2020年北京届高三最新模拟试题分类汇编专题:统计(2页)
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
18.某花卉企业引进了数百种不同品种的康乃馨,通过试验田培育,得到了这些康乃馨种子在当地环境下的发芽率,并按发芽率分为8组:[0.486,0.536),[0.536,0.586),…,[0.836,0.886)加以统计,得到如图所示的频率分布直方图.企业对康乃馨的种子进行分级,将发芽率不低于0.736的种子定为“A 级”,发芽率低于0.736但不低于0.636的种子定为“B 级”,发芽率低于0.636的种子定为“C 级”.(Ⅰ)现从这些康乃馨种子中随机抽取一种,估计该种子不是“C 级”种子的概率; (Ⅱ)该花卉企业销售花种,且每份“A 级”、“B 级”“C 级”康乃馨种子的售价分别为20元、15元、10元.某人在市场上随机购买了该企业销售的康乃馨种子两份,共花费X 元,以频率为概率,求X 的分布列和数学期望;(Ⅲ)企业改进了花卉培育技术,使得每种康乃馨种子的发芽率提高到原来的1.1倍,那么对于这些康乃馨的种子,与旧的发芽率数据的方差相比,技术改进后发芽率数据的方差是否发生变化?若发生变化,是变大了还是变小了?(结论不需要证明). 18.(本小题满分14分)解:(Ⅰ)设事件M 为:“从这些康乃馨种子中随机抽取一种,且该种子不是“C 级”种子”, ……………… 1分 由图表,得(0.4 1.2 4.0 6.0 4.4 1.20.4)0.051a +++++++⨯=,解得 2.4a =. ……………… 2分 由图表,知“C 级”种子的频率为(0.4 1.2 2.4)0.050.2++⨯=, ………… 3分故可估计从这些康乃馨种子中随机抽取一种,该种子是“C 级”的概率为0.2. 因为事件M 与事件“从这些康乃馨种子中随机抽取一种,且该种子是“C 级”种子”为对立事件,所以事件M 的概率()10.20.8P M =-=. ……………… 5分(Ⅱ) 由题意,任取一种种子,恰好是“A 级”康乃馨的概率为(4.4 1.20.4)0.050.3++⨯=, 恰好是“B 级”康乃馨的概率为(4.0 6.0)0.050.5+⨯=,恰好是“C 级”的概率为(0.4 1.2 2.4)0.050.2++⨯=. ……………… 7分 随机变量X 的可能取值有20,25,30,35,40,且(20)0.20.20.04P X ==⨯=, (25)0.20.50.50.20.2P X ==⨯+⨯=,(30)0.50.50.30.20.20.30.37P X ==⨯+⨯+⨯=, (35)0.30.50.50.30.3P X ==⨯+⨯=,(40)0.30.30.09P X ==⨯=. ……………… 9分 所以X 的分布列为:……………… 10分 故X 的数学期望()200.04250.2300.37350.3400.0931E X =⨯+⨯+⨯+⨯+⨯=. ……………… 11分 (Ⅲ)与旧的发芽率数据的方差相比,技术改进后发芽率数据的方差变大了. …… 14分 17. (本小题14分)2019年1月1日,我国开始施行《个人所得税专项附加扣除操作办法》,附加扣除的专项包括子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人.某单位有老年员工140人,中年员工180人,青年员工80人,现采用分层抽样的方法,从该单位员工中抽取20人,调查享受个人所得税专项附加扣除的情况,并按照员工类别进行各专项人数汇总,数据统计如下:(Ⅰ)在抽取的20人中,老年员工、中年员工、青年员工各有多少人;(Ⅱ)从上表享受住房贷款利息专项扣除的员工中随机选取2人,记X 为选出的中年员工的人数,求X 的分布列和数学期望.17. (本小题14分) 解:(Ⅰ)该单位员工共140+180+80=400人, 抽取的老年员工201407400⨯=人, 中年员工201809400⨯=人, 青年员工20804400⨯=人 ……………… 4分 (Ⅱ)X 的可取值为0,1,2 ……………… 5分23283(X=0)28C P C ==,11352815(X=1)28C C P C ==g ,252810(X=0)28C P C == ……………… 11分所以的分布列为5(X)4E =. ……………… 14分(18)(本小题14分)中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,预计2020年北斗全球系统建设将全面完成.下图是在室外开放的环境下,北斗二代和北斗三代定位模块,分别定位的50个点位的横、纵坐标误差的值,其中“g ” 表示北斗二代定位模块的误差的值, “+”表示北斗三代定位模块的误差的值.(单位:米)(Ⅰ)从北斗二代定位的50求此点横坐标误差的值大于10(Ⅱ)从图中A,B,C,D 记X 为其中纵坐标误差的值小于-求X 的分布列和数学期望;差的方差的大小.(18)(本小题14分)解(Ⅰ)由图知,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,所以 从中随机选出一点,此点横坐标误差的绝对值大于10米的概率为30.0650=. …………4分 (Ⅱ)由图知, A B C D ,,,四个点位中纵坐标误差值小于4-的有两个点: C D ,. 所以 X 所有可能取值为0,1,2.2241(0)6===C P X C ,1122242(1)3C C P X C ===,22241(2)6C P X C ===.所以 X 的期望1210121636EX =⨯+⨯+⨯=. …………12分 (Ⅲ)北斗二代定位模块纵坐标误差的方差大于北斗三代.…………14分(6)现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为 (A )23 (B ) 25 (C ) 35 (D ) 910(18)(本小题14分)某科研团队研发了一款快速检测某种疾病的试剂盒.为了解该试剂盒检测的准确性,质检部门从某地区(人数众多)随机选取了80位患者和100位非患者,用该试剂盒分别对他们进行检测,结果如下:(Ⅰ)从该地区患者中随机选取一人,对其检测一次,估计此患者检测结果为阳性的概率;(Ⅱ)从该地区患者中随机选取3人,各检测一次,假设每位患者的检测结果相互独立,以X 表示检测结果为阳性的患者人数,利用(Ⅰ)中所得概率,求X 的分布列和数学期望;(Ⅲ)假设该地区有10万人,患病率为0.01.从该地区随机选取一人,用该试剂盒对其检测一次.若检测结果为阳性,能否判断此人患该疾病的概率超过0.5?并说明理由.(18)(本小题共14分)科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.下图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(I)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(II)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(III)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.(18)解:(Ⅰ)设事件A为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年,所以9()10P A=.(Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X的所有可能取值为0,1,2.且25210C2(0)=C9P X==;1155210C C5(1)=C9P X==;25210C2(2)=C9P X==.所以X的分布列为:故X的期望252()0121999E X=⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一. 要求用数据说话,数据可以支持自己的结论即可,阅卷时按照上述标准酌情给分.10. 党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少,下面的统计图反映了2012-2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%)根据统计图提供的信息,下了推断不正确的是A. 2012-2019年,全国农村贫困人口逐年递减B. 2013-2019年,全国农村贫困发生率较上年下降最多的是2013年C. 2012-2019年,全国贫困人口数累计减少9348万D. 2019年,全国各省份的农村贫困发生率都不可能超过0.6%17.(本小题14分)随着移动互联网的发展,越来越多的人习惯用手机应用程序(简称app)获取新闻资讯,为了解用户对某款新闻类app的满意度,随机调查了300名用户,调研结果如下表:(单位:人)(I)从所有参与调研的人中随机选取1人,估计此人“不满意”的概率;(II)从参与调研的青年人和中年人中各随机选取1人,估计恰有1人“满意”的概率;(III)现需从参与调研的老年人中选择6人作进一步访谈,若在“满意”、“一般”、“不满意”的老年人中各取2人,这种抽样是否合理?说明理由18.(本小题共14分)在抗击新冠肺炎疫情期间,很多人积极参与了疫情防控的志愿者活动.各社区志愿者服务类型有:现场值班值守,社区消毒,远程教育宣传,心理咨询(每个志愿者仅参与一类服务).参与A ,B ,C 三个社区的志愿者服务情况如下表:(Ⅰ)从上表三个社区的志愿者中任取1人,求此人来自于A 社区,并且参与社区消毒工作的概率;(Ⅱ)从上表三个社区的志愿者中各任取1人调查情况,以X 表示负责现场值班值守的人数,求X 的分布列;(Ⅲ)已知A 社区心理咨询满意率为0.85,B 社区心理咨询满意率为0.95,C 社区心理咨询满意率为0.9,“1A ξ=,1B ξ=,1C ξ=”分别表示A ,B ,C 社区的人们对心理咨询满意,“0A ξ=,0B ξ=,0C ξ=”分别表示A ,B ,C 社区的人们对心理咨询不满意,写出方差()A D ξ,()B D ξ,()C D ξ的大小关系.(只需写出结论)18.(本小题共14分)解:(Ⅰ)记“从上表三个社区的志愿者中任取1人,此人来自于A 社区,并且参与社区消毒工作”为事件D ,303()10012015037P D ==++. 所以从上表三个社区的志愿者中任取1人,此人来自于A 社区,并且参与社区消毒工作的概率为337. …………4分(Ⅱ)从上表三个社区的志愿者中各任取1人,由表可知:A ,B ,C 三个社区负责现场值班值守的概率分别为3111033,,.X 的所有可能取值为0,1,2,3.7222814(0)10339045P X ==⨯⨯==,322712721404(1)103310331033909P X ==⨯⨯+⨯⨯+⨯⨯==,31232171119(2)10331033103390P X ==⨯⨯+⨯⨯+⨯⨯=, 31131(3)10339030P X ==⨯⨯==. X 的分布列为:…………11分(Ⅲ)()()()A C B D D D ξξξ>> …………14分 18.(本小题满分14分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数; (Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X ,求X 的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取m 个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出m 的最小值.(结论不要求证明)17.(本小题14分)2020年,北京将实行新的高考方案.新方案规定:语文、数学和英语是考生的必考科目,考生还需从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案. 某校为了解高一年级840名学生选考科目的意向,随机选取60名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)从选考方案确定的16名男生中随机选出2名,求恰好有一人选“物理、化学、生物” 的概率;(Ⅲ)从选考方案确定的16名男生中随机选出2名, 设随机变量⎩⎨⎧=两名男生选考方案相同两名男生选考方案不同10ξ,求ξ的分布列和期望.17.(本小题14分)解:(Ⅰ)由数据知,60人中选考方案确定的学生中选考生物的学生有8+20=28人 …1分所以该学校高一年级选考方案确定的学生中选考生物的学生有 3926028840=⨯人………4分 (Ⅱ)选考方案确定且为“物理,化学,生物”的男生共有8人。
