塑胶产品结构设计常识
- 格式:doc
- 大小:455.00 KB
- 文档页数:21
塑胶产品结构设计要点1.胶厚(胶位):塑胶产品的胶厚(整体外壳)通常在0.80-3.00左右,太厚容易缩水和产生汽泡,太薄难走满胶,大型的产品胶厚取厚一点,小的产品取薄一点,一般产品取1.0-2.0为多。
而且胶位要尽可能的均匀,在不得已的情况下,局部地方可适当的厚一点或薄一点,但需渐变不可突变,要以不缩水和能走满胶为原则,一般塑料胶厚小于0.3时就很难走胶,但软胶类和橡胶在0.2-0.3的胶厚时也能走满胶。
2.加强筋(骨位):塑胶产品大部分都有加强筋,因加强筋在不增加产品整体胶厚的情况下可以大大增加其整体强度,对大型和受力的产品尤其有用,同时还能防止产品变形。
加强筋的厚度通常取整体胶厚的0.5-0.7倍,如大于0.7倍则容易缩水。
加强筋的高度较大时则要做0.5-1的斜度(因其出模阻力大),高度较矮时可不做斜度。
3.脱模斜度:塑料产品都要做脱模斜度,但高度较浅的(如一块平板)和有特殊要求的除外(但当侧壁较大而又没出模斜度时需做行位)。
出模斜度通常为1-5度,常取2度左右,具体要根据产品大小、高度、形状而定,以能顺利脱模和不影响使用功能为原则。
产品的前模斜度通常要比后模的斜度大0.5度为宜,以便产品开模事时能留在后模。
通常枕位、插穿、碰穿等地方均需做斜度,其上下断差(即大端尺寸与小端尺寸之差)单边要大于0.1以上。
4.圆角(R角):塑胶产品除特殊要求指定要锐边的地方外,在棱边处通常都要做圆角,以便减小应力集中、利于塑胶的流动和容易脱模。
最小R通常大于0.3,因太小的R模具上很难做到。
5.孔:从利于模具加工方面的角度考虑,孔最好做成形状规则简单的圆孔,尽可能不要做成复杂的异型孔,孔径不宜太小,孔深与孔径比不宜太大,因细而长的模具型心容易断、变形。
孔与产品外边缘的距离最好要大于1.5倍孔径,孔与孔之间的距离最好要大于2倍的孔径,以便产品有必要的强度。
与模具开模方向平行的孔在模具上通常上是用型心(可镶、可延伸留)或碰穿、插穿成型,与模具开模方向不平行的孔通常要做行位或斜顶,在不影响产品使用和装配的前提下,产品侧壁的孔在可能的情况下也应尽量做成能用碰穿、插穿成型的孔。
塑胶结构设计规范1.材料选择:在选择塑胶材料时,需要考虑其化学性质、力学性能和热性能等。
应根据使用环境和使用要求选择合适的塑胶材料,确保其达到所需的强度、硬度和耐磨性等性能。
2.结构设计:要合理设计塑胶结构,以提高其刚度和强度。
应注意避免在塑胶结构中产生应力集中和应力积累,采取合适的加强结构设计,如搭接、激光焊接等,以增加其承载能力和抗冲击能力。
3.壁厚设计:塑胶制品的壁厚设计是确保其强度和刚度的重要因素。
壁厚过厚会增加成本和重量,而壁厚过薄则会降低结构的强度和刚度。
因此,应根据使用要求和塑胶材料的特性,合理确定壁厚。
4.型腔设计:型腔设计是塑胶制品成型过程中的关键环节。
型腔的设计应考虑到塑胶熔体的流动性和充模性,以确保成型件的质量和尺寸精度。
同时,还需要注意排气和冷却系统的设计,以避免空气和热量对成型件造成不良影响。
5.连接设计:塑胶制品的连接设计直接影响其使用寿命和性能。
在连接处应采用结构合理、牢固可靠的连接方式,如螺栓连接、粘接等。
同时,还需要考虑到塑胶材料的热膨胀系数,以避免因温度变化引起的松动和变形。
6.表面处理:塑胶制品的表面处理可以提高其外观质量和耐久性。
在设计中应考虑到表面处理的可行性和效果,如喷漆、喷涂、电镀等。
7.模具设计:模具设计是塑胶制品生产的关键环节。
模具的设计应符合产品的结构形状和尺寸要求,同时要考虑到成型工艺的要求,如浇口、顶针设计等。
此外,还需要注意模具的加工精度和使用寿命等因素。
总之,塑胶结构设计规范是保证塑胶制品质量和性能的重要保证。
