第三章 整式的乘除
- 格式:doc
- 大小:188.00 KB
- 文档页数:4
整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。
一、整式的定义整式由单项式或多项式组成。
单项式是一个数字或变量的乘积,也可以包含指数。
例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。
多项式是多个单项式的和。
例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。
二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。
2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。
3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。
在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。
例如,(2x^2)×(3y)=6x^2y。
三、整式的除法整式的除法是乘法的逆过程。
除法运算中,被除数除以除数得到商。
以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。
例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。
例如,5/0没有意义。
在进行整式的除法运算时,要注意约分和消去的原则。
例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。
四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。
常见的运算顺序规则如下:1.先解决括号内的运算。
2.然后进行乘法和除法的运算。
3.最后进行加法和减法的运算。
五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。
对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。
整式的乘除教案教案:整式的乘除一、教学内容本节课的教学内容选自人教版小学数学五年级上册第三单元《整式的乘除》。
本节课主要内容包括:1. 整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。
2. 整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式。
二、教学目标1. 理解整式乘除的概念,掌握整式乘除的计算方法。
2. 能够运用整式乘除解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
三、教学难点与重点1. 教学难点:整式的乘除运算规则,以及如何运用这些规则解决实际问题。
2. 教学重点:整式乘除的计算方法,以及如何将这些方法应用到实际问题中。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:假设有一块长方形的地,长为8米,宽为6米,求这块地的面积。
2. 例题讲解:(1) 单项式乘以单项式:例如,3x × 4x = 12x²。
(2) 单项式乘以多项式:例如,2x × (x + 3) = 2x² + 6x。
(3) 多项式乘以多项式:例如,(x + 2) × (x + 3) = x² + 3x+ 2x + 6 = x² + 5x + 6。
(4) 单项式除以单项式:例如,12x² ÷ 4x = 3x。
(5) 多项式除以单项式:例如,(x² + 5x + 6) ÷ x = x + 5 +6/x。
(6) 多项式除以多项式:例如,(x² + 5x + 6) ÷ (x + 2) = x+ 3。
3. 随堂练习:a. 3x × 4xb. 2x × (x + 3)c. (x + 2) × (x + 3)a. 12x² ÷ 4xb. (x² + 5x + 6) ÷ xc. (x² + 5x + 6) ÷ (x + 2)4. 板书设计:整式的乘法:a. 3x × 4x = 12x²b. 2x × (x + 3) = 2x² + 6xc. (x + 2) × (x + 3) = x² + 5x + 6整式的除法:a. 12x² ÷ 4x = 3xb. (x² + 5x + 6) ÷ x = x + 5 + 6/xc. (x² + 5x + 6) ÷ (x + 2) = x + 35. 作业设计:a. 4y × 5yb. 3x × (2x 3)c. (2x + 4) × (3x 2)a. 15x² ÷ 5xb. (x² 5x + 6) ÷ xc. (x² 5x + 6) ÷ (x + 3)六、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入,使学生能够更好地理解整式的乘除概念。
整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。
整式的除法运算是指对一个整式除以另一个整式的运算。
