2018年天津市南开区中考数学全真模拟试卷(二)
- 格式:pdf
- 大小:402.73 KB
- 文档页数:8
2018中考数学模拟试题及答案解析(2)中考数学模拟试题及答案解析(2)第I 卷(选择题)评卷人得分 一、单选题1.﹣2的绝对值是( )A. 2B. ﹣2C. 12D. 12- 2.下列运算正确的是( )A. 336aa a += B. ()222ab a b -=- C. ()236a a -= D. 1226a a a ÷= 3.如图是某几何体的三视图,这个几何体是( )A. 圆锥B. 长方体C. 圆柱D. 三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是()A. 4和3.5B. 4和3.6C. 5和3.5D. 5和3.65.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A. 两点之间线段最短B. 两点确定一条直线C. 垂线段最短D. 经过直线外一点,有且只有一条直线与这条直线平行6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②A. 84株B. 88株C. 92株D. 121株9.对于二次函数223=--,下列结论错误的是y x mx()A. 它的图象与x轴有两个交点B. 方程223-=的两根之积为﹣3x mxC. 它的图象的对称轴在y轴的右侧D. x<m时,y随x的增大而减小10.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N 为△ABM的外心.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个第II 卷(非选择题)评卷人得分 二、填空题11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为______.12.“抛掷一枚质地均匀的硬币,正面向上”是______事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是⊙O 的弦,半径OC 垂直AB ,点D 是⊙O 上一点,且点D 与点C 位于弦AB 两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=______度.14.(2017湖北省随州市)在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=______时,以A、D、E为顶点的三角形与△ABC相似.15.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.16.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是______(填写所有正确结论的序号).评卷人得分三、解答题 17.计算: ()()20212017323π-⎛⎫---- ⎪⎝⎭.18.解分式方程: 2311x x x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB =32. (1)求反比例函数的解析式;(2)若P (1x , 1y )、Q (2x , 2y )是该反比例函数图象上的两点,且12x x <时, 12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55°,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求AM的值;NE=k(k2的(3)在(2)的条件下,若AFAB的值.常数),直接用含k的代数式表示AMMF25.在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线2=++(a、b、c为常数,a≠0)y ax bx c的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线223432333y xx =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.参考答案1.A【解析】解:﹣2的绝对值是2,即|﹣2|=2.故选A.2.C【解析】解:A.原式=2a3,不符合题意;B.原式=a2﹣2ab+b2,不符合题意;C.原式=a6,符合题意;D.原式=a10,不符合题意.故选C.3.C【解析】解:这个几何体是圆柱体.故选C.点睛:本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.4.B【解析】解:把这组数据按从大到小的顺序排列是:2,3,4,4,5,故这组数据的中位数是:4.平均数=(2+3+4+4+5)÷5=3.6.故选B.5.A【解析】∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C、点D到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选A.6.D【解析】解:用尺规作图作∠AOC =∠AOB 的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,第二步的作图痕迹②的作法是以点E 为圆心,EF 长为半径画弧.故选D.7.B【解析】解:设每支铅笔x 元,每本笔记本y 元,根据题意得: 2010110{ 30585x y x y +=+=.故选B . 点睛:本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.8.B【解析】解:由图可得,芍药的数量为:4+(2n ﹣1)×4,∴当n =11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选B.点睛:本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.9.C【解析】A、∵b2﹣4ac=(2m)2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故A选项正确,不合题意;B、方程x2﹣2mx=3的两根之 =﹣3,故B选项正确,不合题意;C、积为:cam的值不能确定,故它的图象的对称轴位置无法确定,故C选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x 的增大而减小,故D选项正确,不合题意;故选C.10.B【解析】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;当AB=BC时,即四边形ABCD为正方形时,设DE=EC=1,BM=a,则AB=2,BF=4,AM=FM=4﹣a,在Rt△ABM中,22+a2=(4﹣a)2,解得a=1.5,即BM=1.5,∴由勾股定理可得AM=2.5,∴DE+BM=2.5=AM,又∵AB<BC,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,MN BM<1,∴NAN AD不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选B.点睛:本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.11.1.17×107.【解析】解:11700000=1.17×107.故答案为:1.17×107.12.随机.【解析】解:“抛掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.13.35.【解析】解:如图,连接OA.∵OC⊥AB,∴AC BC,∴∠AOC=∠COB=70°,∴∠ADC=12∠AOC=35°,故答案为:35.点睛:本题考查圆周角定理、垂径定理等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题.14.125或53.【解析】当AE ABAD AC=时,∵∠A=∠A,∴△AED∽△ABC,此时AE=·621255 AB ADAC⨯==;当AD ABAE AC=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=·52563 AC ADAB⨯==;故答案是:12553或.15.(32,32).【解析】解:作N关于OA的对称点N′,连接N′M 交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON的中点,∴OM=1.5,∴PM3,∴P(32,3.故答案为:(32,3.点睛:本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.16.②③④.【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;(h),∴③∵(240+200﹣60)÷(60+80)=527h时,两车相遇,结论③正确;乙车出发527④∵80×(4﹣3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.点睛:本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.17.9.【解析】试题分析:原式利用零指数幂、负整数指数幂法则,二次根式性质,以及绝对值的代数意义化简,即可得到结果.试题解析:解:原式=9﹣1+3﹣2=9.点睛:此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.x=3【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:去分母得:3+x2﹣x=x2,解得:x=3,经检验x=3是分式方程的解.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(1)3yx=-;(2)P在第二象限,Q在第三象限.【解析】试题分析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B(﹣2,32),把B(﹣2,32)代入kyx=中,得到k=﹣3,∴反比例函数的解析式为3yx=-.(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x 的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.63米.【解析】试题分析:作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AH tan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.试题解析:解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH﹣EH=tan5 5°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=63.答:塔杆CH的高为63米.点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形..21.(1)40;(2)108°,15%;(3)23【解析】试题分析:(1)用A组人数除以A组所占百分比得到参加初赛的选手总人数,用总人数乘以B组所占百分比得到B组人数,从而补全频数分布直方图;(2)用360度乘以C组所占百分比得到C组对应的圆心角度数,用E组人数除以总人数得到E 组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.试题解析:解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人).