2020年北京各区高三一模考试数学分类汇编----数学建模1.(2020西城一模).在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是____________.【答案】②③【解析】【分析】根据局部频率和整体频率的关系,依次判断每个选项得到答案.【详解】不能确定甲乙两校的男女比例,故①不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故②正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故③正确.故答案为:②③.【点睛】本题考查局部频率和整体频率的关系,意在考查学生的理解能力和应用能力.2.(2020朝阳一模)某购物网站开展一种商品的预约购买,规定每个手机号只能预约一次,预约后通过摇号的方式决定能否成功购买到该商品.规则如下:(ⅰ)摇号的初始中签率为0.19;(ⅱ)当中签率不超过1时,可借助“好友助力”活动增加中签率,每邀请到一位好友参与“好友助力”活动可使中签率增加0.05.为了使中签率超过0.9,则至少需要邀请________位好友参与到“好友助力”活动.【答案】15【分析】先求出需要增加中签率为0.71,再用0.71除以0.05得14.2,取15即可得到答案.【详解】因为摇号的初始中签率为0.19,所以要使中签率超过0.9,需要增加中签率0.90.190.71-=,因为每邀请到一位好友参与“好友助力”活动可使中签率增加0.05,所以至少需要邀请0.714.20.05=,所以至少需要邀请15位好友参与到“好友助力”活动故答案为:153.(2020北京市模拟)已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2.表1 田径综合赛项目及积分规则表2 某队模拟成绩明细根据模拟成绩,该代表队应选派参赛的队员是( )A .甲B .乙C .丙D .丁 【答案】B【解析】由题,甲各项得分为:100米跑601545-=(分);跳高60464+=(分);掷实心球601575+=(分);则总分为456475184++=(分);乙各项得分为:100米跑602080+=(分);跳高601070+=(分);掷实心球60555-=(分),则总分为807055205++=(分);丙各项得分为:100米跑60565+=(分);跳高60666+=(分);掷实心球601070+=(分),则总分为656670201++=(分);丁各项得分为:100米跑60555-=(分);跳高60262+=(分);掷实心球60565+=(分),则总分为556265182++=(分). 综上,乙得分最多,故选B .4.(2020北京市模拟)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是____________.(填写所有正确说法的编号)【答案】②③【解析】由图象(1)可设盈利额y 与观影人数x 的函数为y kx b =+,0,0k b ><,即k 为票价,当0k =时,y b =,则b -为固定成本,由图象(2)知,直线向上平移,k 不变,即票价不变,b 变大,则b -变小,成本减小,故①错误,②正确;由图象(3)知,直线与y 轴的交点不变,直线斜率变大,k 变大,即提高票价,b 不变,则b -不变,成本不变,故③正确,④错误;故答案为②③.5(2020石景山一模).长沙市为了支援边远山区的教育事业,组织了一支由13名教师组成的队伍下乡支教,记者采访队长时询问这个团队的构成情况,队长回答:“(1)有中学高级教师;(2)中学教师不多于小学教师;(3)小学高级教师少于中学中级教师;(4)小学中级教师少于小学高级教师;(5)支教队伍的职称只有小学中级、小学高级、中学中级、中学高级;(6)无论是否把我计算在内,以上条件都成立.”由队长的叙述可以推测出他的学段及职称分别是____.【答案】小学中级【分析】设小学中级、小学高级、中学中级、中学高级人数分别为a b c d ,,,,根据条件列不等式组,推出a b c d ,,,取法,根据取法推测队长的学段及职称.【详解】设小学中级、小学高级、中学中级、中学高级人数分别为a b c d ,,,, 则13,1,,,a b c d d c d a b b c a b +++=≥+≤+<<所以13(),7,6a b a b a b c d -+≤+∴+≥+≤,若7,a b +=则6,3,4,5,1c d a b a b c d Q +=<∴====,若8,a b +≥则5,14,3,5c d d c b c b a b +≤≥∴≤∴≤≥Q Q 矛盾队长为小学中级时,去掉队长则2,4,5,1a b c d ====,满足11,64,45,24d c d a b b c a b =≥+=≤+==<==<=;队长为小学高级时,去掉队长则3,3,5,1a b c d ====,不满足a b <;队长为中学中级时,去掉队长则3,4,4,1a b c d ====,不满足b c <;队长为中学高级时,去掉队长则3,3,5,0a b c d ====,不满足1d ≥;综上可得队长为小学中级.【点睛】本题考查不等式性质,考查论证推理能力,属难题.6.(2020延庆一模)某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)( )A. 6年B. 7年C. 8年D. 9年 【答案】B【分析】依题求出经过x 年后,A 产品和B 产品的年产量分别为310()2x ,640()5x ,根据题意列出不等式,求出x 的范围即可得到答案.【详解】依题经过x 年后,A 产品的年产量为1310(110()22x x+=) B 产品的年产量为1640(140()55x x +=),依题意若A 产品的年产量会超过B 产品的年产量, 则3610()40()25x x >化简得154x x +>,即lg5(1)lg 4x x >+, 所以2lg 213lg 2x >-,又20.3010lg =,则2lg 2 6.206213lg 2≈- 所以至少经过7年A 产品的年产量会超过B 产品的年产量.故选:B【点睛】本题主要考查指数函数模型,解指数型不等式,属于基础题.7.(2020密云一模)在疫情防控过程中,某医院一次性收治患者127人.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_______________,第_______________天该医院本次收治的所有患者能全部治愈出院.【答案】 (1). 16 (2). 21【分析】由题意可知出院人数构成一个首项为1,公比为2的等比数列,由此可求结果.【详解】某医院一次性收治患者127人.第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院. 且从第16天开始,每天出院的人数是前一天出院人数的2倍,∴从第15天开始,每天出院人数构成以1为首项,2为公比的等比数列,则第19天治愈出院患者的人数为451216a =⨯=,1(12)12712n n S ⨯-==-,解得7n =, ∴第715121+-=天该医院本次收治的所有患者能全部治愈出院.故答案为:16,21.【点睛】本题主要考查了等比数列在实际问题中的应用,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题.8.(2020怀柔一模)某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.【答案】1120【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案.【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25∴x >1100,∴0.1(x ﹣1100)+25=30,解得,x =1150,1150﹣30=1120,故此人购物实际所付金额为1120元.【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.9.(2020东城一模)春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了( )A. 10天B. 15天C. 19天D. 2天 【答案】C【分析】由题意设荷叶覆盖水面的初始面积,再列出解析式,并注明x 的范围,列出方程求解即可.【详解】设荷叶覆盖水面的初始面积为a ,则x 天后荷叶覆盖水面的面积()2x y a x *=⋅∈N , 根据题意,令()20222x a a ⋅=⋅,解得19x =,故选:C.【点睛】本题考查指数函数模型的应用,考查学生建模能力、数学运算能力,是一道容易题.10.(2020北京市模拟)学业水平测试成绩按照考生原始成绩从高到低分为A,B,C,D,E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B.则该班 D(A )物理化学等级都是B 的学生至多有12人(B )物理化学等级都是B 的学生至少有5人(C )这两科只有一科等级为B 且最高等级为B 的学生至多有18人(D )这两科只有一科等级为B 且最高等级为B 的学生至少有1人。
2020年北京各区高三一模考试数学分类汇编----排列组合二项式定理1.(2020海淀一模)在61(2)x x-的展开式中,常数项为( )C A. 120-B. 120C. 160-D. 160【答案】C【分析】写出二项式展开式的通项公式求出常数项. 【详解】61(2)x x-展开式的通项2616(1)2k k k k k T C x -+=- ,令260,3k k -== 常数项333316(1)2=160T C +=--,故选:C .【点睛】本题考查二项定理. 二项展开式问题的常见类型及解法:(1)求展开式中的特定项或其系数.可依据条件写出第1k +项,再由特定项的特点求出k 值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第1k +项,由特定项得出k 值,最后求出其参数.2.(2020西城一模)在61()x x +的展开式中,常数项为________.(用数字作答)【答案】20 【详解】61()x x +的展开式的通项为:6621661r r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,取3r =得到常数项3620C =. 故答案为:20.【点睛】本题考查了二项式定理,意在考查学生的计算能力.3.(2020北京市模拟)在51x x ⎛⎫- ⎪⎝⎭的展开式中,3x 的系数为( ) A .5-B .5C .10-D .10 【答案】A 【解析】51x x ⎛⎫- ⎪⎝⎭的展开式通项为()5525511kk k k k k C x C x x --⎛⎫⋅⋅-=⋅-⋅ ⎪⎝⎭,令523k -=,得1k =. 因此,3x 的系数为()1515C ⋅-=-,故选A . 4.(2020石景山一模)将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有( )种.A. 72B. 36C. 64D. 81【答案】B【分析】先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果.【详解】解:Q 将4位志愿者分配到3个不同场馆服务,每个场馆至少1人,∴先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,共有234336C A =.