通过合理的材料选择、结构设计、壁厚设计等,可以提高塑胶结构的强度、刚度和耐久性,从而满足不同的使用需求。
塑胶产品结构设计重点一、材料选择塑胶产品的结构设计首先要考虑材料选择。
材料的选择直接关系到产品的性能、质量和成本,因此需要根据产品的具体要求和使用环境,选择适合的塑胶材料。
常见的塑胶材料有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚酯(PET)等。
在选择材料时需要考虑产品的机械性能、耐热性、耐化学性、耐候性、电气性能、透明度等因素。
同时还需要考虑材料的加工性能,如流动性、热稳定性、收缩率等。
材料的选择不合理会导致产品性能不达标或加工工艺困难,因此需要在产品设计之前进行充分的材料筛选和试验。
二、结构设计塑胶产品结构设计主要包括外形设计和内部结构设计。
外形设计需要考虑产品的功能、美观和人机工程学等因素。
合理的外形设计可以提升产品的市场竞争力和用户体验。
内部结构设计需要考虑产品的强度、稳定性和装配性等因素。
合理的内部结构设计可以提高产品的性能和质量,减少生产和使用过程中的故障和损坏。
此外还需要考虑产品的可制造性和生产效率。
在进行结构设计时,需要采用CAD软件进行三维建模和仿真分析,以验证设计的可行性和优化设计。
三、模具设计塑胶产品的生产需要模具进行注塑成型。
模具设计是塑胶产品结构设计中非常重要的一部分,直接影响产品的质量和生产效率。
模具设计需要考虑产品的尺寸、形状和结构特点,选择合适的注塑工艺,确定模具的结构和加工工艺。
模具的设计要求高精度、高效率、长寿命和低成本,需要充分考虑模具的结构强度、冷却系统、顶出系统、塑胶流道等因素。
合理的模具设计可以提高产品的精度和表面质量,降低生产成本和生产周期。
四、加工工艺塑胶产品的加工工艺是塑胶产品结构设计的最后一步,直接影响产品的成型质量和效率。
常见的塑胶加工工艺有注塑成型、吹塑成型、挤出成型、压缩成型等。
在选择和优化加工工艺时,需要考虑产品的形状、尺寸、材料特性和生产要求等因素。
合理的加工工艺可以提高产品的质量和生产效率,降低生产成本和能耗。
塑胶产品结构设计常用术语及解释如下:
1.PL面:即Parting Panel的简称,也称分型面,是指模具在闭合时公模和母模相接触的部分。
2.枕位:外壳类塑件的边缘常开有缺口,用于安装各类配件,此处形成的枕状部分称为枕位。
3.火山口:BOOS柱根部减胶部分反映在模具上的类似于火山爆发后的形状叫做模具火山口。
4.呵(音hā):指的是模仁,香港习惯用语。
5.老虎口:又称为管位,即用来限位的部分。
6.柱位:产品上的BOSS的柱称为柱位。
7.虚位:模具上的间隙称为虚位。
8.扣位:产品联接用的钩称为扣位。
9.火花纹:电火花加工后留下的纹称为火花纹。
10.料位:塑胶产品的避厚,也称肉厚。
以上信息仅供参考,如需了解更多信息,建议咨询专业人士。
塑胶结构设计入门知识一、材料选择1.功能要求:根据产品的使用环境和要求,选择具备必要性能的塑胶材料,如强度、耐热性和耐化学性等。
2.成本考虑:根据项目的预算和成本限制,选择经济合理的塑胶材料。
3.加工性能:考虑材料的流动性、收缩性和成型工艺,以确保能够实现设计要求并提高产能。
常见的塑胶材料有聚丙烯(PP)、高密度聚乙烯(HDPE)、聚氯乙烯(PVC)、聚苯乙烯(PS)和聚碳酸酯(PC)等。
二、设计原则1.强度设计:根据产品的负荷和使用条件,确定塑胶零件的强度要求,并通过合理的形状设计和增加必要的加强材料来满足强度要求。
2.塑胶件的收缩和变形:由于塑胶材料在冷却过程中会发生收缩,设计时应考虑材料的收缩率,以避免零件尺寸不准确或变形。
3.壁厚设计:过于薄的壁厚可能导致塑胶零件的强度不足,而过于厚的壁厚会导致零件成本上升。