频数分布直方图补充如下:故答案为:40;(2)C 组对应的圆心角度数是:360°×1240=108°,E 组人数占参赛选手的百分比是: 640×100%=15%;(3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为812=23. 22.(1)证明见解析;(2)14π-. 【解析】试题分析:(1)连接DE ,OD .利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO =∠CAD ,进而得出结论;(2)根据等腰三角形的性质得到∠B =∠BAC =45°,由BC 相切⊙O 于点D ,得到∠ODB =90°,求得OD =BD ,∠BOD =45°,设BD =x ,则OD =OA =x ,OB =2x ,根据勾股定理得到BD =OD 2,于是得到结论.试题解析:解:(1)证明:连接DE ,OD .∵BC 相切⊙O 于点D ,∴∠CDA =∠AED ,∵AE 为直径,∴∠ADE =90°,∵AC ⊥BC ,∴∠ACD =90°,∴∠DAO =∠CAD ,∴AD 平分∠BAC ;(2)∵在Rt △ABC 中,∠C =90°,AC =BC ,∴∠B =∠BAC =45°,∵BC 相切⊙O 于点D ,∴∠ODB =90°,∴OD =BD ,∴∠BOD =45°,设BD =x ,则OD =OA =x ,OB =2x ,∴BC =AC =x +1,∵AC 2+BC 2=AB 2,∴2(x +1)2=2x +x )2,∴x 2,∴BD =OD 2,∴图中阴影部分的面积=S △BOD ﹣S 扇形DOE =24521222360π⨯=14π-.点睛:本题主要考查了切线的性质,角平分线的定义,扇形面积的计算和勾股定理.熟练掌握切线的性质是解题的关键.23.(1)10%;(2)217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)0.5.【解析】试题分析:(1)设这个百分率是x ,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x <9时和9≤x <15时销售单价,由利润=(售价﹣进价)×销量﹣费用列函数关系式,并根据增减性求最大值,作对比;(3)设第15天在第14天的价格基础上最多可降a 元,根据第15天的利润比(2)中最大利润最多少127.5元,列不等式可得结论.试题解析:解:(1)设该种水果每次降价的百分率是x ,10(1﹣x )2=8.1,x =10%或x =190%(舍去).答:该种水果每次降价的百分率是10%;(2)当1≤x <9时,第1次降价后的价格:10×(1﹣10%)=9,∴y =(9﹣4.1)(80﹣3x)﹣(40+3x )=﹣17.7x +352,∵﹣17.7<0,∴y 随x 的增大而减小,∴当x =1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元);当9≤x <15时,第2次降价后的价格:8.1元,∴y =(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x +400)=﹣3x 2+60x +80=﹣3(x ﹣10)2+380,∵﹣3<0,∴当9≤x ≤10时,y 随x 的增大而增大,当10<x <15时,y 随x 的增大而减小,∴当x =10时,y 有最大值,y 大=380(元).综上所述,y 与x (1≤x <15)之间的函数关系式为: 217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)设第15天在第14天的价格基础上最多可降a 元,由题意得:380﹣127.5≤(4﹣a )(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a )﹣115,a ≤0.5. 答:第15天在第14天的价格基础上最多可降0.5元.点睛:本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x 的取值,两个取值中的最大值才是最大利润.24.(1)证明见解析;(22;(322k-.【解析】试题分析:(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到DH DMBH EM==1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC2a,接着证明△ANF为等腰直角三角形得到NF=a2,则NE=NF+EF=2a2b,然后计算AMNE的值;(3)由于AFAB =22a ba+ =22ba⋅=k,则a b =2k-,然后表示出AMMF =2a ba+21ab+,再把a b2k-代入计算即可.试题解析:解:(1)如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF 为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM =∠FEM,在△CDM和△FEM 中,∵∠CMD=∠FME,∠CDM=∠FEM,CD=EF,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴DH DMBH EM==1,∴DM=EM,即点M是DE的中点;(2)∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD 为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=2AD=2a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=22AF=22(2a+b+b)=a+2b,∴NE=NF+EF=a+2b+a=2a+2b,∴AMNE=()222222a a a b a b=++ =22;(3)∵AF AB =22a b a+22b a⋅=k ,∴b a =(122k ,∴ab=2k -,∴AM MF 2a b+21a b+212k +-22k -.点睛:本题考查了相似形的综合题:熟练掌握平行线分线段成比例定理、平行四边形和菱形的性质;灵活利用全等三角形的知识解决线段相等的问题;会利用代数法表示线段之间的关系. 25.(1)2323y =(﹣2, 23;(1,0);(2)N 点坐标为(0, 33)或(32, 332);(3)E (﹣1,﹣433)、F (0, 233)或E (﹣1,﹣433)、F (﹣4, 33).【解析】试题分析:(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A 、B 的坐标;(2)当N 点在y 轴上时,过A 作AD ⊥y 轴于点D ,则可知AN =AC ,结合A 点坐标,则可求得ON 的长,可求得N 点坐标;当M 点在y 轴上即M 点在原点时,过N 作NP ⊥x 轴于点P ,由条件可求得∠NMP =60°,在Rt△NMP 中,可求得MP 和NP 的长,则可求得N 点坐标;(3)当AC 为平行四边形的一边时,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,可证△EFH ≌△ACK ,可求得DF 的长,则可求得F 点的横坐标,从而可求得F 点坐标,由HE 的长可求得E 点坐标;当AC 为平行四边形的对角线时,设E (﹣1,t ),由A 、C 的坐标可表示出AC 中点,从而可表示出F 点的坐标,代入直线AB 的解析式可求得t 的值,可求得E 、F 的坐标. (1)∵抛物线223433y xx =+的解析式为3333y x =-+,联立梦想直线与抛物线解析式可得: 22323{234323y x y x x =+=+,解得: 2{23x y =-=或1{ 0x y ==,∴A (﹣2, 3,B (1,0),故答案为: 32333y x =-+;(﹣2, 23;(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形,如图1,过A 作AD ⊥y 轴于点D ,则AD =2,在223433y x x =+令y =0可求得x =﹣3或x =1,∴C (﹣3,0),且A (﹣2,3,∴AC ()()222323-++=13AN =AC 13Rt △AND 中,由勾股定理可得DN 22AN AD -134- =3,∵OD =3ON =33或ON =23,当ON =3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意,∴N 点坐标为(0, 233);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如图2,在Rt △AMD 中,AD =2,OD =3∴tan ∠DAM =MD AD3∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAO =60°,又由折叠可知∠NMA =∠AMC =60°,∴∠NMP =60°,且MN =CM =3,∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32, 332);综上可知N 点坐标为(0, 33)或(32,33);(3)①当AC为平行四边形的边时,如图3,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK 和△EFH中,∵∠ACK=∠EFH,∠AKC=∠EHF,AC=EF,∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=23x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F 点横坐标为0时,则F(0,23,此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2323 3=433,即E点纵坐标为﹣433,∴E(﹣1,﹣433);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,23,∴线段AC的中点坐标为(﹣2.5,3,设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=23x=﹣4,y=3t,代入直线AB解析式可得23t=234)+23t=43,∴E(﹣143),F(﹣4,103);综上可知存在满足条件的点F,此时E(﹣1,﹣43)、F(0,23)或E(﹣143)、F(﹣4,103).3点睛:本题为二次函数的综合应用,涉及函数图象的交点、勾股定理、轴对称的性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中理解题目中梦想直线的定义是解题的关键,在(2)中确定出N点的位置,求得ON的长是解题的关键,在(3)中确定出E、F的位置是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度较大.。
机密★启用前2018 年天津市初中毕业生学业考试模拟试卷数学本试卷分为第Ⅰ 卷(选择题)、第Ⅱ 卷(非选择题)两部分。
第Ⅰ 卷第 1 页至第3 页,第Ⅱ 卷第4 页至第8 页。
试卷满分120 分。
考试时间100 分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12 题,共36 分。
