④⑤6.下列因式分解正确的是①②③④⑤答案1.1;22.1;3;53.4;54.3;45.2;46.1;3;57.第三篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
第十四章 整式的乘法与因式分解14.1 整式的乘法 14.1.4 整式的乘法第3课时 整式的除法....(2)x 6·x 4=______; (3)2m ×2n =______. 即28÷23=________ =2( )=x 10, 即x 10÷x 6=________ =x ( )2n =2m+n , 即2m+n ÷2n =________ =2( )a m ÷a n(m,n 都是正整数,且m>n)?a m ÷a n =a m-n (a ≠0,m,n 都是正整数,且m>n), ______,指数_______. ≠0),即任何不等于0的数的0次幂都等于_______. )0 C .1 D .2 -y)5÷(y -x)2.方法总结:掌握整式的除法的运算法则是解题的关键,注意在计算过程中,有乘方的先算乘方,再算乘除.问题2若已知该油画的面积为列式:_____________________ 算一算:am ÷m+bm故____________________=am,则1.下列说法正确的是( )A.(π-3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103 D.若(x+4)0=1,则x≠-42.下列算式中,不正确的是( )A.(-12a5b)÷(-3ab)=4a4 B.9x m y n-1÷3x m-2y n-3=3x2y2C.4a2b3÷2ab=2ab2 D.x(x-y)2÷(y-x)=x(x-y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为()A.m=4,n=3 B.m=4,n=1 C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式-7x5y4的积为21x5y7-28x6y5,则这个多项式是_________6.计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)-21a2b3c÷3ab; (4)(14m3-7m2+14m)÷7m.7.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=1,y=-3.拓展提升8.(1)若32•92x+1÷27x+1=81,求x的值;(2) 已知5x=36,5y=2,求5x-2y的值;(3)已知2x-5y-4=0,求4x÷32y的值.。
14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 .5.某市环保局欲将一个长为2×103 dm ,宽为4×102 dm ,高为8×10 dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x 2y)2·(-23xyz)·34xz 2; (2)(-4ab 3)(-18ab)-(12ab 2)2.9.先化简,再求值:2x 2y·(-2xy 2)3+(2xy)3·(-xy 2)2,其中x =4,y =14.10.已知(-2ax b y 2c )(3x b -1y)=12x 11y 7,求a +b +c 的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( ) A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A.3xy B.-3xy C.-1 D.18.一个拦水坝的横断面是梯形,其上底是3a2-2b,下底是3a+4b,高为2a2b,要建造长为3ab的水坝需要多少土方?9.计算:2xy2(x2-2y2+1)=.10.计算:-2x(3x2y-2xy)=.中档题11.要使(x2+ax+5)(-6x3)的展开式中不含x4项,则a应等于( )A .1B .-1C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x -5y)(3x -y)=2x·3x +2x· +(-5y)·3x +(-5y)· = . 3.计算:(1)(2a +b)(a -b)= ;(2)(x -2y)(x 2+2xy +4y 2)= . 4.计算:(1)(3m -2)(2m -1); (2)(3a +2b)(2a -b);(3)(2x -3y)(4x 2+6xy +9y 2); (4)a(a -3)+(2-a)(2+a).5.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.6.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( )A .6x 3-5x 2+4xB .6x 3-11x 2+4xC .6x 3-4x 2D .6x 3-4x 2+x +4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为34a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是 平方厘米.8.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了 平方米. 9.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-3 16.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A ,B ,C 三类卡片若干张,拼出了一个长为2a +b 、宽为a +b 的长方形图形.请你通过计算求出小思同学拼这个长方形所用A ,B ,C 三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A .-4x 2B .-4x 4C .-4x 6D .4x 610.(黔南中考)下列运算正确的是(D)A .a 3·a =a 3B .(-2a 2)3=-6a 5C .a 3+a 5=a 10D .8a 5b 2÷2a 3b =4a 2b11.计算:(1)2x 2y 3÷(-3xy); (2)10x 2y 3÷2x 2y ; (3)3x 4y 5÷(-23xy 2).12.计算(6x 3y -3xy 2)÷3xy 的结果是( )A .6x 2-yB .2x 2-yC .2x 2+yD .2x 2-xy13.计算:(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.14.计算:310÷34÷34= . 中档题15.下列说法正确的是( )A .(π-3.14)0没有意义B .任何数的0次幂都等于1C .(8×106)÷(2×109)=4×103D .若(x +4)0=1,则x ≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = . 18.已知(x -5)x =1,则整数x 的值可能为 . 19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h,一架喷气式飞机的速度为1.8×106 m/h,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=1,y=-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法 第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4.2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z. (2)5a 2·(3a 3)2. 解:原式=5a 2·9a 6 =45a 8. 4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3. 6.3x 5y 4z . 7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2;解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3.(2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4.9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7 =-8x 5y 7.当x =4,y =14时,原式=-12.10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7. ∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C 2.D 3.C 4.计算:(1)(2xy 2-3xy)·2xy ; 解:原式=2xy 2·2xy -3xy·2xy =4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a)=a 3b 3+43a 3b 2.(3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1) =-2a 2b 2+6a 2b 3+2ab. (4)(34a n +1-b2)·ab. 解:原式=34a n +1·ab -b 2·ab=34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14. 6.C 7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3.答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方. 9.2x 3y 2-4xy 4+2xy 2. 10.-6x 3y +4x 2y .12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b) =(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x 2-8x +15;(2)x 2-2x -24.12.-5.13.(1)(x +1)(x +4);解:原式=x 2+5x +4.(2)(m +2)(m -3);解:原式=m 2-m -6.(3)(y -4)(y -5);解:原式=y 2-9y +20.(4)(t -3)(t +4).解:原式=t 2+t -12.14.x 2-9xy +8y 2.15.B16.20x 2.17.2.18.(1)(a +3)(a -2)-a(a -1);解:原式=a 2-2a +3a -6-a 2+a=2a -6.(2)(-7x 2-8y 2)·(-x 2+3y 2);解:原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x-2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4. (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa 2 =12h +2H. 答:需要(12h +2H)个这样的杯子.。