整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。
一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。
例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。
例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。
例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。
例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。
例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。
例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。
这个性质可以简化计算,使得整式的乘法更加灵活。
2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。
这个性质可以改变运算次序,简化计算过程。
3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。
整式的乘除知识点整式的乘除是代数运算中的重要内容,它为解决各种数学问题提供了基础工具。
下面咱们就来详细说一说整式乘除的相关知识点。
首先,咱们聊聊整式的乘法。
单项式乘以单项式,就把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
比如说,3x²乘以 2x³,系数 3 和 2 相乘得 6,相同字母 x 分别相乘,指数2 和3 相加得 5,所以结果就是 6x^5 。
单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加。
例如,2x(3x² 4x + 5),那就是 2x 乘以 3x²得 6x³,2x 乘以-4x 得-8x²,2x 乘以 5 得 10x ,最后相加就是 6x³ 8x²+ 10x 。
多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
举个例子,(x + 2)(x 3),就是 x 乘以 x得 x²,x 乘以-3 得-3x ,2 乘以 x 得 2x ,2 乘以-3 得-6 ,然后相加,结果就是 x² x 6 。
接下来,咱们再看看整式的除法。
单项式除以单项式,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
比如说,12x³y² ÷ 3x²y ,系数 12 除以 3 得 4,同底数幂 x³除以 x²得 x ,y²除以 y 得 y ,所以结果就是 4xy 。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
例如,(6x³ 9x²+ 3x) ÷ 3x ,6x³除以 3x 得 2x²,-9x²除以 3x 得-3x ,3x 除以 3x 得 1 ,所以结果就是 2x² 3x + 1 。
整式的乘除整式是指由常数、变量及它们的乘、除运算符号经有限次组合而成的代数表达式。
整式是代数学中一个重要的概念,掌握整式的乘除运算是解决代数问题的关键。
一、整式的乘法整式的乘法是指将两个或多个整式相乘的运算。
在整式的乘法中,我们需要遵循如下规则:1.同底数的幂相乘,底数不变,指数相加。
例如:am* an = am+n2.乘法满足交换律和结合律。
3.不同底数幂相乘时,可以将其视为两个不同的因数。
例如:am * bn = abn下面是一个整式乘法的示例:假设有整式 a = 2ab2,b = 3a2b,c = 4a2b2。
要求计算整式 d = a * (b + c) 的值。
根据乘法分配律,我们可以将乘法转化为加法运算,即:d = a * b + a * c。
将 a、b、c 的值代入计算,有:d = 2ab2 * 3a2b + 2ab2 * 4a2b2化简上式,将幂相加,并化简系数,得到:d = 6a3b3 + 8a3b4因此,整式 d 的值为 6a3b3 + 8a3b4。
二、整式的除法整式的除法是指将一个整式除以另一个整式的运算。
在整式的除法中,我们需要遵循如下规则:1.除法满足结合律,但不满足交换律。
2.同底数的幂相除,底数不变,指数相减。
例如:am/ an = am-n3.除法中,除数不为零。
下面是一个整式除法的示例:假设有整式 p = 5a3b2c 和 q = 10a2c2。
要求计算整式 r = p / q 的值。
根据整式除法的规则,我们需要将p 和q 化简到最简形式,然后进行除法运算。
首先,我们将 p 和 q 化简,并将指数按照从大到小的顺序排列:p = 5a3b2c,q = 10a2c2进行除法运算,将 p 中每一项除以 q 中的对应项,并将指数进行相减:r = (5a3b2c) / (10a2c2)再化简这个分式,我们可以将分子和分母都除以其最大公因式 5ac,得到最简形式:r = (a2b2) / (2c)因此,整式 r 的值为 (a2b2) / (2c)。