一、选择题(本大题共12 小题,每小题3 分,共36 分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1) 算式(2)53-⨯---计算后的结果为:(A) 13(B) 7(C)﹣13(D)﹣7(2) sin60°的值为:(A)(B)2(C)2(D)12(3) 剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是:(A) (B) (C) (D)(4) 2018 上半年,天津货物贸易进出口总值为2098.7 亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,天津同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7 亿元用科学记数法表示是:(A) 2.098 7×103(B) 2.098 7×1010(C) 2.098 7×1011(D) 2.098 7×1012(5) 如图的几何体由五个相同的小正方体搭成,它的主视图是:(6)估计132+202⨯的运算结果应在: (A) 6 到 7 之间 (B) 7 到 8 之间 (C) 8 到 9 之间 (D) 9 到 10 之间(7)化简2211444a aa a a --÷-+-,其结果是: (A ) 2+2a a - (B ) +22a a - (C ) +22a a - (D) 2+2a a -(8)若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x ay b=⎧⎨=⎩则a b -=(A) 1 (B) 3 (C) 14- (D) 74(9) 如图,在同一平面内,将△ABC 绕点 A 旋转到△AED 的位置,若 AE ⊥BC ,∠ADC=65°,则∠ABC 的度数为:(A) 30° (B) 40° (C) 50°(D) 60°第(9)题图(10) 若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数 y = 3x的图像上,则下列结论中正确的是:(A) y 1>y 2>y 3(B) y 2>y 1>y 3 (C) y 3>y 1>y 2(D) y 3>y 2>y 1(11) 如图,在平面直角坐标系中,Rt △OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为(3,3),点 C 的坐标为(12,0),点 P 为斜边 OB 上的一动点,则 PA +PC 在下列选 项中的最小值为: (A132(B) 312(C) 3192+ (D)27(12) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t 为实数);⑤点(92-,y1),(52-,y2),(12-,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有:(A) 4 个(B) 3 个(C) 2 个(D) 1 个第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2018年南开区初三二模数学试卷一、选择题(每小题3分,共36分)1.()616÷-的结果等于 A.1 B.-1 C.36 D.-362.2sin60°的值等于 A.3 B.23 C.22 D.1 3.观察下列图形,既是轴对称图形又是中心对称图形的有A.1个B.2个C.3个D.4个4.某商城开设一种摸奖游戏,中一等奖的机会为 20万分之一,将这个数用科学记数法表示为A.2×105-B.2×106-C.5×105-D.5×106-5.用五个大小相同的小正方体搭成的如图所示的几何体,这个几何体的左视图是A B C D6.在实数3-、-2、21、2中,最小的是 A.3- B.-2 C.21 D.2 7.如图,在△ABC 中,点 D 、E 分别在边 AB 、AC 上,DE//BC ,若 BD=2AD ,则第7题 第10题 第12题 A.21=AB AD B.21=EC AE C.21=EC AD D.21=BC DE 8.一个正六边形的半径为 R ,边心距为 r ,那么 R 与 r 的关系是 A.R 23r = B.R 22r = C.R 43r = D.R 45r = 9.设点 A (()11y x ,)和 B (()22y x ,)是反比例函数xk y =图像上的两个点,当0x x 21<<时,21y y <,则一次函数k x 2y +-=的图像不经过的象限是A.第一象限B.第二象限C.第三象限D.第四象限10.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=50°,AO//DC ,则∠B 的度数为A.55°B.60°C.65°D.70°11.观察右侧图形,它们是按一定规律排列的。
依照此规律,第 9 个图形中的小圆点一共有A.162个B.135个C.30个D.27个12.如图,抛物线 y=ax 2+bx+c(a ≠0)的顶点和抛物线与 y 轴的交点在一次函数1kx y +=(k ≠0)的图象上,它的对称轴是 x=1,有以下四个结论:①abc >0;②31a -<;③a=-k ;④当 0<x <1 时,ax+b >k ,其中正确的结论有A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)13.分解因式:=x 5-x 2________.14.计算⎪⎪⎭⎫ ⎝⎛-21262的结果等于___________. 15.有四张卡片,分别写有数-2、0、1、5,将它们背面朝上(背面无差别)洗匀后放在桌上。
2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式一.选择题(共22小题) 1.(2020•津南区一模)计算2a (a+1)2+2(a+1)2的结果为( ) A .1B .2C .1a+1D .2a+12.(2020•和平区三模)计算a (a+b)2+b (a+b)2的结果为( ) A .1B .1a+1bC .a +bD .1a+b3.(2020•红桥区三模)计算2−x x−1+2x−3x−1的结果为( )A .2x−1x−1B .1C .1x−1D .24.(2020•河北区二模)化简x 2x−2+42−x的结果是( )A .x +2B .x +4C .x ﹣2D .2﹣x5.(2020•滨海新区二模)计算3x−1x−1+2−3x x−1的结果为( ) A .3x−1B .x ﹣1C .1x−1D .−1x−16.(2020•西青区二模)化简a 2a−1+1−2a a−1结果为( )A .a+1a−1B .a ﹣1C .aD .17.(2020•天津二模)计算x−2x−1+1x−1的结果为( )A .1B .1x−1C .12D .xx−18.(2020•滨海新区一模)计算3x(x−1)2−3(x−1)2的结果是( )A .3B .3x ﹣3C .xx−1D .3x−19.(2020•红桥区一模)计算2a−1a−1−1a−1的结果是( )A .2B .2a ﹣2C .1D .2aa−110.(2020•南开区二模)化简x 2+2xy+y 2x 2−y 2−y x−y的结果是( )A .xx−yB .y x+yC .xx+yD .yx−y11.(2020•和平区一模)计算22a+b+b 2a+b的结果为( )A .1B .2+bC .2−b2a+bD .2+b2a+b12.(2020•红桥区模拟)计算x+2x+1−x x+1的结果为( )A .1B .2C .2x+1D .2xx+113.(2020•西青区一模)化简x 2x−1+x 1−x的结果是( )A .xB .x ﹣1C .﹣xD .x +114.(2019•津南区二模)计算a a 2−b 2−1a−b的结果为( )A .bB .﹣bC .ba−bD .−b a 2−b215.(2019•西青区二模)计算m 2m−n+n 2n−m的结果为( )A .m 2+n 2B .m +nC .m ﹣nD .n ﹣m16.(2019•天津二模)化简m 2m−4+164−m的结果是( )A .m ﹣4B .m +4C .m+4m−4D .m−4m+417.(2019•河北区二模)计算x 2−2x−1+1x−1的结果为( )A .x +1B .x ﹣1C .1x+1D .1x−118.(2019•和平区一模)计算xx−2+2x−2的结果为( )A .0B .1C .2−xx−2D .x+2x−219.(2019•红桥区一模)计算2x+13x−1−2−x3x−1的结果为( )A .1B .﹣1C .33x−1D .x+33x−120.(2019•天津模拟)计算2a a 2−1−1a+1的结果为( )A .1a+1B .1a−1C .aa+1D .aa−121.(2019•河西区模拟)计算2x5x−3÷325x 2−9⋅x5x+3的结果为( )A .2x 23B .(5x+3)23 C .2x5x−3D .2x15x−922.(2019•东丽区二模)计算a(a+1)2+1(a+1)2的结果为( ) A .1B .1aC .a +1D .1a+1二.填空题(共28小题)23.(2020•津南区一模)计算(√3+√5)2的结果等于 . 24.(2020•西青区二模)计算(√5−2)(√5+2)的结果等于 . 25.(2020•滨海新区二模)计算(√3−1)2的结果等于 . 26.(2020•河北区二模)化简(√5−1)2= .27.(2020•红桥区二模)计算(√11+2)(√11−2)的结果等于 . 28.(2020•南开区二模)计算(3+√6)2的结果等于 . 29.(2020•河东区一模)计算(√5+6)•(√5−6)= . 30.(2020•和平区二模)计算(2√2−3)(3+2√2)的结果等于 . 31.(2020•和平区一模)计算(√6+2)(√6−2)的结果等于 . 32.(2020•南开区一模)计算(√5+√2)2的结果是 . 33.(2020•天津二模)计算(√3+2)(√3−2)的结果是 . 34.(2020•河西区模拟)使式子√a −1有意义的a 的取值范围是 . 35.(2020•西青区一模)计算(2√5−√2)2的结果等于 .36.(2020•滨海新区一模)已知x =√3+1,y =√3−1,则x 2+2xy +y 2的值为 . 37.(2019•宝坻区模拟)将√423化为最简二次根式的结果为 .38.(2019•北辰区二模)当x =√10−1时,多项式x 2+2x +6的值等于 . 39.(2019•津南区二模)计算(√5−√2)2的结果等 . 40.(2019•天津二模)计算(√3−√2)2的结果等于 .41.(2019•红桥区二模)计算:(√5+√2)(√5−√2)的结果等于 . 42.(2019•红桥区一模)计算(√7+2)(√7−2)的结果等于 . 43.(2019•和平区二模)计算(2√2−3)2的结果等于 . 44.(2019•滨海新区模拟)计算(√5−√3)2的结果等于 . 45.(2019•东丽区一模)计算:(√3−√2)2= . 46.(2019•大港区模拟)计算√24−√18×√13−√19= .47.(2018•和平区二模)计算(2+√3)(√3−2)的结果等于.48.(2018•北辰区二模)计算(√10+√2)(√10−√2)的结果等于.49.(2018•天津二模)计算(√7+√5)(√7−√5)的结果等于.50.(2018•南开区二模)计算√2×(√6−2√12)的结果等于.2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式参考答案与试题解析一.选择题(共22小题) 1.【解答】解:2a (a+1)2+2(a+1)2=2(a +1)(a +1)2=2a+1. 故选:D . 2.【解答】解:原式=a+b (a+b)2=1a+b . 故选:D . 3.【解答】解:2−x x−1+2x−3x−1=2−x+2x−3x−1=x−1x−1=1.故选:B . 4.【解答】解:x 2x−2+42−x=x 2x −2−4x −2 =x 2−4x −2 =(x −2)(x +2)x −2=x +2. 故选:A . 5.【解答】解:3x−1x−1+2−3x x−1=3x −1+2−3xx −1=1x−1. 故选:C .6.