因此,应根据功能需求和材料性能合理选择壁厚。
4.结构合理:设计时应避免尖角、槽口和开放式结构,以免成型困难或产生应力集中。
三、常见问题1.气泡:气泡通常由于材料中的挥发物未能完全释放导致的。
解决方法包括调整填料速度、增加干燥时间和使用适当的材料等。
2.缩孔:缩孔是由于材料在冷却过程中收缩不均匀而产生的。
可以通过增加填充压力或改变产品的几何形状来减少缩孔。
3.白痕:白痕是在成形过程中形成的表面瑕疵,通常是由于温度不均匀或材料与金属模具的摩擦导致的。
可以通过调整温度和增加模具通气孔来减少白痕。
4.裂纹:裂纹通常是由于过分的应力或不适当的设计造成的。
解决方法包括增加加强材料、改变设计形状和加强结构等。
总结:。
塑料产品结构设计资料目录一、零件壁厚 (1)二、脱模斜度 (4)三、圆角设计 (5)四、加强筋的设计 (7)五、支柱的设计 (8)六、螺丝柱的设计 (9)七、孔的设计 (10)八、止口的设计 (11)九、卡扣的设计 (13)十、反止口的设计 (18)零件设计必须满足来自于零件制造端的要求,对通过注射加工工艺而获得的塑胶件也是如此。
在满足产品功能、质量以及外观等要求下,塑胶件设计必须使得注射模具加工简单、成本低,同时零件注射时间短、效率高、零件缺陷少、质量高,这就是面向注射加工的设计。
现将详细介绍塑胶件设计指南,使得塑胶件设计是面向注射加工的设计。
一、零件壁厚在塑胶件的设计中,零件壁厚是首先考虑的参数,零件壁厚决定了零件的力学性能、零件的外观、零件的可注射性以及零件的成本等。
可以说,零件壁厚的选择和设计决定了零件设计的成功与失败。
1、零件壁厚必须适中由于塑胶材料的特性和注射工艺的特殊性,塑胶件的壁厚必须在一个合适的范围内,不能太薄,也不能太厚。
壁厚太小,零件注射时流动阻力大,塑胶熔料很难充满整个型腔,不得不通过性能更高的注射设备来获得更高的充填速度和注射压力。
壁厚太大,零件冷却时间增加,零件成型周期增加,零件生产效率低;同时过大的壁厚很容易造成零件产生缩水、气孔、翘曲等质量问题。
零件壁厚可根据材料的不同及产品外形尺寸的大小来选择,其范围一般为0.6~6.0mm,常用的厚度一般在1.5~3.0mm之间。
表1是常用塑料件料厚推荐值,小型产品是指最大外形尺寸L<80.0mm,中型产品是指最大外形尺寸为80.0mm<L<200.0mm,大型产品是指最大外形尺寸L>200.0mm。
表1 常用塑料件料厚推荐值(单位mm)2、尽量减少零件壁厚决定塑胶件壁厚的关键因素包括:1)零件的结构强度是否足够。
一般来说,壁厚越大,零件强度越好。
但零件壁厚超过一定范围时,由于缩水和气孔等质量问题的产生,增加零件壁厚反而会降低零件强度。
塑胶产品结构设计要点塑胶产品的结构设计是指根据产品功能和使用要求,通过合理的结构布局和构造设计,使产品能够满足使用功能和质量要求,以及具备良好的外观和实用性。
在进行塑胶产品结构设计时,应注意以下要点:1.确定产品功能和使用要求:了解产品的使用功能和要求,包括产品的使用环境、使用寿命、承载能力、阻燃性能、耐磨性等方面的要求。
根据这些要求来确定产品的结构设计目标。
2.材料选择:根据产品的使用要求,选择适合的塑胶材料。
根据材料的物理性质、化学性能、加工性能以及市场价格等因素进行综合考虑,选择最合适的材料。
3.结构布局:根据产品的功能要求和外观要求,设计出合理的结构布局。
合理的结构布局可以提高产品的使用效果和降低生产成本。
在进行结构布局时,要考虑产品的各个功能部件的位置、载荷传递路径、连接方式等因素。
4.强度设计:对于承载载荷的部件,需要进行强度设计。
通过选用合适的截面形状、增加加强筋和加大材料厚度等手段,确保产品在使用过程中不会发生断裂、变形和塑胶疲劳等现象。