【点睛】本题考查排列组合及简单的计数问题,是一个基础题,本题又是一个易错题,排列容易重复,注意做到不重不漏.5(2020延庆一模).5212x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 的系数是( ) A. 160B. 80C. 50D. 10【答案】B【分析】由二项式定理公式1C r n r r r n T a b -+=即可得到结果. 【详解】依题5212x x ⎛⎫+ ⎪⎝⎭的展开式的通项为:2551031551(2)()2r r r r r r r T C x C x x ---+==, 当1034r -=时,2r =,此时523552280r r C C -==,所以5212x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 的系数是80. 故选:B【点睛】本题考查二项式定理,属于基础题.6.(2020密云一模)52()x x -的展开式中含3x 的系数为__________.(用数字填写答案)【答案】10【解析】 由题意得,二项式展开式的通项为5521552()(2)r r r r r r r T C x C x x--+=-=-, 令1r =,则113325(2)10T C x x =-=-,所以3x 得系数为10-.7.7(1)x +的展开式中3x 的系数是___________.【答案】35;【分析】根据二项式定理的通项公式1C r n r r r n T a b -+=,简单计算,可得结果.【详解】由题可知:7(1)x +的通项公式为717r r r T C x -+=,令734-=⇒=r r ,所以3x 的系数是4735C =,故答案为:35【点睛】本题考查二项式中指定项的系数,掌握公式,细心计算,属基础题.7.(2020东城一模)一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为( )A. 12B. 36C. 72D. 720【答案】C【分析】根据题意,用捆绑法分析:先将2个三口之家的成员进行全排列,再对2个三口之家整体进行全排列,由分步计数乘法原理计算可得答案.【详解】根据题意,先将2个三口之家的成员进行全排列,有333336A A =种情况,再对2个三口之家整体进行全排列,有222A =种情况,则有36272⨯=种不同的坐法. 故选:C.【点睛】本题考查排列的简单应用,考查学生逻辑推理能力、数学运算能力,是一道容易题.8.(2020房山一模).在二项式(1﹣2x )5的展开式中,x 3的系数为( )A .40B .﹣40C .80D .﹣80解:在二项展开式的通项公式中,令x 的幂指数等于3,求出r 的值,即可求得展开式中的x 3系数.(1﹣2x )5展开式的通项公式为 C 5r •(﹣2x )r ,故令r =3, 可得其中的x 3系数为C 53•(﹣2)3=﹣80, 故选:D .本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.9.(2020通州一模)在6(2)1x x-的展开式中,常数项是 A A. -160 B . -20 C . 20 D . 16010.(2020门头沟一模)在二项式26(2)x +的展开式中,8x 的系数为 。
2020年北京各区高三一模数学试题分类汇编(一)复数(2020海淀一模)(1)在复平面内,复数i(2i)-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(2020西城一模)2.若复数z =(3−i)(1+i),则|z|= (A)2√2(B)2√5(C)√10(D)20(2020东城一模)(3) 已知21i ()1ia +a =-∈R ,则a =(A) 1 (B) 0 (C) 1- (D)2-(2020朝阳一模)(11)若复数21iz =+,则||z =________. (2020石景山一模) 2. 在复平面内,复数5+6i , 3-2i 对应的点分别为A,B.若C 为线段AB 的中点,则点C对应的复数是 A. 8+4iB. 2+8iC. 4+2iD. 1+4i(2020丰台一模)3. 若复数z 满足i 1iz=+,则z 对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限(2020西城5月诊断)02.若复数z 满足i 1i z ⋅=-+,则在复平面内z 对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限集合(2020海淀一模)(2)已知集合{ |0 3 }A x x =<<,A B ={ 1 },则集合B 可以是(2020西城一模)1.设集合A ={x|x <3},B ={x|x <0,或x >2},则A ∩B = (A)(−∞,0)(B)(2,3) (C)(−∞,0)∪(2,3)(D)(−∞,3)(2020东城一模)(1) 已知集合{}1>0A x x =-,{}1012B =-,,,,那么A B =(A){}10-, (B) {}01, (C) {}1012-,,, (D) {}2(2020朝阳一模)(1)已知集合{}1,3,5A =,{}|(1)(4)0B x x x =∈--<Z ,则AB =(A ){ 1 2 }, (B ){ 1 3 }, (C ){ 0 1 2 },, (D ){ 1 2 3 },,(A ){}3(B ){}1,3 (C ){}1,2,3,5 (D ){}1,2,3,4,5(2020石景山一模)1. 设集合}4321{,,,=P ,},3|||{R x x x Q ∈≤=,则Q P ⋂等于 A. {}1 B. {}1,23,C. {}34,D. {}3,2,1,0,1,2,3---(2020西城5月诊断)01.设集合{}3A x x =<,{}2,B x x k k ==∈Z ,则AB =(A ){}0,2 (B ){}2,2-(C ){}2,0,2-(D ){}2,1,0,1,2--(2020丰台一模)1.若集合{|12}A x x =∈-<<Z ,2{20}B x x x =-=,则AB =(A ){0} (B ){01},(C ){012},,(D ){1012}-,,,(2020石景山一模)15. 石景山区为了支援边远山区的教育事业,组织了一支由13名一线中小学教师组成的支教团队,记者采访其中某队员时询问这个团队的人员构成情况,此队员回答:①有中学高级教师;②中学教师不多于小学教师;③小学高级教师少于中学中级教师;④小学中级教师少于小学高级教师;⑤支教队伍的职称只有小学中级、小学高级、中学中级、中学高级;⑥无论是否把我计算在内,以上条件都成立.由此队员的叙述可以推测出他的学段及职称分别是_______、_______.计数原理(2020朝阳一模)(6)现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为 (A )23 (B ) 25 (C ) 35 (D ) 910(2020石景山一模)5. 将4位志愿者分配到博物馆的3个不同场馆服务,每个场馆至少1人,不同的分配 方案有( )种 A. 36B. 64C. 72D. 81二项式定理(2020海淀一模)(5)在61(2)x x-的展开式中,常数项为(A )120- (B )120(C )160- (D )160(2020西城一模)11.在(x +1x )6的展开式中,常数项为.(用数字作答)(2020东城一模)(12) 在62()x x+的展开式中常数项为 . (用数字作答)三角函数与解三角形(2020海淀一模)(6)如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为 (A )1 (B )32 (C )22(D )12(2020西城一模)9.已知函数f(x)=sinx1+2sinx 的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有 ①绕着x 轴上一点旋转180°; ②沿x 轴正方向平移; ③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称. (A)①③(B)③④(C)②③(D)②④(2020东城一模)(7)在平面直角坐标系中,动点M 在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M 的初始位置坐标为(,)1322,则运动到3分钟时,动点M 所处位置的坐标是 (A)(,)3122 (B) (,)-1322(C) (,)-3122(D) (,)--3122(2020朝阳一模)(8)已知函数()=3sin()(>0)f x ωxφω的图象上相邻两个最高点的距离为π,则“6ϕπ=”是“()f x 的图象关于直线3x π=对称”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(2020石景山一模)(2020丰台一模)9. 将函数()sin (0)f x x ωω=>的图象向左平移π2个单位长度后得到函数()g x 的图象,且(0)1g =,下列说法错误..的是 (A )()g x 为偶函数(B )π()02g -=(C )当5ω=时,()g x 在π[0]2,上有3个零点(D )若()g x 在π[]50,上单调递减,则ω的最大值为9(2020西城5月诊断)05.在ABC ∆中,若::4:5:6a b c =,则其最大内角的余弦值为(A )18(B )14(C )310 (D )35(2020西城5月诊断)13.设函数2()sin 22cos f x x x =+,则函数()f x 的最小正周期为____;若对于任意x ∈R ,都有()f x m ≤成立,则实数m 的最小值为____.(2020西城一模)14.函数f(x)=sin(2x +π4)的最小正周期为 ;若函数f(x)在区间(0,α)上单调递增,则α的最大值为.(2020海淀一模)(14)在△ABC中,AB =4B π∠=,点D 在边BC 上,23ADC π∠=,2CD =,则AD = ;△ACD 的面积为 . (2020东城一模)(14)ABC 是等边三角形,点D 在边AC 的延长线上,且3AD CD =,BD =则CD = ,sin ABD ∠= .(2020海淀一模)(17)(本小题共14分)已知函数212()2cos sin f x x x ωω=+. (Ⅰ)求(0)f 的值;(Ⅱ)从①11ω=,22ω=; ②11ω=,21ω=这两个条件中任选一个,作为题目的已知条件,求函数()f x 在[2π-,7.函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π,则()f x 满足A. 在0,3π⎛⎫⎪⎝⎭上单调递增B. 图象关于直线6x π=对称C. 32f π⎛⎫= ⎪⎝⎭D. 当512x π=时有最小值1-]6π上的最小值,并直接写出函数()f x 的一个周期. 注:如果选择两个条件分别解答,按第一个解答计分。