【解答】解:原式=a 2+1−2aa−1=(a −1)2a −1=a ﹣1. 故选:B . 7.【解答】解:x−2x−1+1x−1=x −2+1x −1=1. 故选:A . 8.【解答】解:3x (x−1)2−3(x−1)2=3x−3(x−1)2=3(x−1)(x−1)2=3x−1;故选:D . 9.【解答】解:2a−1a−1−1a−1=2a −1−1a −1=2a −2a −1 =2(a −1)a −1=2, 故选:A .10.【解答】解:原式=(x+y)2(x+y)(x−y)−yx−y=x +y x −y −yx −y=xx−y , 故选:A .11.【解答】解:原式=2+b2a+b , 故选:D . 12.【解答】解:x+2x+1−x x+1=x+2−x x+1=2x+1,故选:C .13.【解答】解:原式=x 2x−1−x x−1=x(x−1)x−1=x ,故选:A.14.【解答】解:aa2−b2−1a−b=a(a+b)(a−b)−a+b(a+b)(a−b)=−ba2−b2,故选:D.15.【解答】解:原式=m2−n2 m−n=m+n,故选:B.16.【解答】解:原式=m2m−4−16m−4=m2−16m−4=(m+4)(m−4)m−4=m+4,故选:B.17.【解答】解:原式=x2−1 x−1=x+1,故选:A.18.【解答】解:xx−2+2 x−2=x+2x−2,故选:D.19.【解答】解:原式=2x+1−2+x3x−1=3x−13x−1=1,故选:A.20.【解答】解:2aa2−1−1a+1=2a(a+1)(a−1)−a−1(a+1)(a−1)=2a−(a−1)(a+1)(a−1)=a+1(a+1)(a−1)=1a−1, 故选:B .21.【解答】解:原式=2x 5x−3•(5x+3)(5x−3)3•x5x+3=2x 23, 故选:A . 22.【解答】解:a (a+1)2+1(a+1)2=1a+1,故选:D .二.填空题(共28小题) 23.【解答】解:原式=3+2√15+5 =8+2√15. 故答案为8+2√15.24.【解答】解:原式=(√5)2﹣22 =5﹣4 =1. 故答案为1.25.【解答】解:原式=3﹣2√3+1 =4﹣2√3. 故答案为4﹣2√3.26.【解答】解:原式=5﹣2√5+1 =6﹣2√5. 故答案为6﹣2√5.27.【解答】解:原式=(√11)2﹣22 =11﹣4 =7. 故答案为728.【解答】解:原式=9+6√6+6 =15+6√6. 故答案为15+6√6.29.【解答】解:原式=(√5)2﹣62=5﹣36=﹣31.故答案为:﹣31.30.【解答】解:(2√2−3)(3+2√2)=(2√2)2﹣32=8﹣9=﹣1,故答案为:﹣1.31.【解答】解:原式=(√6)2﹣22=6﹣4=2.故答案为2.32.【解答】解:原式=(√5)2+2√10+(√2)2=5+2√10+2=7+2√10.故答案为7+2√10.33.【解答】解:原式=(√3)2﹣22=3﹣4=﹣1,故答案为:﹣1.34.【解答】解:使式子√a−1有意义,则a﹣1≥0,解得:a≥1.故答案为:a≥1.35.【解答】解:原式=20﹣4√10+2=22﹣4√10.故答案为22﹣4√10.36.【解答】解:∵x=√3+1,y=√3−1,∴x2+2xy+y2=(x+y)2=(√3+1+√3−1)2=(2√3)2=12;故答案为:12.37.【解答】解:原式=√143=√423, 故答案为:√423; 38.【解答】解:解法一:当x =√10−1时, x 2+2x +6=(√10−1)2+2(√10−1)+6 =10﹣2√10+1+2√10−2+6 =15, 故答案为15;解法二:x 2+2x +6=(x +1)2+5 =(√10−1+1)2+5 =10+5 =15, 故答案为15.39.【解答】解:原式=5﹣2√10+2 =7﹣2√10. 故答案为7﹣2√10.40.【解答】解:原式=3﹣2√6+2 =5﹣2√6. 故答案为5﹣2√6. 41.【解答】解:原式=5﹣2 =3. 故答案为3.42.【解答】解:原式=7﹣4=3. 故答案为3.43.【解答】解:原式=(2√2)2﹣2×2√2×3+32 =8﹣12√2+9 =17﹣12√2, 故答案为:17﹣12√2.44.【解答】解:原式=5﹣2√15+3=8﹣2√15.故答案为8﹣2√15.45.【解答】解:原式=(√3)2+(√2)2−2√3×√2=3+2﹣2√3×2=5﹣2√6.故答案为:5﹣2√6.46.【解答】解:原式=2√6−√18×13−13=2√6−√6−1 3=√6−13.故答案为√6−1 3.47.【解答】解:(2+√3)(√3−2)=(√3)2﹣22=3﹣4=﹣1.故答案为:﹣1.48.【解答】解:原式=10﹣2=8.故答案为8.49.【解答】解:原式=7﹣5=2.故答案为2.50.【解答】解:原式=√2×6−2√2×1 2=2√3−2.故答案为2√3−2.。
2018年天津市中考数学模拟试题及参考答案2018年天津市中考模拟试题数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.△ABC中,∠A,∠B均为锐角,且(tanB ﹣)(2sinA ﹣)=0,则△ABC一定是()A.等腰三角形 B.等边三角形C.直角三角形 D.有一个角是60°的三角形3.下列四个图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .4.如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为()A.(﹣4,2) B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)5.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1036.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.(3分)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A .B .C .D .8.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C .﹣D .9.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70° B.80°C.84°D.86°10.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A .3B .4C .5D .411.如图,在△ABC 中,AB=AC ,AD 是△ABC 的中线,E 是AB 上一点,P 是AD 上的一个动点,则下列线段的长等于BP +EP 最小值的是( )A .BCB .ADC .ACD .CE12.已知抛物线y=x 2﹣2mx ﹣4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20)二、填空题(本大题共6小题,每小题3分,共18分)13.计算:a 5÷a 2= .14.方程=1的解是 .15.某人把四根绳子紧握在手中,仅在两端露出它们的头和尾,然后随机地把一端的四个头中的某两个相接,另两个相接,把另一端的四个尾中的某两个相接,另两个相接,则放开手后四根绳子恰好连成一个圈的概率是 .16.如果反比例函数y=(k 是常数,k ≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y 的值随x 的值增大而 .(填“增大”或“减小”)17.如图,在△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AB 的长为 .18.我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6=三、解答题(本大题共7小题,共66分。
天津市南开区2018年中考数学二模试卷(解析版)1.-6÷的结果等于()A.1 B.﹣1 C.36 D.﹣36【分析】根据有理数的运算法则即可求出答案.【解答】解:原式=﹣6×6=﹣36故选:D.【点评】本题考查有理数的运算法则,解题的关键是熟练运用除法法则,本题属于基础题型.2.(3分)2sin60°的值等于()A.B.2 C.1 D.【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin60°=2×=,故选:A.【点评】本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.3.(3分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)某商城开设一种摸奖游戏,中一等奖的机会为20万分之一,将这个数用科学计数法表示为()A.2×10﹣5 B.2×10﹣6 C.5×10﹣5 D.5×10﹣6【分析】先把20万分之一转化成0.000 005,然后再用科学记数法记数记为5×10﹣6.小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.000005=5×10﹣6.故选:D.【点评】考查了科学计数法﹣表示较小的数,将一个绝对值较小的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.5.(3分)用五块大小相同的小正方体搭成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看,是两层都有两个正方形的田字格形排列.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的正面看得到的视图.6.(3分)在实数﹣,﹣2,,中,最小的是()A.﹣B.﹣2 C.D.【分析】为正数,,﹣2为负数,根据正数大于负数,所以比较与﹣2的大小即可.【解答】解:正数有:;负数:,﹣2,∵,∴,∴最小的数是﹣2,故选:B.【点评】本题考查了实数比较大小,解决本题的关键是正数大于负数,两个负数,绝对值大的反而小.7.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.8.(3分)一个正六边形的半径为R,边心距为r,那么R与r的关系是()A.r=R B.r=R C.r=R D.r=R【分析】求出正六边形的边心距(用R表示),根据“接近度”的定义即可解决问题.【解答】解:∵正六边形的半径为R,∴边心距r=R,故选:A.【点评】本题考查正多边形与圆的共线,等边三角形高的计算,记住等边三角形的高h=a(a是等边三角形的边长),理解题意是解题的关键,属于中考常考题型.9.(3分)设点A(x1,y1)和B(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1<y2,则一次函数y=﹣2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据反比例函数图象的性质得出k的取值范围,进而根据一次函数的性质得出一次函数y=﹣2x+k的图象不经过的象限.【解答】解:∵点A(x1,y1)和B(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1<y2,∴x1<x2<0时,y随x的增大而增大,∴k<0,∴一次函数y=﹣2x+k的图象不经过的象限是:第一象限.故选:A.【点评】此题主要考查了一次函数图象与系数的关系以及反比例函数的性质,根据反比例函数的性质得出k的取值范围是解题关键.10.(3分)如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为()A.50°B.55°C.60°D.65°【分析】首先连接AD,由A、B、C、D四个点均在⊙O上,∠AOD=70°,AO ∥DC,可求得∠ADO与∠ODC的度数,然后由圆的内接四边新的性质,求得答案.