浙教版2022-2023学年数学七年级下册第3章整式的乘除3.1同底数幂的乘法(3)【知识重点】1.积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
2.字母表示:(1)(ab )n = a n b n (n 是正整数);(2)(abc )n = a n b n c n (n 是正整数);(3) a n b n =(ab )n (n 是正整数)【经典例题】【例1】计算(−4x 3)2的符合题意结果是( )A .16x 6B .16x 5C .−16x 5D .8x 6【例2】计算:(−5x 2yz 2)3= .【例3】计算(﹣23)2018×(1.5)2019= .【例4】已知2x+3•3x+3=36x ﹣2,求x 的值.【基础训练】1.计算 (ab 3)2 的结果是( )A .2ab 3B .ab 6C .a 2b 5D .a 2b 6 2.计算:(﹣a 2b )2•a 2=( )A .a 4b 2B .a 6b 2C .a 5b 2D .a 8b 23.计算 (−23)2018×(1.5)2019 的结果是( ) A .−23 B .32 C .23 D .−32 4.计算(- 23×103)2×(1.5×104)2的结果是 ( ) A .-1.5×1011 B .23 ×1010 C .1014 D .-1014 5.若2m =a ,3m =b ,则6m 等于( )A .a +bB .a −bC .abD .a b 6.已知 2n =a , 5n =b , 20n =c ,那么a 、b 、c 之间满足的等量关系是( ) A .c =ab B .c =ab 2 C .c =a 2b 2 D .c =a 2b 7.当 x =-6,y= 16 时, x 2013y 2014的值为 . 8.计算:(−14)12×88= .9.用简便方法计算下列各题: (1)(45)2018×(−1.25)2019(2)(225)10×(−56)10×(12)11【培优训练】10.若 (2a m b m+n )3=8a 9b 15 成立,则( ) A .m=3,n=2 B .m=n=3 C .m=6,n=2D .m=3,n=511.计算:(−37)40×(423)40×0.12512= . 12.计算:42n ·(−14)2n+1= (n 为正整数). 13.计算:(110×19×…×12×1)10×(10×9×…2×1)10= . 14.若a 2n =5,b 2n =16,则(ab )n =15.已知x n =2,y n =3,求(x 2y )2n 的值.16.已知n 是正整数,且 x 3n =2 ,求 (3x 3n )2+(−2x 2n )3 的值.17.已知42x ⋅52x+1−42x+1⋅52x =203x−4,求x 的值;18.若2a =3,2b =5,2c =75,试说明:a+2b=c .19.已知 (ab)2=a 2b 2 , (ab)3=a 3b 3 , (ab)4=a 4b 4 . (1)当 a =1 , b =−2 时, (ab)5= , a 5b 5= . (2)当 a =−1 , b =10 时, (ab)6= , a 6b 6= . (3)观察(1)和(2)的结果,可以得出结论: (ab)n = (n 为正整数).(4)此性质可以用来进行积的乘方运算,反之仍然成立.如 a 2b 2=(ab)2 , a 3b 3=(ab)3 ,….应用上述等式,求 (−14)2019×42020 的值.20.按题目要求计算:(1)已知 2m −1=2 ,求 3+4m 的值;(2)已知 78=a 、 87=b ,用含有 a 、 b 的式子表示 5656 .【直击中考】21.计算(−3x)2⋅2x 正确的是( ) A .6x 3 B .12x 3C .18x 3D .−12x 3 22.化简(3a 2)2的结果是( )A .9a 2B .6a 2C .9a 4D .3a 4 23.下列计算正确的是( )A .a 3•a =a 3B .(a 2)3=a 5C .4a•(﹣3ab )=﹣12a 2bD .(﹣3a 2)3=﹣9a 6。
整式的乘除知识点整式的乘除是数学中的基础内容之一,它在代数学中扮演着重要的角色。
本文将从整式的定义开始,逐步讨论整式的乘法和除法的相关知识点。
对于初学者来说,希望通过本文的解析,能够更好地掌握整式的乘除运算。
一、整式的定义及基本概念整式由多项式组成,多项式是由若干项按照加法和减法进行运算形成的表达式。
其中项由系数与单项式的乘积构成,单项式是由常数与字母的乘积构成。
在整式中,字母表示未知数或变量,系数表示字母的倍数,常数表示不带字母的数。
而整式的次数是指整式中单项式的最高次幂。
例如,3x² + 2xy - 5是一个三项式,其中3、2、-5为系数,x²、xy 为单项式。
二、整式的乘法运算整式的乘法运算是指将两个或多个整式相乘的过程。
具体运算规则如下:1. 乘法分配律:整式A、B、C相乘,可以先将A与B的每一项相乘,然后将所得结果相加(或相减),再与C的每一项相乘,最后将所得结果相加(或相减)。
2. 同底数幂相乘:若整式中出现了同样字母的多项式相乘,只需将它们的次数相加。
3. 字母之间相乘:在整式的乘法中,字母之间相乘的结果仍然是单项式。