5.组装和拆卸设计:对于复杂的塑胶产品,需要考虑组装和拆卸的方便性。
通过设计合理的连接方式、采用模块化结构等手段,简化组装和拆卸过程,提高产品的维修和更换部件的便利性。
6.注塑成型设计:在进行塑胶产品结构设计时,需要考虑塑胶材料的注塑成型工艺。
通过优化产品的结构设计,减少成型缺陷和变形,提高产品的成型质量。
7.外观设计:塑胶产品通常需要具备良好的外观。
在进行结构设计时,应注意产品的外观效果,设计合理的形状和曲线,避免尖锐边缘和毛刺等缺陷。
8.安全设计:塑胶产品在使用过程中,需要考虑安全性。
对于与人体直接接触的部件,应采用无毒、无害的材料,并设计合理的圆角和平滑表面,避免刺伤和损伤。
9.可维修性设计:对于长期使用的塑胶产品,需要考虑其可维修性。
合理的结构设计可以方便产品的维护和更换损坏部件,延长产品的使用寿命。
总之,塑胶产品的结构设计是一个复杂而综合的过程,需要综合考虑产品的功能要求、材料性能、工艺要求、外观要求和安全要求等因素。
塑胶产品结构设计小常识目录:第一章塑胶结构设计规范1、材料及厚度1.1、材料选择1.2、壳体厚度1.3、零件厚度设计实例2、脱模斜度2.1、脱模斜度要点3、加强筋3.1、加强筋及壁厚的关系3.2、加强筋设计实例4、柱和孔的问题4.1、柱子的问题4.2、孔的问题4.3、“减胶”的问题5、螺丝柱的设计6、止口的设计6.1、止口的作用6.2、壳体止口的设计需要注意的事项6.3、面壳及底壳断差的要求7、卡扣的设计7.1、卡扣设计的关键点7.2、常见卡扣设计8、装饰件的设计8.1、装饰件的设计注意事项8.2、电镀件装饰斜边角度的选取8.3、电镀塑胶件的设计9、按键的设计9.1 按键(Button)大小及相对距离要求10、旋钮的设计10.1 旋钮(Knob)大小尺寸要求10.2 两旋钮(Knob)之间的距离10.3 旋钮(Knob)及对应装配件的设计间隙11、胶塞的设计12、镜片的设计12.1 镜片(LENS)的通用材料12.2 镜片(LENS)及面壳的设计间隙13、触摸屏及塑胶面壳配合位置的设计13.1、触摸屏相对应位置塑胶面壳的设计注意事项第一章塑胶结构设计规范1、材料及厚度1.1、材料的选取a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。
还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。
目前常用奇美PA-757、PA-777D等。
b. PC+ABS:流动性好,强度不错,价格适中。
适用于作高刚性、高冲击韧性的制件,如框架、壳体等。
常用材料代号:拜尔T85、T65。
c. PC:高强度,价格贵,流动性不好。
适用于对强度要求较高的外壳、按键、传动机架、镜片等。
常用材料代号如:帝人L1250Y、PC2405、PC2605。
d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。
常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。
e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。
常用于齿轮、滑轮等。
受冲击力较大的关键齿轮,需添加填充物。
材料代号如:CM3003G-30。
f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78.5% 。
机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。
常用材料代号如:三菱VH001。