【解答】解:连接AD,∵OA=OD,∠AOD=50°,∴∠ADO==65°.∵AO∥DC,∴∠ODC=∠AOC=50°,∴∠ADC=∠ADO+∠ODC=115°,∴∠B=180°﹣∠ADC=65°.故选:D.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行线的性质以及等腰三角形的性质.此题比较适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11.(3分)观察如图图形,它们是按一定规律排列的,依照此规律,第9个图形中的小点一共有()A.162个B.135个C.30个D.27个【分析】仔细观察图形,找到图形变化的规律的通项公式,然后代入9求解即可.【解答】解:第1个图形有3=3×1=3个点,第2个图形有3+6=3×(1+2)=9个点第3个图形有3+6+9=3×(1+2+3)=18个点;……第n个图形有3+6+9+…+3n=3×(1+2+3+…+n)=个点;当n=9时,==135,故选:B.【点评】本题考查了图形的变化类问题,解题的关键是能够找到图形的变化规律,然后求解.12.(3分)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】由抛物线开口方向及对称轴位置、抛物线与y轴交点可判断①;由①知y=ax2﹣2ax+1,根据x=﹣1时y<0可判断②;由抛物线顶点在一次函数图象上知a+b+1=k+1,即a+b=k,结合b=﹣2a可判断③;根据0<x<1时二次函数图象在一次函数图象上方知ax2+bx+1>kx+1,即ax2+bx>kx,两边都除以x可判断④.【解答】解:由抛物线的开口向下,且对称轴为x=1可知a<0,﹣=1,即b=﹣2a>0,由抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上知c=1,则abc<0,故①正确;由①知y=ax2﹣2ax+1,∵x=﹣1时,y=a+2a+1=3a+1<0,∴a<﹣,故②正确;∵抛物线y=ax2+bx+c(a≠0)的顶点在一次函数y=kx+1(k≠0)的图象上,∴a+b+1=k+1,即a+b=k,∵b=﹣2a,∴﹣a=k,即a=﹣k,故③正确;由函数图象知,当0<x<1时,二次函数图象在一次函数图象上方,∴ax2+bx+1>kx+1,即ax2+bx>kx,∵x>0,∴ax+b>k,故④正确;故选:A .【点评】本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征.二、填空题(3×6=18)13.(3分)分解因式:x 2﹣5x= x (x ﹣5) . 【分析】直接提取公因式x 分解因式即可. 【解答】解:x 2﹣5x=x (x ﹣5). 故答案为:x (x ﹣5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.14.(3分)计算×(﹣2)的结果等于 2﹣2 .【分析】利用二次根式的乘法法则运算.【解答】解:原式=﹣2=2﹣2.故答案为2﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.(3分)有四张卡片,分别写有数﹣2,0,1,5,将它们背面朝上(背面无差别)洗匀后放在桌上,从中任意抽出两张,则抽出卡片上的数的积是正数的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字积为正数的情况,再利用概率公式即可求得答案. 【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中抽出卡片上的数字积为正数的结果为2种,所以抽出卡片上的数字积为正数的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.(3分)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC 方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为2.【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【解答】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.【点评】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.17.(3分)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为(﹣,).【分析】首先过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AO于F,∵点B的坐标为(1,3),∴BC=AO=1,AB=OC=3,根据折叠可知:CD=BC=OA=1,∠CDE=∠B=∠AOE=90°,AD=AB=3,在△CDE和△AOE中,,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,AE=CE,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,∴OE=,AE=CE=OC﹣OE=3﹣=,又∵DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,∴AE:AD=EO:DF=AO:AF,即:3=:DF=1:AF,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为:(﹣,).故答案为:(﹣,).【点评】此题主要考查了图形的折叠问题、相似三角形的判定与性质、全等三角形的判定与性质以及坐标与图形的性质.解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.18.(3分)如图,在每个小正方形的边长为1的网格中,A,B为格点(Ⅰ)AB的长等于(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C 即为所求.【分析】(Ⅰ)利用勾股定理计算即可;=),作直线PN,再证=作线段AB的垂直平分线(Ⅱ)取格点P、N(S△PABEF交PN于点C,点C即为所求.【解答】解:(Ⅰ)AB==,故答案为.=),作直线PN,再证=作线段AB的垂(Ⅱ)如图取格点P、N(使得S△PAB直平分线EF交PN于点C,点C即为所求.=),作直线PN,再证=作线段AB的垂直平故答案为:取格点P、N(S△PAB分线EF交PN于点C,点C即为所求.【点评】本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.三、解答题(66分)19.(8分)解不等式组请结合题填空,完成本题的解答(Ⅰ)解不等式①,得x≥﹣1(Ⅱ)解不等式②,得x<3(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为﹣1≤x<3【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:(Ⅰ)解不等式①,得:x≥﹣1,(Ⅱ)解不等式②,得:x<3,(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为:﹣1≤x<3,故答案为:x≥﹣1、x<3、﹣1≤x<3.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(8分)某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题;(Ⅰ)在图①中,m的值为20,表示“2小时”的扇形的圆心角为54度;(Ⅱ)求统计的这组学生户外运动时间的平均数、众数和中位数.【分析】(Ⅰ)根据统计图中的数据可以求得m的值和表示“2小时”的扇形的圆心角的度数;(Ⅱ)根据条形统计图中的数据可以求得这组学生户外运动时间的平均数、众数和中位数.【解答】解:(Ⅰ)m%=1﹣40%﹣25%﹣15%=20%,即m的值是20,表示“2小时”的扇形的圆心角为:360°×15%=54°,故答案为:20、54;(Ⅱ)这组数据的平均数是:=,众数是:1,中位数是:1.【点评】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.21.(10分)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(Ⅰ)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明;(Ⅱ)如图2,当点F是CD的中点时,求△CDE的面积.【分析】(Ⅰ)连接OD,如图1,理由圆周角定理得到∠AOD=90°,则OD⊥AB,再理由平行线的性质得到OD⊥DE,然后根据直线与圆的位置关系的判定方法可判断DE为⊙O的切线;(Ⅱ)连接OC,如图1,利用垂径定理得到AB⊥CD,再利用圆周角定理得到∠COF=60°,则根据含30度的直角三角形三边的关系计算出OF=,CF=,所以CD=2CF=,AF=,接着证明AF为△CDE的中位线得到DE=2AF=3,然后根据三角形面积公式求解.【解答】解:(Ⅰ)DE与⊙O相切.、理由如下:连接OD,如图1,∵∠AOD=2∠ACD=2×45°=90°,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE为⊙O的切线;(Ⅱ)连接OC,如图1,∵点F是CD的中点,∴AB⊥CD,CF=DF,∵∠COF=2∠CAB=60°,∴OF=OC=,CF=OF=,∴CD=2CF=,AF=OA+OF=,∵AF∥AD,F点为CD的中点,∴DE⊥CD,AF为△CDE的中位线,∴DE=2AF=3,∴△CDE的面积=×3×=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O 相离⇔d>r.也考查了圆周角定理和垂径定理.22.(10分)某中学依山而建,校门A处有一斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米运的E处有一花台,在E处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米(Ⅰ)求∠BAD的正切值;(Ⅱ)求DC的长.(参考数据:tan53°≈,tan63.4°≈2)【分析】(Ⅰ)过B作BG⊥AD于G,则四边形BGDF是矩形,求得BG=DF=5米,然后根据勾股定理求得AG,即可求得斜坡AB的坡度i.(Ⅱ)在R t△BCF中,BF==,在R t△CEF中,EF==,得到方程BF﹣EF=﹣=4,解得CF=16,即可求得求DC=21.【解答】解:(Ⅰ)过B作BG⊥AD于G,则四边形BGDF是矩形,∴BG=DF=5米,∵AB=13米,∴AG==12米,∴tan∠BAD==1:2.4;(Ⅱ)在R t△BCF中,BF==,在R t△CEF中,EF==,∵BE=4米,∴BF﹣EF═﹣=4,解得:CF=16.∴DC=CF+DF=16+5=21米.【点评】本题考查了解直角三角形的应用﹣仰角和俯角问题,解直角三角形的应用﹣坡度和坡比问题,正确理解题意是解题的关键.23.(10分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y (人)与票价x (元)之间怡好构成一次函数关系. (Ⅰ)根据题意完成下列表格(Ⅱ)在这样的情况下,如果要确保每周有40000元的门票收入,那么每周应限定参观人数是多少?门票价格应定位多少元?(Ⅲ)门票价格应该是多少元时,门票收入最大?这样每周应有多少人参观? 【分析】(Ⅰ)由题意可知每周参观人数y (人)与票价x (元)之间怡好构成一次函数关系,把点(10,7000)(15,4500)分别代入y=kx +b ,求出k ,b 的值,即可把表格填写完整;(Ⅱ)根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格应定位;(Ⅲ)先得到二次函数,再配方法即可求解.