北京市2020届高三数学文一轮复习典型题专项训练统计与概率一、选择、填空题 1、(昌平区2019届高三上学期期末)为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 .频率组距时间(单位:分钟)Oa 0.0350.0200.0100.00510090807060502、(房山区2019届高三上学期期末)改革开放四十年以来,北京市居民生活发生了翻天覆地的变化.随着经济快速增长、居民收入稳步提升,消费结构逐步优化升级,生活品质显著增强,美好生活蓝图正在快 速构建.北京市城镇居民人均消费支出从1998年的7 500元增长到2017年的40 000 元.1998年与2017年北京市城镇居民消费结构对比如下图所示:食品20%衣着6%居住33%生活用品及服务6%交通和通信13%教育文化娱乐11%医疗保健8%其他用品及服务3%食品41%衣着10%居住8%生活用品及服务11%交通和通信5%教育文化娱乐14%医疗保健5%其他用品及服务6%1998年北京市城镇居民消费结构 2017年北京市城镇居民消费结构则下列叙述中不正确...的是 (A )2017年北京市城镇居民食品支出占比..同1998年相比大幅度降低 (B )2017年北京市城镇居民人均教育文化娱乐类支出同1998年相比有所减少 (C )2017年北京市城镇居民医疗保健支出占比..同1998年相比提高约60% (D )2017年北京市城镇居民人均交通和通信类支出突破5 000元,大约是1998年的14倍3、(丰台区2019届高三5月综合练习(二模))若在区间[1,4] 上随机选取一个数x ,则事件1x ≥发生的概率为____.4、(昌平区2019届高三5月综合练习(二模))为了落实“回天计划”,政府准备在回龙观、天通苑地区各建一所体育文化公园. 针对公园中的体育设施需求,某社区采用分层抽样的方法对于21岁至65岁的居民进行了调查. 已知该社区21岁至35岁的居民有840人,36岁至50岁的居民有700人,51岁至65岁的居民有560人.若从36岁至50岁的居民中随机抽取了100人,则这次抽样调查抽取的总人数是 .5、(东城区2018届高三5月综合练习(二模))某校高一年级有400名学生,高二年级有360名学生,现用分层抽样的方法在这760名学生中抽取一个样本.已知在高一年级中抽取了60名学生,则在高二年级中应抽取的学生人数为(A )66 (B )54 (C )40 (D )366、(海淀区2018届高三上学期期末考试)下面的茎叶图记录的是甲、乙两个班级各5个同学在一次数学测试中的选择题的成绩(单位:分,每道题5分,共8道题) :甲班 乙班5 2x 5 3 0 y 0 50 0 4已知两组数据的平均数相等,则,x y 的值分别为(A )0,0 (B ) 0,5 (C ) 5,0 (D )5,57、(北京五中2019届高三10月月考)对某校400名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为( ) A 、200 B 、100 C 、40 D 、208、(北京三十五中2019届高三上学期期中考试)如图,茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩。
2020北京各区高三二模数学分类汇编----数列一、选填问题:1.(2020昌平二模)设{}n a 是等差数列,且13a =,12n n a a +=-,则数列{}n a 的前n 项和n S = . 答案 24n S n n =-+2.(2020密云二模)已知n S 是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______. 答案10-;30-3. (2020顺义二模)设{}n a 是各项均为正数的等比数列,n S 为其前n 项和.已知1316a a ⋅=, 314S =,若存在0n 使得012,n a a a ⋅⋅⋅,,的乘积最大,则0n 的一个可能值是 (A )4 (B )5(C )6(D )7答案A4. (2020顺义二模)设{}n a 是等差数列,且12a =,248a a +=,则{}n a 的通项公式为__________. 答案 1,N n a n n *=+∈5.(2020西城二模)答案 306.(2020海淀二模)数列{}n a 中,12a =,12n n a a +=,*n N Î. 若其前k 项和为126,则k =_______. 答案 67.(2020丰台二模)已知数列{}n a 的前n 项和2n S n n =-,则23a a +=(A )3 (B )6(C )7(D )8答案 B二、解答题部分:8.(2020海淀二模)已知{}n a 是公差为d 的无穷等差数列,其前n 项和为n S .又,且540S =,是否存在大于1的正整数k ,使得1k S S =?若存在,求k 的值;若不存在,说明理由.从①14a =,②2d =-这两个条件中任选一个,补充在上面问题中并作答. 注:如果选择两个条件分别解答,按第一个解答计分。
答案解:选择条件①,不存在正整数(1)k k >,使得1k S S =.解法1 理由如下:在等差数列{}n a 中,5115455102S a d a d ⨯=+=+,又14a =,540S =.所以由 114,51040a a d =⎧⎨+=⎩得 2.d = 所以 1(1)42(1)22n a a n d n n =+-=+-=+. 又因为110n n n S S a ++-=>,所以数列{}n S 为递增数列.即1k ∀>,都有1k S S >. 所以不存在正整数(1)k k >,使得1k S S =. 解法2理由如下:在等差数列{}n a 中,5115455102S a d a d ⨯=+=+,又14a =,540S =. 所以由 114,51040a a d =⎧⎨+=⎩得 2.d =所以21(1)(1)42322k k k k k S ka d k k k --=+=+⨯=+.令14k S S ==,即2340k k +-=.解得1k =或4k =-.因为1k >,所以1k =与4k =-均不符合要求. 所以不存在正整数(1)k k >,使得1k S S =. 选择条件②,存在正整数12k =,使得1k S S =.理由如下:在等差数列{}n a 中,5115455102S a d a d ⨯=+=+,又2d =-,540S =. 所以由 12,51040d a d =-⎧⎨+=⎩得112.a =所以21(1)(1)12(2)1322k k k k k S ka d k k k --=+=+⨯-=-+.令112k S S ==,即21312k k -+=. 整理得213120k k -+=.解得1k =或12k =.因为1k >,所以12k =.所以当12k =时,1k S S =.9.(2020东城二模)已知{}n a 为等比数列,其前n 项和为n S ,且满足31a =,3231S a =+.{}n b 为等差数列,其前n 项和为n T ,如图____,n T 的图象经过A ,B 两个点. (Ⅰ)求n S ;(Ⅱ)若存在正整数n ,使得n n b S >,求n 的最小值.从图①,图②,图③中选择一个适当的条件,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分。
2020年北京各区高三一模考试数学分类汇编----数学文化1.(2020海淀一模)形如221n +(n 是非负整数)的数称为费马数,记为.n F 数学家费马根据0123,,,,F F F F 4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那5F 的位数是( ) (参考数据: lg 2≈0.3010 )A. 9B. 10C. 11D. 12【答案】B【分析】32521F =+,设322m =,两边取常用对数估算m 的位数即可. 【详解】32521F =+Q ,设322m =,则两边取常用对数得32lg lg 232lg 2320.30109.632m ===⨯=.9.63291010m =≈,故5F 的位数是10,故选:B .【点睛】解决对数运算问题的常用方法:(1)将真数化为底数的指数幂的形式进行化简.(2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg51+=简化计算.2.(2020北京市模拟)紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众 多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一 个圆台 (即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm ),那么该壶的容量约为( )A .1003cmB .3200cmC .3003cmD .4003cm【答案】B【解析】设大圆锥的高为h ,所以4610h h -=,解得10h =,故221119651036200333V πππ=⨯⨯-⨯⨯=≈3cm ,故选B . 3.(2020北京市模拟)众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y 轴右侧部分的边界为一个半圆.给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是12; ②当43a =-时,直线(2)y a x =-与黑色阴影部分有公共点; ③当[0,1]a ∈时,直线(2)y a x =-与黑色阴影部分有两个公共点.其中所有正确结论的序号是( )A .①B .②C .③D .①② 【答案】D【解析】因为阴影部分的面积是圆的面积一半,所以在太极图中随机取一点,此点取自黑色阴影部分的概率的大小为12,故结论①正确;当43a =-时,阴影部分在第一象限内半圆的圆心坐标为(0,1),半径为1,它到直线(2),4380y a x x y =-+-=的距离为1d ==,所以直线与半圆相切,因此直线与黑色阴影部分有公共点,故结论②正确的;当0a =时,直线表示横轴,此时直线与阴影部分有无穷多个交点,故结论③错误的,因此只有结论①②是正确的,故本题选D .4.(2020怀柔一模)“割圆术”是我国古代计算圆周率π的一种方法.在公元263年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求π.当时刘微就是利用这种方法,把π的近似值计算到3.1415和3.1416之间,这是当时世界上对圆周率π的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正二十四边形来估算圆周率π,则π的近似值是( )(精确到0.01)(参考数据sin150.2588≈o )A. 3.05B. 3.10C. 3.11D. 3.14【答案】C 【分析】假设圆的半径为r ,根据以圆心为顶点将正二十四边形分割成全等的24个等腰三角形,顶角为36024o,计算正二十四边形的面积,然后计算圆的面积,可得结果. 【详解】设圆的半径为r ,以圆心为顶点将正二十四边形分割成全等的24个等腰三角形 且顶角为3601524=o o ,所以正二十四边形的面积为2124sin1512sin152⋅⋅⋅⋅=o o r r r 所以2212sin1512sin15 3.11ππ=⇒=≈o o r r ,故选:C【点睛】本题考查分割法使用,考验计算能力与想象能力,属基础题.5.(2020房山一模)党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是( )A .2012﹣2019年,全国农村贫困人口逐年递减B .2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年C .2012﹣2019年,全国农村贫困人口数累计减少9348万D .2019年,全国各省份的农村贫困发生率都不可能超过0.6%由2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况统计图能求出结果.由2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况统计图得:在A 中,2012﹣2019年,全国农村贫困人口逐年递减,故A 正确;在B 中,2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,故B 正确;在C 中,2012﹣2019年,全国农村贫困人口数累计减少:9899﹣551=9348万,故C 正确;在D 中,2019年,全国各省份的农村贫困发生率有可能超过0.6%,故D 错误.故选:D .本题考查命题真假的判断,考查统计图的性质等基础知识,考查运算求解能力,是基础题.6.(2020通州一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?” ,将上述问题的所有正整数答案从小到大组成一个数列 {}n a ,则1a = ; n a = . (注:三三数之余二是指此数被3除余2,例如“5”)8,15n-7。