1.2 壳体的厚度a. 壁厚要均匀,厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最小壁厚不得小于0.4mm,且该处背面不是A级外观面,并要求面积不得大于100mm²。
b. 在厚度方向上的壳体的厚度尽量在1.2~1.4mm,侧面厚度在1.5~1.7mm;外镜片支承面厚度0.8mm,内镜片支承面厚度最小0.6mm。
c. 电池盖壁厚取0.8~1.0mm。
d. 塑胶制品的最小壁厚及常见壁厚推荐值见下表。
1.3、厚度设计实例塑料的成型工艺及使用要求对塑件的壁厚都有重要的限制。
塑件的壁厚过大,不仅会因用料过多而增加成本,且也给工艺带来一定的困难,如延长成型时间(硬化时间或冷却时间)。
对提高生产效率不利,容易产生汽泡,缩孔,凹陷;塑件壁厚过小,则熔融塑料在模具型腔中的流动阻力就大,尤其是形状复杂或大型塑件,成型困难,同时因为壁厚过薄,塑件强度也差。
塑件在保证壁厚的情况下,还要使壁厚均匀,否则在成型冷却过程中会造成收缩不均,不仅造成出现气泡,凹陷和翘曲现象,同时在塑件内部存在较大的内应力。
设计塑件时要求壁厚及薄壁交界处避免有锐角,过渡要缓和,厚度应沿着塑料流动的方向逐渐减小。
2 脱模斜度2.1 脱模斜度的要点脱模角的大小是没有一定的准则,多数是凭经验和依照产品的深度来决定。
此外,成型的方式,壁厚和塑料的选择也在考虑之列。
一般来讲,对模塑产品的任何一个侧壁,都需有一定量的脱模斜度,以便产品从模具中取出。
脱模斜度的大小可在0.2°至数度间变化,视周围条件而定,一般以0.5°至1°间比较理想。
具体选择脱模斜度时应注意以下几点:a. 取斜度的方向,一般内孔以小端为准,符合图样,斜度由扩大方向取得,外形以大端为准,符合图样,斜度由缩小方向取得。
如下图1-1。
图1-1b. 凡塑件精度要求高的,应选用较小的脱模斜度。
c. 凡较高、较大的尺寸,应选用较小的脱模斜度。
d. 塑件的收缩率大的,应选用较大的斜度值。
e. 塑件壁厚较厚时,会使成型收缩增大,脱模斜度应采用较大的数值。
f. 一般情况下,脱模斜度不包括在塑件公差范围内。
g. 透明件脱模斜度应加大,以免引起划伤。
一般情况下,PS料脱模斜度应大于3°,ABS及PC料脱模斜度应大于2°。
h. 带革纹、喷砂等外观处理的塑件侧壁应加3°~5°的脱模斜度,视具体的咬花深度而定,一般的晒纹版上已清楚例出可供作参考之用的要求出模角。
咬花深度越深,脱模斜度应越大.推荐值为1°+H/0.0254°(H为咬花深度).如121的纹路脱模斜度一般取3°,122的纹路脱模斜度一般取5°。
i. 插穿面斜度一般为1°~3°。
j. 外壳面脱模斜度大于等于3°。
k. 除外壳面外,壳体其余特征的脱模斜度以1°为标准脱模斜度。
特别的也可以按照下面的原则来取:低于3mm高的加强筋的脱模斜度取0.5°,3~5mm 取1°,其余取1.5°;低于3mm高的腔体的脱模斜度取0.5°,3~5mm取1°,其余取1.5°3、加强筋为确保塑件制品的强度和刚度,又不致使塑件的壁增厚,而在塑件的适当部位设置加强筋,不仅可以避免塑件的变形,在某些情况下,加强筋还可以改善塑件成型中的塑料流动情况。
为了增加塑件的强度和刚性,宁可增加加强筋的数量,而不增加其壁厚。
3.1、加强筋厚度及塑件壁厚的关系举例说明:3.2、加强筋设计实例4、柱和孔的问题4.1、柱子的问题a. 设计柱子时,应考虑胶位是否会缩水。
b. 为了增加柱子的强度,可在柱子四周追加加强筋。
加强筋的宽度参3.2。
柱子的缩水的改善方式见如图4-1、图4-2所示:改善前柱子的胶太厚,易缩水;改善后不会缩水。
图4-1图4-24.2、孔的问题a. 孔及孔之间的距离,一般应取孔径的2倍以上。
b. 孔及塑件边缘之间的距离,一般应取孔径的3倍以上,如因塑件设计的限制或作为固定用孔,则可在孔的边缘用凸台来加强。