【解答】解:(I )设每周参观人数与票价之间的一次函数关系式为y=kx +b , 把(10,7000)(15,4500)代入y=kx +b 中得,解得,∴y=﹣500x +12000, x=18时,y=3000,故答案为:﹣500x +12000,3000;(II )根据确保每周4万元的门票收入,得xy=40000 即x (﹣500x +12000)=40000 x 2﹣24x +80=0解得x1=20 x2=4把x1=20,x2=4分别代入y=﹣500x+12000中得y1=2000,y2=10000因为控制参观人数,所以取x=20,y=2000答:每周应限定参观人数是2000人,门票价格应是20元/人.(III)依题意有x(﹣500x+12000)=﹣500(x2﹣24)=﹣500(x﹣12)2+72000,y=﹣500×12+12000=6000.故门票价格应该是12元时门票收入最大,这样每周应有6000人参观.【点评】此题考查了二次函数以及一次函数的应用,解答此类题目的关键是要注意自变量的取值还必须使实际问题有意义.24.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标为(6,0),点B的坐标为(0,8),点C的坐标为(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒两个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t秒(t>0),△OMN的面积为S.(1)填空:AB的长是10,BC的长是6;(2)当t=3时,求S的值;(3)当3<t<6时,设点N的纵坐标为y,求y与t的函数关系式;(4)若S=,请直接写出此时t的值.【分析】(1)利用勾股定理即可解决问题;(2)如图1中,作CE⊥x轴于E.连接CM.当t=3时,点N与C重合,OM=3,易求△OMN的面积;(3)如图2中,当3<t<6时,点N在线段BC上,BN=12﹣2t,作NG⊥OB于G,CF⊥OB于F.则F(0,4).由GN∥CF,推出=,即=,可得BG=8﹣t,由此即可解决问题;(4)分三种情形①当点N在边长上,点M在OA上时.②如图3中,当M、N在线段AB上,相遇之前.作OE⊥AB于E,则OE==,列出方程即可解决问题.③同法当M、N在线段AB上,相遇之后,列出方程即可;【解答】解:(1)在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===10.BC==6,故答案为10,6.(2)如图1中,作CE⊥x轴于E.连接CM.∵C(﹣2,4),∴CE=4OE=2,在Rt△COE中,OC===6,当t=3时,点N与C重合,OM=3,=•OM•CE=×3×4=6,∴S△ONM即S=6.(3)如图2中,当3<t<6时,点N在线段BC上,BN=12﹣2t,作NG⊥OB 于G,CF⊥OB于F.则F(0,4).∵OF=4,OB=8,∴BF=8﹣4=4,∵GN∥CF,∴=,即=,∴BG=8﹣t,∴y=OB﹣BG=8﹣(8﹣t)=t.(4)①当点N在边长上,点M在OA上时,•t•t=,解得t=(负根已经舍弃).②如图3中,当M、N在线段AB上,相遇之前.作OE⊥AB于E,则OE==,由题意 [10﹣(2t﹣12)﹣(t﹣6)]•=,解得t=8,同法当M、N在线段AB上,相遇之后.由题意•[(2t ﹣12)+(t ﹣6)﹣10]•=,解得t=,综上所述,若S=,此时t 的值8s 或s 或s .【点评】本题考查四边形综合题、平行线分线段成比例定理、勾股定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(10分)已知抛物线l 1与l 2形状相同,开口方向不同,其中抛物线l 1:y=ax 2﹣8ax ﹣交x 轴于A ,B 两点(点A 在点B 的左侧),且AB=6;抛物线l 2与l 1交于点A 和点C (5,n ).(1)求抛物线l 1,l 2的表达式;(2)当x 的取值范围是 2≤x ≤4 时,抛物线l 1与l 2上的点的纵坐标同时随横坐标的增大而增大;(3)直线MN ∥y 轴,交x 轴,l 1,l 2分别相交于点P (m ,0),M ,N ,当1≤m ≤7时,求线段MN 的最大值.【分析】(1)首先确定A 、B 两点坐标,求出抛物线l 1的解析式,再求出点C 坐标,利用待定系数法求出抛物线l 2的解析式即可;(2)观察图象可知,中两个抛物线的顶点之间时,抛物线l 1与l 2上的点的纵坐标同时随横坐标的增大而增大,求出两个抛物线的顶点坐标即可解决问题; (3)分两种情形分别求解:①如图1中,当1≤m ≤5时,MN=﹣m 2+6m ﹣5=﹣(m ﹣3)2+4,②如图2中,当5<m ≤7时,MN=m 2﹣6m +5=(m ﹣3)2﹣4,利用二次函数的性质即可解决问题;【解答】解:(1)由题意抛物线l 1的对称轴x=﹣=4,∵抛物线l 1交x 轴于A ,B 两点(点A 在点B 的左侧),且AB=6, ∴A (1,0),B (7,0),把A (1,0)代入y=ax 2﹣8ax ﹣,解得a=﹣,∴抛物线l 1的解析式为y=﹣x 2+4x ﹣,把C(5,n)代入y=﹣x2+4x﹣,解得n=4,∴C(5,4),∵抛物线l1与l2形状相同,开口方向不同,∴可以假设抛物线l2的解析式为y=x2+bx+c,把A(1,0),C(5,4)代入y=x2+bx+c,得到,解得,∴抛物线l2的解析式为y=x2﹣2x+.(2)观察图象可知,中两个抛物线的顶点之间时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大,顶点E(2,﹣),顶点F(4,)所以2≤x≤4时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大,故答案为2≤x≤4.(3)∵直线MN∥y轴,交x轴,l1,l2分别相交于点P(m,0),M,N,∴M(m,﹣m2+4m﹣),N(m,m2﹣2m+),①如图1中,当1≤m≤5时,MN=﹣m2+6m﹣5=﹣(m﹣3)2+4,∴m=3时,MN的最大值为4.②如图2中,当5<m≤7时,MN=m2﹣6m+5=(m﹣3)2﹣4,5<m≤7时,在对称轴右侧,MN随m的增大而增大,∴m=7时,MN的值最大,最大值是12,综上所述,MN的最大值为12.【点评】本题考查二次函数综合题、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想思考问题,学会用分类讨论的思想解决问题,属于中考压轴题.。
一、选择题(每题4分,共20分)1. 下列各数中,正数是()A. -2.5B. 0C. -3.14D. 1.232. 若a < b,则下列不等式中正确的是()A. a + 3 < b + 3B. a - 3 > b - 3C. a + 2 > b + 2D. a - 2 < b - 23. 下列代数式中,能表示直角三角形斜边长的是()A. a² + b² = c²B. a² - b² = c²C. a² + b² = 0D. a² - b² = 04. 下列关于二次函数的说法中,正确的是()A. 二次函数的图像一定是抛物线B. 二次函数的图像开口方向一定是向上C. 二次函数的图像顶点一定是原点D. 二次函数的图像一定有对称轴5. 若a、b、c是三角形的三边,则下列结论中正确的是()A. a + b > cB. a - b < cC. a + c < bD. a - c > b二、填空题(每题5分,共25分)6. 计算:(-3)² + 2×(-2) - 1 = _______7. 简化:-5x² + 3x - 2x + 7 = _______8. 若a² = 9,则a = _______9. 若∠A = 60°,∠B = 90°,则∠C = _______10. 二次函数y = ax² + bx + c的图像开口向上,顶点坐标为(-2,3),则a = _______三、解答题(每题10分,共30分)11. 解方程:3x² - 5x + 2 = 012. 解不等式:2x - 3 > 513. 已知三角形ABC中,AB = 5,AC = 6,∠BAC = 45°,求BC的长度。
天津市南开区2018年中考数学二模试卷(解析版)一、选择题1.-6÷的结果等于()A.1 B.﹣1 C.36 D.﹣36【分析】根据有理数的运算法则即可求出答案.【解答】解:原式=﹣6×6=﹣36故选:D.【点评】本题考查有理数的运算法则,解题的关键是熟练运用除法法则,本题属于基础题型.2.(3分)2sin60°的值等于()A.B.2 C.1 D.【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin60°=2×=,故选:A.【点评】本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.3.(3分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)某商城开设一种摸奖游戏,中一等奖的机会为20万分之一,将这个数用科学计数法表示为()A.2×10﹣5 B.2×10﹣6C.5×10﹣5D.5×10﹣6【分析】先把20万分之一转化成0.000 005,然后再用科学记数法记数记为5×10﹣6.小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.000005=5×10﹣6.故选:D.【点评】考查了科学计数法﹣表示较小的数,将一个绝对值较小的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.5.(3分)用五块大小相同的小正方体搭成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看,是两层都有两个正方形的田字格形排列.【点评】本题考查了三视图的知识,左视图是从物体的正面看得到的视图.6.(3分)在实数﹣,﹣2,,中,最小的是()A.﹣B.﹣2 C.D.【分析】为正数,,﹣2为负数,根据正数大于负数,所以比较与﹣2的大小即可.【解答】解:正数有:;负数:,﹣2,∵,∴,∴最小的数是﹣2,故选:B.【点评】本题考查了实数比较大小,解决本题的关键是正数大于负数,两个负数,绝对值大的反而小.7.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.8.(3分)一个正六边形的半径为R,边心距为r,那么R与r的关系是()A.r=R B.r=R C.r=R D.r=R【分析】求出正六边形的边心距(用R表示),根据“接近度”的定义即可解决问题.【解答】解:∵正六边形的半径为R,∴边心距r=R,故选:A.【点评】本题考查正多边形与圆的共线,等边三角形高的计算,记住等边三角形的高h=a(a是等边三角形的边长),理解题意是解题的关键,属于中考常考题型.9.(3分)设点A(x1,y1)和B(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1<y2,则一次函数y=﹣2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据反比例函数图象的性质得出k的取值范围,进而根据一次函数的性质得出一次函数y=﹣2x+k的图象不经过的象限.【解答】解:∵点A(x1,y1)和B(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1<y2,∴x1<x2<0时,y随x的增大而增大,∴k<0,∴一次函数y=﹣2x+k的图象不经过的象限是:第一象限.故选:A.【点评】此题主要考查了一次函数图象与系数的关系以及反比例函数的性质,根据反比例函数的性质得出k的取值范围是解题关键.10.