2020年北京高三下学期高考模拟数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.在复平面内,复数对应的点的坐标为( ).A. B. C. D.2.已知集合,,则( ).A. B. C. D.3.下列函数中,在区间上为减函数的是( ).A. B. C. D.4.函数定义域为( ).A.或B.或C.D.5.圆心为且和轴相切的圆的方程是( ).A.B.C.D.6.要得到函数的图象,只需将函数的图象( ).A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位7.某四棱锥的三视图如图所示,则该四棱锥的体积为( ).正(主)视图俯视图侧(左)视图A.B.C.D.8.已知点,.若点在函数的图象上,则使得的面积为的点的个数为( ).A.B.C.D.9.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.学业水平测试成绩按照考生原始成绩从高到低分为 , , , , 五个等级.某班共有名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为的学生有 人,这两科中仅有一科等级为的学生,其另外一科等级为.则该班( ).A.物理化学等级都是的学生至多有 人B.物理化学等级都是的学生至少有人C.这两科只有一科等级为且最高等级为的学生至多有 人D.这两科只有一科等级为且最高等级为的学生至少有人二、填空题(本大题共5小题,每小题5分,共25分)11.已知双曲线的一条渐近线方程为,则.12.已知向量,,且,则.13.抛物线上到其焦点的距离为的点的个数为 .14.在中,,,,则 ,的面积为 .15.函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:①;②函数在内有且仅有个零点;③不等式的解集为.其中,正确结论的序号是 .xyO三、解答题(本大题共6小题,共85分)(1)(2)16.如图,在四棱锥中,,,,底面为正方形,,分别为,的中点.求证:平面.求直线与平面所成角的正弦值.17.已知是公比为的无穷等比数列,其前项和为,满足, .是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.从①,②,③这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.(1)(2)(3)18.为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况.现分别从,,三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米):组组组假设所有植株的生长情况相互独立.从,,三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙.求丙的高度小于厘米的概率.求甲的高度大于乙的高度的概率.表格中所有数据的平均数记为.从,,三块试验田中分别再随机抽取株该种植物,它们的高度依次是,,(单位:厘米).这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小.(结论不要求证明)【答案】解析:∵在复平面内,,∴复数对应得点坐标为,故正确.解析:∵集合,,(1)(2)(3)19.已知函数,.求曲线在点处的切线方程.求函数的极小值.求函数的零点个数.(1)(2)20.已知椭圆的短轴的两个端点分别为,,焦距为.求椭圆的方程.已知直线与椭圆有两个不同的交点,,设为直线上一点,且直线,的斜率的积为,证明:点在轴上.(1)(2)(3)21.设数阵,其中,,,.设,其中,且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”.表示“将经过变换得到,再将经过变换得到,,以此类推,最后将经过变换得到”,记数阵中四个数的和为.若,写出经过变换后得到的数阵.若,,求的值.对任意确定的一个数阵,证明:的所有可能取值的和不超过.B1.C2.故正确.解析:∵,∴,∴,∴或.故选项正确.解析:∵圆心到轴的距离为,∴圆心为且和轴相切的圆的方程为,故正确.解析:由于函数,∴将函数的图象向右平移个单位长度,可得函数的图象,故选:解析:∵如图四棱锥的三视图,可得四棱锥的商为,底为边长为的正方形,∴四棱锥的体积,故正确.解析:由已知可设,其中.C 3.A 4.A 5.D 6.B 7.C 8.∴直线的方程为,即,∴点到直线的距离为.又∵,∴的面积为,∵,∴.当,即时,解得;当,时,解得或,综上所述,满足条件的点有个.解析:若,,则,,因为公差不为,若公差小于,必然存在,矛盾,故不合题,所以必然有公差大于 ,故单调递增;反之,若单调递增,不妨设,,不能推出,∴“,”是“为递增数列”的充分而不必要条件.故选.解析:由题意,两科学级均为的学生有人,这两科中仅有一科等级为的学生,其另一科等级为.如图所示:有人,物理、化学等级均为;有人,物理等级为,化学等级为;有人,物理等级为,化学等级为;本班共人.A 9.D 10.解析:∵双曲线,令,∴此双曲线的渐近线为.由题意,双曲线的一条渐近线方程为,则.故.解析:∵ 向量,,,∴,解得,故.解析:设抛物线上一点坐标为.,,,∴抛物线上到其焦点的距离为的点的个数为.解析:,,.又∵,∴.11.12.13. ;14.(1)(2)故答案为:,.解析:方法一:因为函数是定义域为的奇函数,所以①正确;由知函数的图象关于点成中心对称,由此作出函数的图象如下,由图象知函数在内有个零点,故②错误;对于③,方法一是利用与关于轴对称,由图象知③正确.方法二:是利用函数的图象,直接解不等式,即得.故而正确.解析:因为,分别为,的中点,所以,又因平面,平面,所以平面.由题意建立如图所示的空间直角坐标系,设,则,,,,,则,,,①③15.(1)证明见解析.(2).16.(1)(2)设平面的法向量为,则,令,则,,即,设直线与平面所成角为,则,即直线与平面所成角的正弦值为.解析:理由分别如下.当时,,,.由得,∵,,,.当时,,,.由得,不等式无解.此时不存在.当时,,,.由得,∵,,,,.解析:设“丙的高度小于厘米”为事件因为丙的高度小于厘米的有厘米、厘米的两株,所以.即丙的高度小于厘米的概率为.设“甲的高度大于乙的高度”为事件.当时,存在,.当时,不存在.当时,存在,.理由见解析.17.(1)(2)(3)18.(3)(1)(2)(3)记组株植物依次分别为.B组株植物依次分别为.从中选出甲,从中选出乙共有种情况,其中满足甲的高度大于乙的高度的有:、、、、、、、、、共种.所以.即甲的高度大于乙的高度的概率为..解析:定义域为:,,∵,∴切点为,∵,∴在处的切线方程为:.令,解得:,(),∴在、单调递增,在单调递减,∴在处取得极小值为.由()知的极大值为,(),,,∵,∴,∴,,,,,,,,,,,,,(1).(2).(3).19.(1)(2)(1)(2)(3)∴函数的零点个数为.解析:由题意知,∵,∴只能,且焦点在轴上,,所以椭圆的方程为:.由题意可设,,,则①,因为点为直线上一点,所以 ,所以,所以,整理得,将①代入整理得,∵,∴,即,所以点在轴上.解析:经过变换.经过变换得到经过变换得到,所以.因为集合共有含空集在内的子集个,令,对于第一行和,①若,则含的子集有个,这个中第一行为,;(1).(2)证明见解析.20.(1).(2).(3)证明见解析.21.不含有的子集有个,这个中第一行为,,所有中第一行的和为.②若,则含且的子集有个,不含有且不含的子集有个,这个中第一行为,;不含有含的子集有个,含有不含的子集有个,这个中第一行为,;所有中第一行的和为.同理,所有中第二行的和为.即,但是,所以.。
2020年北京市各区一模试题分类汇编( 二 )函数与导数:海淀区:(7)已知函数()||f x x m =-与函数()g x 的图象关于y 轴对称.若()g x 在区间(1,2)内单调递减,则m 的取值范围为 (A )[1,)-+∞ (B )(,1]-∞- (C )[2,)-+∞(D )(,2]-∞-(10)形如221n+(n 是非负整数)的数称为费马数,记为n F .数学家费马根据0F ,1F ,2F ,3F ,4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那么5F 的位数是(参考数据:lg20.3010≈) (A )9 (B )10 (C )11(D )12(15)如图,在等边三角形ABC 中,6AB =. 动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为()f x ,给出下列三个结论:①函数()f x 的最大值为12;②函数()f x 的图象的对称轴方程为9x =; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是 .注:本题给出的结论中,有多个符合题目要求。
全部选对得5分,不选或有错选得0分,其他得3分。
(19)(本小题共15分)已知函数()e xf x ax =+.(Ⅰ)当1a =-时,①求曲线()y f x =在点(0,(0))f 处的切线方程; ②求函数()f x 的最小值;C(Ⅱ)求证:当(2a ∈-,0)时,曲线()y f x =与1ln y x =-有且只有一个交点. 西城区:3.下列函数中,值域为R 且为奇函数的是 (A)y =x +2(B)y =sinx(C)y =x −x 3(D)y =2x10.设函数f(x)={x 2+10x +1,x ≤0|lgx |, x >0若关于x 的方程f(x)=a(a ∈R)有四个实数解x i (i =1,2,3,4),其中x 1<x 2<x 3<x 4,则(x 1+x 2)(x 3−x 4)的取值范围是 (A)(0,101](B)(0,99](C)(0,100](D)(0,+∞)19.(本小题满分14分)设函数f(x)=alnx +x 2−(a +2)x,其中a ∈R.(Ⅰ)若曲线y =f(x)在点(2,f(2))处切线的倾斜角为π4,求a 的值;(Ⅱ)已知导函数f′(x)在区间(1,e)上存在零点,证明:当x ∈(1,e)时,f(x)>−e 2.东城区:(2) 函数22()1x f x x -=+ (A) -(,]12 (B) [,)2+∞ (C) -(,)[,)11+-∞∞U (D) -(,)[,)12+-∞∞U (10) 假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者. 现在我们来研究捕食者与被捕食者之间理想状态下的数学模型. 假设捕食者的数量以()x t 表示,被捕食者的数量以()y t 表示.下图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法正确的是:(A) 若在12t t ,时刻满足:12()=()y t y t ,则12()=()x t x t ; (B) 如果()y t 数量是先上升后下降的,那么()x t 的数量一定也是先上升后下降;(C) 被捕食者数量与捕食者数量不会同时到达最大值或最小值; (D) 被捕食者数量与捕食者数量总和达到最大值时,被捕食者的数量也会达到最大值.(15) 设函数(1),0,()22,0.x a a xa x x f x x --+<⎧⎪=⎨+≥⎪⎩给出下列四个结论: ① 对0∀>a ,t ∃∈R ,使得()f x t =无解;② 对0∀>t ,a ∃∈R ,使得()f x t =有两解;③ 当0a <时,0t ∀>,使得()f x t =有解; ④ 当2a >时,t ∃∈R ,使得()f x t =有三解.其中,所有正确结论的序号是 .注:本题给出的结论中,有多个符合题目要求。