c. 侧孔的设计应避免有薄壁的断面,否则会产生尖角,有伤手和易缺料的现象。
图4-3 图4-44.3、“减胶”的问题图4-55、螺丝柱的设计5.1 通常采取螺丝加卡扣的方式来固定两个壳体,螺丝柱通常还起着对PCB板的定位作用。
5.2 用于自攻螺丝的螺丝柱的设计原则是为:其外径应该是Screw外径的2.0~2.4倍。
图6-2为M1.6×0.35的自螺丝及螺柱的尺寸关系。
设计中可以取:螺丝柱外径=2×螺丝外径;螺柱内径(ABS,ABS+PC)=螺丝外径-0.40mm;螺柱内径(PC)=螺丝外径-0.30mm或-0.35mm(可以先按0.30mm来设计,待测试通不过再修模加胶);两壳体螺柱面之间距离取0.05mm。
5.3 不同材料、不同螺丝的螺丝柱孔设计值如表5-2、表5-3所示。
5.4 常用自攻螺丝装配及测试(10次)时所要用的扭力值,如表5-4所示。
6、止口的设计6.1、止口的作用1、壳体内部空间及外界的导通不会很直接,能有效地阻隔灰尘/静电等的进入2、上下壳体的定位及限位6.2、壳体止口的设计需要注意的事项1、嵌合面应有>3~5°的脱模斜度,端部设计倒角或圆角,以利于装配2、上壳及下壳圆角的止口配合,应使配合内角的R角偏大,以增加圆角之间的间隙,预防圆角处相互干涉3、止口方向设计,应将侧壁强度大的一端的止口设计在里边,以抵抗外力4、止口尺寸的设计,位于外边的止口的凸边厚度为0.8mm;位于里边的止口的凸边厚度为0.5mm;B1=0.075~0.10mm;B2=0.20mm5、美工线设计尺寸:0.50×0.50mm。
是否采用美工线,可以根据设计要求进行6.3、面壳及底壳断差的要求装配后在止口位,如果面壳大于底壳,称之为面刮;底壳大于面壳,则称之为底刮,如图6-1所示。
可接受的面刮<0.15mm,可接受的底刮<0.10mm,无论如何制作,段差均会存在,只是段差大小的问题,尽量使产品装配后面壳大于底壳,且缩小面壳及底壳的段差图6-17、卡扣的设计7.1、卡扣设计的关键点1. 数量及位置:设在转角处的扣位应尽量靠近转角;2. 结构形式及正反扣:要考虑组装、拆卸的方便,考虑模具的制作;3. 卡扣处应注意防止缩水及熔接痕;4. 朝壳体内部方向的卡扣,斜销运动空间不小于5mm;7.2、常见卡扣设计1、通常上盖设置跑滑块的卡钩,下盖设置跑斜顶的卡钩;因为上盖的筋条比下盖多,而且上盖的壁常比下盖深,为避免斜顶无空间脱出。
2、上下盖装饰线(美工线)的选择3、卡钩离角位不可太远,否则角位会翘缝4、卡扣间不可间距太远,否则易开缝8、装饰件的设计8.1、装饰件的设计注意事项1. 装饰件尺寸较大时(大于400mm²),壳体四周及装饰件配合的粘胶位宽度要求大于2mm。
在进行装饰件装配时,要用治具压装饰片,压力大于3kgf,保压时间大于5秒钟2. 外表面的装饰件尺寸较大时(大于400mm²),可以采用铝、塑胶壳喷涂、不锈钢等工艺,不允许采用电铸工艺。
因为电铸工艺只适用于面积较小、花纹较细的外观件。
面积太大无法达到好的平面度,且耐磨性能很差3. 电镀装饰件设计时,如果及内部的主板或电子器件距离小于10mm,塑胶壳体装配凹槽尽量无通孔,否则ESD非常难通过。
如果装饰件必须采用卡扣式,即壳体必须有通孔,则卡位不能电镀,且扣位要用屏蔽胶膜盖住4. 如果装饰件在主机的两侧面,装饰件内部的面壳及底壳筋位深度方向设计成直接接触,不能靠装饰件来保证装配的强度5. 电镀装饰件设计时需考虑是否有ESD风险6. 对于直径小于5.0mm的电镀装饰件,一般设计成双面胶粘接或后面装入的方式,不要设计成卡扣的方式8.2、电镀件装饰斜边角度的选取在要求电镀件装饰斜边为镜面亮边的情况下,图9-1中斜边角度取值应选择为a>45°,否则此边在实际效果上是黑边,并不会有镜面亮边效果,B值根据ID设计要求取值。