(3分)如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为()A.50°B.55°C.60°D.65°【分析】首先连接AD,由A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,可求得∠ADO与∠ODC的度数,然后由圆的内接四边新的性质,求得答案.【解答】解:连接AD,∵OA=OD,∠AOD=50°,∴∠ADO==65°.∵AO∥DC,∴∠ODC=∠AOC=50°,∴∠ADC=∠ADO+∠ODC=115°,∴∠B=180°﹣∠ADC=65°.故选:D.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行线的性质以及等腰三角形的性质.此题比较适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11.(3分)观察如图图形,它们是按一定规律排列的,依照此规律,第9个图形中的小点一共有()A.162个B.135个C.30个D.27个【分析】仔细观察图形,找到图形变化的规律的通项公式,然后代入9求解即可.【解答】解:第1个图形有3=3×1=3个点,第2个图形有3+6=3×(1+2)=9个点第3个图形有3+6+9=3×(1+2+3)=18个点;……第n个图形有3+6+9+…+3n=3×(1+2+3+…+n)=个点;当n=9时,==135,故选:B.【点评】本题考查了图形的变化类问题,解题的关键是能够找到图形的变化规律,然后求解.12.(3分)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】由抛物线开口方向及对称轴位置、抛物线与y轴交点可判断①;由①知y=ax2﹣2ax+1,根据x=﹣1时y<0可判断②;由抛物线顶点在一次函数图象上知a+b+1=k+1,即a+b=k,结合b=﹣2a可判断③;根据0<x<1时二次函数图象在一次函数图象上方知ax2+bx+1>kx+1,即ax2+bx>kx,两边都除以x可判断④.【解答】解:由抛物线的开口向下,且对称轴为x=1可知a<0,﹣=1,即b=﹣2a>0,由抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上知c=1,则abc<0,故①正确;由①知y=ax2﹣2ax+1,∵x=﹣1时,y=a+2a+1=3a+1<0,∴a<﹣,故②正确;∵抛物线y=ax2+bx+c(a≠0)的顶点在一次函数y=kx+1(k≠0)的图象上,∴a+b+1=k+1,即a+b=k,∵b=﹣2a,∴﹣a=k,即a=﹣k,故③正确;由函数图象知,当0<x<1时,二次函数图象在一次函数图象上方,∴ax2+bx+1>kx+1,即ax2+bx>kx,∵x>0,∴ax+b>k,故④正确;故选:A.【点评】本题考查了抛物线与x轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征.二、填空题(3×6=18)13.(3分)分解因式:x2﹣5x=x(x﹣5).【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.14.(3分)计算×(﹣2)的结果等于2﹣2.【分析】利用二次根式的乘法法则运算.【解答】解:原式=﹣2=2﹣2.故答案为2﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.(3分)有四张卡片,分别写有数﹣2,0,1,5,将它们背面朝上(背面无差别)洗匀后放在桌上,从中任意抽出两张,则抽出卡片上的数的积是正数的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字积为正数的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中抽出卡片上的数字积为正数的结果为2种,所以抽出卡片上的数字积为正数的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.(3分)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为2.【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【解答】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.【点评】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.17.(3分)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y 轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为(﹣,).【分析】首先过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D 的坐标.【解答】解:如图,过D作DF⊥AO于F,∵点B的坐标为(1,3),∴BC=AO=1,AB=OC=3,根据折叠可知:CD=BC=OA=1,∠CDE=∠B=∠AOE=90°,AD=AB=3,在△CDE和△AOE中,,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,AE=CE,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,∴OE=,AE=CE=OC﹣OE=3﹣=,又∵DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,∴AE:AD=EO:DF=AO:AF,即:3=:DF=1:AF,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为:(﹣,).故答案为:(﹣,).【点评】此题主要考查了图形的折叠问题、相似三角形的判定与性质、全等三角形的判定与性质以及坐标与图形的性质.解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.18.(3分)如图,在每个小正方形的边长为1的网格中,A,B为格点(Ⅰ)AB的长等于(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.【分析】(Ⅰ)利用勾股定理计算即可;(Ⅱ)取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF 交PN于点C,点C即为所求.【解答】解:(Ⅰ)AB==,故答案为.=),作直线PN,再证=作线段AB的垂直(Ⅱ)如图取格点P、N(使得S△PAB平分线EF交PN于点C,点C即为所求.=),作直线PN,再证=作线段AB的垂直平分故答案为:取格点P、N(S△PAB线EF交PN于点C,点C即为所求.【点评】本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.三、解答题(66分)19.(8分)解不等式组请结合题填空,完成本题的解答(Ⅰ)解不等式①,得x≥﹣1(Ⅱ)解不等式②,得x<3(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为﹣1≤x<3【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:(Ⅰ)解不等式①,得:x≥﹣1,(Ⅱ)解不等式②,得:x<3,(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为:﹣1≤x<3,故答案为:x≥﹣1、x<3、﹣1≤x<3.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(8分)某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题;(Ⅰ)在图①中,m的值为20,表示“2小时”的扇形的圆心角为54度;(Ⅱ)求统计的这组学生户外运动时间的平均数、众数和中位数.【分析】(Ⅰ)根据统计图中的数据可以求得m的值和表示“2小时”的扇形的圆心角的度数;(Ⅱ)根据条形统计图中的数据可以求得这组学生户外运动时间的平均数、众数和中位数.【解答】解:(Ⅰ)m%=1﹣40%﹣25%﹣15%=20%,即m的值是20,表示“2小时”的扇形的圆心角为:360°×15%=54°,故答案为:20、54;(Ⅱ)这组数据的平均数是:=,众数是:1,中位数是:1.【点评】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.21.(10分)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(Ⅰ)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明;(Ⅱ)如图2,当点F是CD的中点时,求△CDE的面积.【分析】(Ⅰ)连接OD,如图1,理由圆周角定理得到∠AOD=90°,则OD⊥AB,再理由平行线的性质得到OD⊥DE,然后根据直线与圆的位置关系的判定方法可判断DE为⊙O的切线;(Ⅱ)连接OC,如图1,利用垂径定理得到AB⊥CD,再利用圆周角定理得到∠COF=60°,则根据含30度的直角三角形三边的关系计算出OF=,CF=,所以CD=2CF=,AF=,接着证明AF为△CDE的中位线得到DE=2AF=3,然后根据三角形面积公式求解.【解答】解:(Ⅰ)DE与⊙O相切.、理由如下:连接OD,如图1,∵∠AOD=2∠ACD=2×45°=90°,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE为⊙O的切线;(Ⅱ)连接OC,如图1,∵点F是CD的中点,∴AB⊥CD,CF=DF,∵∠COF=2∠CAB=60°,∴OF=OC=,CF=OF=,∴CD=2CF=,AF=OA+OF=,∵AF∥AD,F点为CD的中点,∴DE⊥CD,AF为△CDE的中位线,∴DE=2AF=3,∴△CDE的面积=×3×=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O 相离⇔d>r.也考查了圆周角定理和垂径定理.22.(10分)某中学依山而建,校门A处有一斜坡AB,长度为13米,在坡顶B 处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米运的E处有一花台,在E 处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米(Ⅰ)求∠BAD的正切值;(Ⅱ)求DC的长.(参考数据:tan53°≈,tan63.4°≈2)【分析】(Ⅰ)过B作BG⊥AD于G,则四边形BGDF是矩形,求得BG=DF=5米,然后根据勾股定理求得AG,即可求得斜坡AB的坡度i.(Ⅱ)在R t△BCF中,BF==,在R t△CEF中,EF==,得到方程BF﹣EF=﹣=4,解得CF=16,即可求得求DC=21.【解答】解:(Ⅰ)过B作BG⊥AD于G,则四边形BGDF是矩形,∴BG=DF=5米,∵AB=13米,∴AG==12米,∴tan∠BAD==1:2.4;(Ⅱ)在R t△BCF中,BF==,在R t△CEF中,EF==,∵BE=4米,∴BF﹣EF═﹣=4,解得:CF=16.∴DC=CF+DF=16+5=21米.【点评】本题考查了解直角三角形的应用﹣仰角和俯角问题,解直角三角形的应用﹣坡度和坡比问题,正确理解题意是解题的关键.23.(10分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间怡好构成一次函数关系.(Ⅰ)根据题意完成下列表格(Ⅱ)在这样的情况下,如果要确保每周有40000元的门票收入,那么每周应限定参观人数是多少?门票价格应定位多少元?