2020年北京各区高三一模考试数学分类汇编----数列一、选题问题:1.(2020海淀一模)若数列{}n a 满足12,a =则“*,,p r p r p r a a a +∀∈=N ”是“{}n a 为等比数列”的( )AA. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【分析】*,,p r p r p r a a a +∀∈=N ,不妨设1r =,则11p p a a a ,+=12p p a a ,+∴=可证充分性;{}n a 为等比数列且2q ¹时得不到p r p r a a a +=,可知必要性不成立【详解】不妨设1r =,则11p p a a a ,+=12p p a a ,+∴=所以12p pa a += {}n a ∴为等比数列;故充分性成立反之若{}n a 为等比数列,不妨设公比为q ,111=2p r r p r p q a a q++-+-=,22214p r p r p r a a a q q +-+-==当2q ¹时p r p r a a a +≠,所以必要性不成立,故选:A .【点睛】(1)证明一个数列为等比数列常用定义法与中项公式法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. (2)利用递推关系时要注意对n =1时的情况进行验证.2.(2020海淀一模)在等差数列{}n a 中,1253,16a a a =+=,则数列{}n a 的前4项的和为___. 【答案】24【分析】利用等差数列基本量关系求通项. 利用等差数列前n 项和公式求出n S . 【详解】设等差数列的公差为d .Q 2516a a +=,11146d a a d +++=,13a =,2d ∴=,1(1)3(1)22+1n a a n d n n ∴=+-=+-⨯=,(2)1444()4(39)=2422a a S ++==.故答案为:24 【点睛】本题考查解决等差数列通项公式及前n 项和n S .(1)等差数列基本量计算问题的思路:与等差数列有关的基本运算问题,主要围绕着通项公式1(1)n a a n d =+-和前n 项和公式11()(1)22n n n a a n n dS na +-==+,在两个公式中共涉及五个量:1n n a d n a S ,,,,,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.3.(2020西城一模)设等差数列{}n a 的前n 项和为n S ,若31425a a a =+=,,则6S =( ) A. 10 B. 9C. 8D. 7【答案】B【分析】根据题意3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,得到答案.【详解】3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,故616159S a d =+=.故选:B .【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.4.(2020丰台一模)设等差数列{}n a 的前n 项和为n S ,21n a n =-,则5S =______. 【答案】25【分析】由等差数列的求和公式求解即可. 【详解】()15555(19)2522a a S ++===,故答案为:25 【点睛】本题主要考查了等差数列的求和公式的应用,属于基础题.5(2020朝阳一模).在等比数列{}n a 中,11a =,48a =-,则{}n a 的前6项和为( ) A. 21- B. 11C. 31D. 63【答案】A【分析】利用11a =,48a =-求出公比2q =-,再根据等比数列的前n 项和公式计算可得. 【详解】因为11a =,48a =-,设公比为q ,则341a q a =881-==-,所以2q =-, 所以6616(1)1[1(2)]2111(2)a q S q -⨯--===----,故选:A 【点睛】本题考查了等比数列通项公式的基本量的计算,考查了等比数列的前n 项和公式,属于基础题. 6.(2020朝阳一模)已知函数()cos 2xf x x π=.数列{}n a 满足()(1)n a f n f n =++(*n N ∈),则数列{}n a 的前100项和是________.【答案】100【分析】根据三角函数知识,利用n 为奇数时,()0f n =,2n为奇数时时,()f n n =-,2n 为偶数时,()f n n =,可求出1234100,,,,,a a a a a L ,再相加即可得到答案. 【详解】因为()cos2xf x x π=,所以(1)(3)(5)(101)0f f f f =====L , (2)2,(6)6,(10)10,,(98)98f f f f =-=-=-=-L , (4)4,(8)8,(12)12,,(100)100f f f f ====L ,所以12(2)2a a f ===-,34(4)4a a f ===,56(6)6a a f ===-,78(8)8a a f ===,L ,99100(100)100a a f ===,所以1234567899100a a a a a a a a a a +++++++++L2[(2)(4)(6)(8)(100)]f f f f f =+++++L 2(24681012100)=-+-+-+-+L 2252100=⨯⨯=.故答案为: 100【点睛】本题考查了特殊角余弦函数值和诱导公式,考查了数列的前n 项和,考查了分组求和,属于基础题.7.(2020北京市模拟)设{}n a 为等差数列,p ,q ,k ,l 为正整数,则“p q k l +>+”是“p q k l a a a a +>+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D【解析】设等差数列的公差为d ,1111(1)(1)(1)(1)p q k l a p d a q d a a a a a k d a l d ⇒+-+++->+>++-+-[()()]0d p q k l ⇒+-+>0d p q k l >⎧⇒⎨+>+⎩或0d p q k l<⎧⎨+<+⎩,显然由p q k l +>+不一定能推出p q k l a a a a +>+,由p q k l a a a a +>+也不一定能推出 p q k l +>+,因此p q k l +>+是p q k l a a a a +>+的既不充分也不必要条件,故本题选D .8.(2020顺义一模)设{}n a 是各项均为正数的等比数列,n S 为其前n 项和.已知1316a a ⋅=, 314S =,若存在的0n 使得012,n a a a ⋅⋅⋅,,的乘积最大,则0n 的一个可能值是 A(A )4 (B )5 (C )6 (D )79.(2020顺义一模)设{}n a 是等差数列,且12a =,248a a +=,则{}n a 的通项公式为__________.1,N n a n n *=+∈10.(2020石景山一模)设{}n a 是等差数列,其前n 项和为n S .则“1322S S S +>”是“{}n a 为递增数列”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【分析】先由1322S S S +>进行化简,能推出0d >,即{}n a 为递增数列. 再由{}n a 为递增数列,得321a a a >>,能推出1322S S S +> 故“1322S S S +>”是“{}n a 为递增数列”的充分必要条件. 【详解】设{}n a 的公差为d .充分性证明:由1322S S S +>得:112312322()a a a a a a a a +++>+⇒> ,即:0d >. 所以{}n a 为递增数列.必要性证明:由{}n a 为递增数列得:321a a a >> ,所以11231122122132()2a a a a a a a a a S S a S =+++>+++=+=+所以“1322S S S +>”是“{}n a 为递增数列的充分必要条件,故选:C. 【点睛】本题主要结合等差数列考查充分条件及必要条件的判断.属于基础题目.11.(2020石景山一模)已知正项等比数列{}n a 中, 11a =,其前n 项和为()*n S n N ∈,且123112a a a -=,则4S =__________. 【答案】15 解:由题意可知:2111111a a q a q -= ,结合11,0a q => 解得:2q = ,则4124815S =+++= .12(2020密云一模).设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A. 12 B. 21C. 24D. 36【答案】B【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果.【详解】因为数列{}n a 是等差数列,1356a a a ++=,所以336a =,即32a =, 又76a =,所以73173a a d -==-,1320a a d =-=,故1777()212a a S +==,故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.13.(2020密云一模)在疫情防控过程中,某医院一次性收治患者127人.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_______________,第_______________天该医院本次收治的所有患者能全部治愈出院. 【答案】 (1). 16 (2). 21【分析】由题意可知出院人数构成一个首项为1,公比为2的等比数列,由此可求结果.【详解】某医院一次性收治患者127人.第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院. 且从第16天开始,每天出院的人数是前一天出院人数的2倍,∴从第15天开始,每天出院人数构成以1为首项,2为公比的等比数列,则第19天治愈出院患者的人数为451216a =⨯=,1(12)12712n n S ⨯-==-,解得7n =, ∴第715121+-=天该医院本次收治的所有患者能全部治愈出院.故答案为:16,21.【点睛】本题主要考查了等比数列在实际问题中的应用,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题.14.(2020怀柔一模)在等差数列{}n a 中,若45615a a a ++=,则28a a +=( ) A. 6 B. 10 C. 7 D. 5【答案】B【分析】根据等差数列的性质,可得5a ,然后由2852a a a +=,简单计算结果.【详解】由题可知:456553155++==⇒=a a a a a ,又2852a a a +=,所以2810a a += 故选:B【点睛】本题主要考查等差数列的性质,若m n p q +=+,则m n p q a a a a +=+,考验计算,属基础题. 15.(2020东城一模)已知正项等比数列{}n a 中,51927a a a =,6a 与7a 的等差中项为9,则10a =( ) A. 729 B. 332C. 181D. 96【答案】D【分析】正项等比数列{}n a 的公比设为q ,0q >,运用等差数列的中项性质和等比数列的通项公式及性质,解方程可得公比q ,再由等比数列的通项公式计算可得所求值.【详解】设正项等比数列{}n a 的公比为q ,则0q >,由51927a a a =,可得3527a =,即53a =,即413a q =,① 6a 与7a 的等差中项为9,可得6718a a +=,即561118a q a q +=,②由①②可得260q q +-=,解得2q =或3q =-(舍),则510533296a a q ==⨯=.故选:D.【点睛】本题考查等比数列基本量的计算,涉及到等差中项的概念,考查学生的运算求解能力,是一道容易题.16.(2020房山一模)设{a n }是公差为d 的等差数列,S n 为其前n 项和,则“d <0”是“∀n ∈N *,S n +1<S n ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件“∀n ∈N *,S n +1<S n ”⇔a n +1<0.“d <0”与“∀n ∈N *,a n +1<0”是否推出,与a 1的取值(正负)有关系. “∀n ∈N *,S n +1<S n ”⇔a n +1<0.“d <0”与“∀n ∈N *,a n +1<0”相互推不出,与a 1的取值(正负)有关系, ∴“d <0”是“∀n ∈N *,S n +1<S n ”的既不充分也不必要条件. 故选:D .本题考查了等差数列通项公式与求和公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.17.(2020房山一模)已知{a n }是各项均为正数的等比数列,a 1=1,a 3=100,则{a n }的通项公式a n = 10n﹣1;设数列{lga n }的前n 项和为T n ,则T n =n(n−1)2.先由a 1=1,a 3=100求出公比q ,再求a n 与lga n ,最后求T n .设等比数列{a n }的公比为q ,由题知q >0.∵a 1=1,a 3=100,∴q =√a3a 1=10,∴a n =10n ﹣1;∵lga n =lg 10n ﹣1=n ﹣1,∴T n =n(n−1)2. 故填:10n ﹣1,n(n−1)2.本题主要考查等比数列、等差数列的通项公式与前n 项和的求法,属于基础题18.(2020通州一模)已知a ,3,b ,9,c 成等比数列,且a >0,则33log log b c -等于 AA. 1-B. 12-C. 12D. 119.(2020通州一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?” ,将上述问题的所有正整数答案从小到大组成一个数列 {}n a ,则1a = ; n a = . (注:三三数之余二是指此数被3除余2,例如“5”)8,15n-720.(2020北京市模拟)设{}n a 是等差数列,且公差不为零,其前n 项和为.n S 则“*1,n n n S S +∀∈>N ”是“{}n a 为递增数列”的 A(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件21.(2020门头沟一模)若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为 ( )B A. 21 B. 63 C. 13 D. 8422.(2020门头沟一模)一辆邮车从A 地往B 地运送邮件,沿途共有n 地,依次记为12,,n A A A L (1A 为A 地,n A 为B 地)。