三、整式的除法运算整式的除法运算是指将一个整式除以另一个整式的过程。
在进行整式的除法运算时,首先要明确整除和除式的概念。
整除是指当一个整式A除以整式B时,如果存在另一个整式C,使得A=BC成立,则称B整除A,记作B|A。
除式是指进行整除的除数。
在整式的除法运算中,可以利用带余除法的思想进行,具体步骤如下:1. 对于整式A除以整式B,不妨设A的次数为m,B的次数为n (m≥n)。
2. 设立商式Q和余式R,使得A=QB+R,其中Q的次数为m-n,R 的次数小于n。
3. 再次利用带余除法,将B除以R,得到商式和余式。
4. 重复以上步骤,直到余式的次数小于除式,停止运算。
四、整式的乘除综合运算整式的乘除运算经常结合使用,可以通过以下例子加深理解。
例子:将 (5x² + 2xy) × (3x - 4) ÷ (x + 2) 进行计算。
第三章 整式的乘除测试卷
班级 学号 姓名 得分
一、选择题(每小题3分,共30分)
1.化简322a a a +⋅的结果等于( )
(A )33a (B )32a (C )53a (D )62a
2.用科学记数方法表示0000907.0,得( )
(A )41007.9-⨯ (B )51007.9-⨯ (C )6107.90-⨯ (D )7107.90-⨯
3.计算2)3(b a -,结果是( )
(A )229b a - (B )2269b ab a ++
(C )2269b ab a +- (D )229a b -
4.计算2-)3(-的结果是( )
(A )91 (B )6- (C )9
1- (D )9- 5.下列各式中能用平方差公式计算的是( )
(A ))2)(2(b a b a +-- (B ))2)(2(b a b a +-
(C ))2)(2(b a a b +-- (D ))2)(2(b a b a +-
6.下列计算中正确的是( )
(A )632a a a =⨯ (B )5
32)(a a = (C )326a a a =÷ (D )33332a a a =+
7.已知210=a ,210-=b ,10=c ,3
10-=d 那么下列各式正确的是( )
(A )cd ab = (B )bd ac = (C )d abc = (D )bc ad =
8.如果q px x x x ++=-+2)5)(4(,那么p ,q 的值是( )
(A )1-=p ,20-=q (B )1=p ,20-=q
(C )1=p ,20=q (D )1-=p ,20=q
9. 已知a 2﹣b 2=8,且a ﹣b =﹣4,则a +b 的值是( )
(A )4 (B )12 (C )2 (D )﹣2
10.如果整式是()2
2__9+=++x mx x ,那么常数m 的值是( ) (A )6 (B )3 (C )3± (D )6±
二、填空题(每小题3分,共30分)
11.计算:)2(164
253y x z y x -÷= _________.
12.要使0)5(+x 有意义,则x 应满足的条件是_________.
13.若638a x -=,则=x _________. 14.如果8
12=x ,那么=x _________. 15.如果)1)((++x p x 的乘积中不含x 的一次项,那么p 等于_________.
16.一个多项式与b a 2-的积为b a c b a c b a 2232233+-,则这个多项式是_________.
17. ()20112010425.0⨯-= _____.
18.右图中阴影部分的面积可以表示成()ab b a 42-+,还可以表示成 ______ ,由此可以得出 .
19.若()()2227,3,=________,ab________a b a b b +=-=+2则a
20.若等式(a ﹣2)3
﹣2a =1成立,则a 的值可能为________________.
三、解答题(共40分)
21.(6分)计算.
(1)()()23332
2b a b a +- (2)23332(2)6(2)x x x x x -++
(3) a ·
a 2·a 3+(-2a 3) 2-(2a 4) 2÷a 2
a
b (第18题)
22.(6分)先化简,再求值:()()()()1222222+++---a b b a b a b a ,其中75999=a ,2-=b .
23.(6分)先化简,再求值:
已知a 2﹣3a +1=0,求代数式(3a ﹣2)2﹣3a (2a ﹣1)+5的值.
24.(6分)阅读理解:已知a +b =﹣4,ab =3,求a 2+b 2的值.
解:∵a +b =﹣4,∴(a +b )2=(﹣4)2.即a 2+2ab +b 2=16.
∵ab =3,∴a 2+b 2=10.
参考上述过程答案:
已知a ﹣b =﹣3,ab =﹣2.求式子(a ﹣b )(a 2+b 2)的值.
25. (8分)王老师家买了一套新房,其结构如图所示(单位:m ).他打算将卧室铺上木地板,
其余部份铺上地砖.
(1)木地板和地砖分别需要多少平方米?
(2)如果地砖的价格为每平方米x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?
26. (8分))(32-2b ax x x ++)(乘积中2x 的系数为-1,且不含有x 的一次项,求a b -的值.。