北京市西城区 2020年抽样测试高三数学试卷(理科) 2020.5本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合A 、B 满足A B A =I ,那么下列各式中一定成立的是( ) A. AB B. B AC. A B B=U D. A B A =U2. 在复平面内,满足条件(1+z ⋅i)=2的复数z 对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 设向量a =(1, x -1),b =(x +1,3),则“x =2”是“a //b ”的( ) A. 充分但不必要条件 B. 必要但不充分条件 C. 充要条件 D. 既不充分也不必要条件4. 已知一个平面a ,那么对于空间内的任意一条直线a ,在平面a 内一定存在一条直线b ,使得a 与b ( )A. 平行B. 相交C. 异面D. 垂直题号分数一 二三总分1516171819205. 已知函数()sin f x x =,()f x ¢为()f x 的导函数,那么( ) A. 将()f x 的图象向左平移2p个单位可以得到()f x '的图象 B. 将()f x 的图象向右平移2p个单位可以得到()f x '的图象C. 将()f x 的图象向左平移p 个单位可以得到()f x '的图象D. 将()f x 的图象向右平移p 个单位可以得到()f x '的图象6. 如果数列{}(R)n n a a Î对任意*,N m n Î满足m n m n a a a +=?,且38a =,那么10a 等于( ) A.1024 B. 512 C. 510 D. 2567. 设斜率为1的直线l 与椭圆22:142x y C +=相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( )A.4条B. 5条C. 6条D. 7条8. 根据程序设定,机器人在平面上能完成下列动作:先从原点O 沿正东偏北α(20πα≤≤)方向行走一段时间后,再向正北方向行走一段时间,但α的大小以及何时改变方向不定. 如右图. 假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S ,则S 的面积(单位:平方米)等于( ) A. 100p B. 100200p - C. 400100p - D. 200北京市西城区 2020年抽样测试高三数学试卷(理科) 2020.5第Ⅱ卷(非选择题 共110分)二、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 把答案填在题中横线上 . 9. 函数ln(1)y x =-的反函数是___________.10. 设(2,2),(0,4)AB AC ==uu u r uu u r,则ABC V 的内角A =___________.11. 若291()ax x-的展开式中常数项为84,则a =___________,其展开式中二项式系数之和为_________. (用数字作答)12 设P 为曲线1cos (2sin x y q q q ì=-+ïïíï=+ïî为参数)上任意一点,(3,5)A ,则||PA 的最小值为______________. 13. 已知一个球的表面积为144p ,球面上有P 、Q 、R 三点,且每两点间的球面距离均为3p ,那么此球的半径r =___________,球心到平面PQR 的距离为__________.14. 已知集合{1,2,3,4}A =,函数()f x 的定义域、值域都是A ,且对于任意i A ∈,i i f ≠)(. 设4321,,,a a a a 是4,3,2,1的任意一个排列,定义数表12341234()()()()a a a a f a f a f a f a ⎛⎫⎪⎝⎭,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数为_________.三、解答题:本大题共 6 小题,共 80 分. 解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分12分)已知函数()cos (sin cos )1f x x x x =-+. (Ⅰ)求()f x 的值域和最小正周期; (Ⅱ)设(0,)a p Î,且()1f α=,求α的值.16.(本小题满分12分)甲,乙两人射击,每次射击击中目标的概率分别是11,34. 现两人玩射击游戏,规则如下:若某人某次射击击中目标,则由他继续射击,否则由对方接替射击. 甲、乙两人共射击3次,且第一次由甲开始射击. 假设每人每次射击击中目标与否均互不影响. (Ⅰ) 求3次射击的人依次是甲、甲、乙的概率;(Ⅱ) 若射击击中目标一次得1分,否则得0分(含未射击). 用ξ表示乙的总得分,求ξ的分布列和数学期望.如图,在直三棱柱111ABC A B C -中,1,1,2AB BC AB BC AA ^===,D 是AA 1的中点. (Ⅰ) 求异面直线11AC 与1B D 所成角的大小; (Ⅱ) 求二面角C-B 1D-B 的大小;(Ⅲ) 在B 1C 上是否存在一点E ,使得//DE 平面ABC ? 若存在,求出1B EEC的值;若不存在,请说明理由.18.(本小题满分14分)设a ∈R,函数1,0,())1,0.a x x f x x a x ⎧-+<⎪=--> (Ⅰ) 当a =2时,试确定函数()f x 的单调区间;(Ⅱ) 若对任何x ∈R ,且0x ≠,都有()1f x x >-,求a 的取值范围.C BC 1 B 1A A 1D已知AOB V 的顶点A 在射线:(0)l y x =>上, A , B 两点关于x 轴对称,O 为坐标原点,且线段AB 上有一点M 满足||||3AM MB ?. 当点A 在l 上移动时,记点M 的轨迹为W . (Ⅰ) 求轨迹W 的方程;(Ⅱ)设P (-1,0),Q (2,0),求证:2MQP MPQ ??.20.(本小题满分14分)已知f 是直角坐标平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作()Q f P =. 设1P 11(,)x y ,2132(),()P f P P f P ==,1,(),n n P f P -=L L . 如果存在一个圆,使所有的点*(,)(N )n n n P x y n Î都在这个圆内或圆上,那么称这个圆为点(,)n n n P x y 的一个收敛圆. 特别地,当11()P f P =时,则称点1P 为映射f 下的不动点. (Ⅰ) 若点(,)P x y 在映射f 下的象为点(2,1)Q x y -.○1 求映射f 下不动点的坐标;○2 若1P 的坐标为(1,2),判断点*(,)(N )n n n P x y n Î是否存在一个半径为3的收敛圆,并说明理由. (Ⅱ) 若点(,)P x y 在映射f 下的象为点(1,)22x y x yQ +-+,1P (2,3). 求证:点*(,)(N )n n n P x y n Î存在一.北京市西城区 2020年抽样测试参考答案高三数学试卷(理科) 2020.5一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.9. e 1(R)x y x =+? 10. 45o 11. 1,512 12. 4 13. 6, 14. 216 注:两空的题目,第一个空2分,第二个空3分. 三、解答题:本大题共 6 小题,共 80 分. 15.(本小题满分12分)(Ⅰ)解:()cos (sin cos )1f x x x x =-+2sin cos cos 1x x x =?+11cos2sin 2122x x +=-+ ---------------------------2分11(sin 2cos2)22x x =-+1)42x p =-+, ---------------------------4分 因为1sin(2)14xp-??(其中x ÎR ),1)42x p ?+?, 即函数()f x的值域为11[]22-+. ---------------------------6分函数()f x 的最小正周期为22T pp ==. ---------------------------8分(Ⅱ)解:由(Ⅰ)得1())1242f p a a =-+=,所以sin(2)42p a -=----------------------------9分因为0<<a p ,所以72444p p pa -<-<, ----------------------------10分 所以32,24444p p p pa a -=-=或, 所以 ,42p pa a ==或. ---------------------------12分16.(本小题满分12分)(Ⅰ)解:记 “3次射击的人依次是甲、甲、乙” 为事件A . ---------------------------1分由题意,得事件A 的概率122()339P A =?; ---------------------------5分 (Ⅱ)解:由题意,ξ的可能取值为0,1,2, ---------------------------6分11123237(0)++33334349P x ==创创=; 12121313(1)+33434472P x ==创创=; 2111(2)=34424P x ==创.所以,x 的分布列为:---------------------------10分x 的数学期望7131190129722472E x =???. ---------------------------12分 17.(本小题满分14分)方法一:(Ⅰ)解:如图,设F 为BB 1的中点,连接AF ,CF , Q 直三棱柱111ABC A B C -,且D 是AA 1的中点, 111//,//AF B DAC AC\,CAF \?为异面直线11AC 与1BD 所成的角或其补角. -----------2分 在Rt ABF V 中,BF AB ^,AB =1,BF =1,AF \=CF =在ABC V 中,,1,AB BC AB BC ^==Q AC \=在ACF V 中,AC AF CF ==Q ,60CAF\?o,C G BC 1 B 1AA 1 DEF\异面直线11AC 与1B D 所成的角为60o. ----------------------------4分(Ⅱ)解:Q 直三棱柱111ABC A B C -,1B B BC \^, 又1,AB BC AB BB B ^=I ,BC \^平面1ABB D . ---------------------------5分如图,连接BD ,在1BB D V 中,112BD B D BB ===Q ,22211BD B D BB \+=,即1BD B D ^,BD Q 是CD 在平面1ABB D 内的射影,1CD B D \^,CDB \?为二面角C -B 1D -B 的平面角. ---------------------------7分在BCD V 中, 90CBD?o , BC=1, BD =tan BC CDBBD \?=,\二面角C -B 1D -B 的大小为arctan---------------------------9分 (Ⅲ)答:在B 1C 上存在一点E ,使得//DE 平面ABC ,此时11B EEC=.----------------------10分 以下给出证明过程.证明:如图,设E 为B 1C 的中点,G 为BC 的中点,连接EG ,AG ,ED , 在1BCB V 中,1,BG GC B E EC ==Q ,1//EG BB \,且112EG BB =, 又1//AD BB ,且112AD BB =,//,EG AD EG AD \=, \四边形ADEG 为平行四边形,//DE AG \, ---------------------------12分 又AG Ì平面ABC ,DE Ë平面ABC ,\//DE 平面ABC . ---------------------------14分 方法二:(Ⅰ)如图,以B 为原点,BC 、BA 、BB 1分别为x 、y 、z 轴,建立空间直角坐标系O -xyz ,则111(0,0,0),(1,0,0),(0,1,0),(0,0,2),(1,0,2),(0,1,2),(0,1,1)B C A B C A D ,111(1,1,0),(0,1,1)AC B D =-=-uuu u r uuu rQ , ---------------------------2分 1111111111cos ,2||||AC B D AC B D AC B D ×\<>==-×uuu u r uuu ruuu u r uuu r uuu u r uuu r , \异面直线11AC 与1B D 所成的角为60o. ---------------------------4分(Ⅱ)解:Q 直三棱柱111ABC A B C -,1B B BC \^, 又1,AB BC AB BB B ^=I ,BC \^平面1ABB D . ---------------------------5分如图,连接BD ,在1BB D V 中,112BD B D BB ===Q ,22211BD B D BB \+=,即1BD B D ^,BD Q 是CD 在平面1ABB D 内的射影,1CD B D \^,CDB \?为二面角C -B 1D -B 的平面角. ---------------------------7分(1,1,1),(0,1,1)DC DB =--=--uuu r uu u rQ ,cos ||||DC DB CDBDC DB ×\?=×uuu r uu u r uuu r uu u r \二面角C -B 1D -B 的大小为 -----------------------------9分 (Ⅲ)同方法一. ---------------------------14分 18.(本小题满分14分)(Ⅰ)解:当0x <时,1()2f x x=-+, 因为21()0f x x ¢=>, 所以()f x 在(,0)-?上为增函数; ---------------------------3分 当0x >时,()2)1f x x =--,1()f x ¢=, ---------------------------4分 由()0f x ¢>,解得23x >,由()0f x ¢<,解得203x <<,所以()f x 在2(,)3+?上为增函数,在2(0,)3上为减函数.综上,()f x 增区间为(,0)-?和2(,)3+?,减区间为2(0,)3. ---------------------------7分(Ⅱ)解:当0x <时,由()1f x x >-,得11a x x -+>-,即 11a x x>+-, 设 1()1g x x x=+-,所以1()[()()]113g x x x=--+--≤-=-(当且仅当1x =-时取等号), 所以当1x =-时,()g x 有最大值3-, 因为对任何0x <,不等式11a x x>+-恒成立, 所以 3a >-; ---------------------------10分当0x >时,由()1f x x >-)11x a x -->-,即a x <-,设()h x x =-,则211())24h x x =--,12,即14x =时,()h x 有最小值14-,因为对任何0x >,不等式a x <-恒成立,所以 14a <-. --------------------------13分 综上,实数a 的取值范围为134a -<<-. ---------------------------14分19.(本小题满分14分)(Ⅰ)解:因为A , B 两点关于x 轴对称,所以AB 边所在直线与y 轴平行.设M (x , y ),由题意,得(),(,)A x B x -, ----------------------------2分所以||,||AM y MB y =-=,因为||||3AM MB ?,所以)()3y y -⨯+=,即2213y x -=, ----------------------------5分所以点M 的轨迹W 的方程为221(0)3y x x -=>. -----------------------------6分(Ⅱ)证明:设000(,)(0)M x y x >,因为曲线221(0)3y x x -=>关于x 轴对称,所以只要证明“点M 在x 轴上方及x 轴上时,2MQP MPQ ∠=∠”成立即可. 以下给出“当00y ≥时,2MQP MPQ ∠=∠” 的证明过程.因为点M 在221(0)3y x x -=>上,所以01x ≥.当x 0=2时,由点M 在W 上,得点(2,3)M ,此时,||3,||3MQ PQ MQ PQ ⊥==, 所以,42MPQ MQP ππ∠=∠=,则2MQP MPQ ∠=∠; --------------------------8分当02x ¹时,直线PM 、QM 的斜率分别为0000,12PM QM y y k k x x ==+-, 因为0001,2,0x x y ≥≠≥,所以0001PM y k x =≥+,且0011PM yk x =≠+,又tan PM MPQ k ∠=,所以(0,)2MPQ π∠∈,且4MPQ π∠≠,所以22tan tan 21(tan )MPQ MPQ MPQ ∠∠=-∠00002220000212(1)(1)1()1y x y x yx y x ⨯++==+--+,---------------10分 因为点M 在W 上,所以220013y x -=,即22033y x =-, 所以tan 2MPQ ∠000220002(1)(1)(33)2y x y x x x +==-+---,因为tan QM MQP k ∠=-,所以tan tan 2MQP MPQ ∠=∠, -----------------------------12分 在MPQ ∆中,因为(0,)2MPQ π∠∈,且4MPQ π∠≠,(0,)MQP π∠∈,所以2MQP MPQ ∠=∠. 综上,得当00y ≥时,2MQP MPQ ∠=∠.所以对于轨迹W 的任意一点M ,2MQP MPQ ∠=∠成立. -----------------------------14分20.(本小题满分14分)(Ⅰ)○1解:设不动点的坐标为000(,)P x y , 由题意,得000021x x y y ì=ïïíï=-ïî,解得0010,2x y ==,所以映射f 下不动点为01(0,)2P . ---------------------------2分 ○2结论:点(,)nnnP x y 不存在一个半径为3的收敛圆. 证明:由1(1,2)P ,得234(2,1),(4,2),(8,1)P P P --,所以14||6PP =,则点14,P P 不可能在同一个半径为3的圆内, 所以点(,)n n n P x y (n ÎN *)不存在一个半径为3的收敛圆. --------------------------5分(Ⅱ)证明:由1(2,3)P ,得271(,)22P -. 由1()n n P f P +=,得11122n n n n n n x y x x y y ++ì+ïï=+ïïíï-ï=ïïïî, ---------------------------7分 所以11111,1n n n n n n x y x x y y +++++=+-=+,由21()n n P f P ++=,得112112122n n n n n n x y x x y y ++++++ì+ïï=+ïïïíï-ï=ïïïî, 所以221311,2222n n n n x x y y ++=+=+, ---------------------------9分 即22113(3),1(1)22n n n n x x y y ++-=--=-,由1230,30x x -??,得30n x -?,同理10n y -?,所以223111,3212n n n n x y x y ++--==--,所以数列212{3},{3}(n n x x n ---?N *)都是公比为12的等比数列,首项分别为 12131,32x x -=--=,所以112121113(),3()222n n n n x x ----=--=?, 同理可得1121213112(),1()222n n n n y y ----=?=-?. ---------------------------12分 所以对任意n ÎN *,|3|1,|1|2n n x y -??,设(3,1)A ,则||n AP =所以||n AP £故所有的点*(N )n P n Î都在以(3,1)A即点(,)n n n P x y 的收敛圆. -------------------------14分。
高中数学组——郭子敬整理
电话北京213届高三最新模拟试题分类汇编专题统计
一、填空题
AUTONUM \* Arabic .(213届北京丰台区一模理科)某校从高一年级学生中随机抽取1名学生,将他们期中考试的数学成绩(均为整数)分成六段[4,5),[5,6),…,[9,1]后得到频率分布直方图(如图所示).则分数在[7,8)内的人数是________。
4 5 6 7 8 9 分数(分) EQ \F(频率,组距) .5.1.2.3 a AUTONUM \* Arabic .(213届东城区一模理科)如图是甲、乙两名同学进入高中以来次体育测试成绩的茎叶图,则甲次测试成绩的平均数是,乙次测试成绩的平均数与中位数之差是.
4 5 6 7 8 9 分数(分)
EQ \F(频率,组距)
.5
.1
.2
.3
a
AUTONUM \* Arabic .(北京市东城区普通校213届高三3月联考数学(理)试题)从某校高三学生中随机抽取1名同学,将他们的考试成绩(单位分)绘制成频率分布直方图(如图).则图中a=,由图中数据可知此次成绩平均分为.
AUTONUM \* Arabic .(北京市海淀区北师特学校213届高三第四次月考理科数学)如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为,则的大小关系是_____________(填,,)
.
AUTONUM \* Arabic .(北京市顺义区213届高三第一次统练数学理科试卷(解析))下图是根据5个城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是,样本数据的分组为, ,,,,.由图中数据可知_______;样本中平均气温不低于25℃的城市个数为________.
AUTONUM \* Arabic .(北京市丰台区213届高三上学期期末考试数学理试题)某高中共有学生9人,其中高一年级24人,高二年级26人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是 ______.。