(Ⅲ)门票价格应该是多少元时,门票收入最大?这样每周应有多少人参观? 【分析】(Ⅰ)由题意可知每周参观人数y (人)与票价x (元)之间怡好构成一次函数关系,把点(10,7000)(15,4500)分别代入y=kx +b ,求出k ,b 的值,即可把表格填写完整;(Ⅱ)根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格应定位;(Ⅲ)先得到二次函数,再配方法即可求解.【解答】解:(I )设每周参观人数与票价之间的一次函数关系式为y=kx +b , 把(10,7000)(15,4500)代入y=kx +b 中得,解得,∴y=﹣500x +12000, x=18时,y=3000,故答案为:﹣500x +12000,3000;(II )根据确保每周4万元的门票收入,得xy=40000 即x (﹣500x +12000)=40000 x 2﹣24x +80=0 解得x 1=20 x 2=4把x 1=20,x 2=4分别代入y=﹣500x +12000中 得y 1=2000,y 2=10000因为控制参观人数,所以取x=20,y=2000答:每周应限定参观人数是2000人,门票价格应是20元/人. (III )依题意有x(﹣500x+12000)=﹣500(x2﹣24)=﹣500(x﹣12)2+72000,y=﹣500×12+12000=6000.故门票价格应该是12元时门票收入最大,这样每周应有6000人参观.【点评】此题考查了二次函数以及一次函数的应用,解答此类题目的关键是要注意自变量的取值还必须使实际问题有意义.24.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标为(6,0),点B的坐标为(0,8),点C的坐标为(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒两个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t>0),△OMN的面积为S.(1)填空:AB的长是10,BC的长是6;(2)当t=3时,求S的值;(3)当3<t<6时,设点N的纵坐标为y,求y与t的函数关系式;(4)若S=,请直接写出此时t的值.【分析】(1)利用勾股定理即可解决问题;(2)如图1中,作CE⊥x轴于E.连接CM.当t=3时,点N与C重合,OM=3,易求△OMN的面积;(3)如图2中,当3<t<6时,点N在线段BC上,BN=12﹣2t,作NG⊥OB于G,CF⊥OB于F.则F(0,4).由GN∥CF,推出=,即=,可得BG=8﹣t,由此即可解决问题;(4)分三种情形①当点N在边长上,点M在OA上时.②如图3中,当M、N在线段AB上,相遇之前.作OE⊥AB于E,则OE==,列出方程即可解决问题.③同法当M、N在线段AB上,相遇之后,列出方程即可;【解答】解:(1)在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===10.BC==6,故答案为10,6.(2)如图1中,作CE⊥x轴于E.连接CM.∵C(﹣2,4),∴CE=4OE=2,在Rt△COE中,OC===6,当t=3时,点N与C重合,OM=3,=•OM•CE=×3×4=6,∴S△ONM即S=6.(3)如图2中,当3<t<6时,点N在线段BC上,BN=12﹣2t,作NG⊥OB于G,CF⊥OB于F.则F(0,4).∵OF=4,OB=8,∴BF=8﹣4=4,∵GN∥CF,∴=,即=,∴BG=8﹣t,∴y=OB﹣BG=8﹣(8﹣t)=t.(4)①当点N在边长上,点M在OA上时,•t•t=,解得t=(负根已经舍弃).②如图3中,当M、N在线段AB上,相遇之前.作OE⊥AB于E,则OE==,由题意 [10﹣(2t﹣12)﹣(t﹣6)]•=,解得t=8,同法当M、N在线段AB上,相遇之后.由题意•[(2t﹣12)+(t﹣6)﹣10]•=,解得t=,综上所述,若S=,此时t的值8s或s或s.【点评】本题考查四边形综合题、平行线分线段成比例定理、勾股定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(10分)已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:y=ax2﹣8ax﹣交x轴于A,B两点(点A在点B的左侧),且AB=6;抛物线l2与l1交于点A和点C(5,n).(1)求抛物线l1,l2的表达式;(2)当x的取值范围是2≤x≤4时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大;(3)直线MN∥y轴,交x轴,l1,l2分别相交于点P(m,0),M,N,当1≤m≤7时,求线段MN的最大值.【分析】(1)首先确定A、B两点坐标,求出抛物线l1的解析式,再求出点C 坐标,利用待定系数法求出抛物线l2的解析式即可;(2)观察图象可知,中两个抛物线的顶点之间时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大,求出两个抛物线的顶点坐标即可解决问题;(3)分两种情形分别求解:①如图1中,当1≤m≤5时,MN=﹣m2+6m﹣5=﹣(m﹣3)2+4,②如图2中,当5<m≤7时,MN=m2﹣6m+5=(m﹣3)2﹣4,利用二次函数的性质即可解决问题;【解答】解:(1)由题意抛物线l1的对称轴x=﹣=4,∵抛物线l1交x轴于A,B两点(点A在点B的左侧),且AB=6,∴A(1,0),B(7,0),把A(1,0)代入y=ax2﹣8ax﹣,解得a=﹣,∴抛物线l1的解析式为y=﹣x2+4x﹣,把C(5,n)代入y=﹣x2+4x﹣,解得n=4,∴C(5,4),∵抛物线l1与l2形状相同,开口方向不同,∴可以假设抛物线l2的解析式为y=x2+bx+c,把A(1,0),C(5,4)代入y=x2+bx+c,得到,解得,∴抛物线l2的解析式为y=x2﹣2x+.(2)观察图象可知,中两个抛物线的顶点之间时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大,顶点E(2,﹣),顶点F(4,)所以2≤x≤4时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大,故答案为2≤x≤4.(3)∵直线MN∥y轴,交x轴,l1,l2分别相交于点P(m,0),M,N,∴M(m,﹣m2+4m﹣),N(m,m2﹣2m+),①如图1中,当1≤m≤5时,MN=﹣m2+6m﹣5=﹣(m﹣3)2+4,∴m=3时,MN的最大值为4.②如图2中,当5<m≤7时,MN=m2﹣6m+5=(m﹣3)2﹣4,5<m≤7时,在对称轴右侧,MN随m的增大而增大,∴m=7时,MN的值最大,最大值是12,综上所述,MN的最大值为12.【点评】本题考查二次函数综合题、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想思考问题,学会用分类讨论的思想解决问题,属于中考压轴题.。
2018年天津市南开区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出地四个选项中,只有一项是符合题目要求地)1.(3分)(﹣2)×(﹣6)地结果等于()A.12 B.﹣12 C.8 D.﹣82.(3分)计算tan60°地值等于()A.B.C.1 D.3.(3分)甲骨文是我国地一种古代文字,是汉字地早期形式,下列甲骨文中,不是轴对称地是()A.B.C. D.4.(3分)在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关地结果个数约为45100000,这个数用科学记数法表示为()A.451×105B.45.1×106C.4.51×107D.0.451×1085.(3分)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成地几何体,从正前方观察,可画出地平面图形是()A. B. C. D.6.(3分)如果实数a=,且a在数轴上对应点地位置如图所示,其中正确地是()A.B.C.D.7.(3分)化简+,其结果为()A. B. C.D.8.(3分)半径为a地正六边形地面积等于()A.B.C.a2D.9.(3分)已知点A(x1,y1),B(x2,y2)是反比例函数y=地图象上地两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<010.(3分)如图,平行四边形ABCD中,E为AD地中点,已知△DEF地面积为S,则四边形ABCE地面积为()A.8S B.9S C.10S D.11S11.(3分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形地对称中心O 处,折痕为EF,若菱形ABCD地边长为2cm,∠A=120°,则EF地长为()A.2 B.2 C.D.412.(3分)如图,抛物线y=ax2+bx+3(a≠0)地对称轴为直线x=1,如果关于x 地方程ax2+bx﹣8=0(a≠0)地一个根为4,那么该方程地另一个根为()A.﹣4 B.﹣2 C.1 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算(﹣2a)3地结果是.14.(3分)计算(﹣)2地结果等于.15.(3分)将正比例函数y=2x地图象向下平移,则平移后所得图象对应地函数解析式可以是.(写出一个即可)16.(3分)“赵爽弦图”是四个全等地直角三角形与中间一个小正方形拼成地大正方形.有一“赵爽弦图”飞镖板,其直角三角形地两条直角边地长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷地飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)地概率是.17.(3分)如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC 地中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成地图形)分成两部分,则这两部分面积之差地绝对值是.18.(3分)如图,是大小相等地边长为1地正方形构成地网格,A,B,C,D均为格点.(Ⅰ)△ACD地面积为;(Ⅱ)现只有无刻度地直尺,请在线段AD上找一点P,并连结BP,使得直线BP 将四边形ABCD地面积分为1:2两部分,在图中画出线段BP,并在横线上简要说明你地作图方法..三、解答题(本大题共7小题,共计66分。
2018年天津市南开区中考二模数学试卷一、单选题(共12小题)1.﹣2的绝对值是()A.2B.﹣2C.D.考点:实数的相关概念答案:A试题解析:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.下列各数中是有理数的是()A.B.4πC.sin45°D.考点:实数及其分类答案:D试题解析:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.3.2018年3月5日,李克强总理在政府工作报告中指出:2018年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()A.13.1×106B.1.31×107C.1.31×108D.0.131×108考点:科学记数法和近似数、有效数字答案:B试题解析:13100000=1.31×1074.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.考点:几何体的三视图答案:C试题解析:从正面可看到从左往右三列小正方形的个数为:1,1,2.故选C.5.下列计算正确的是()A.a+3a=4a2B.a4•a4=2a4C.(a2)3=a5D.(-a)3÷(-a)=a2考点:整式的运算答案:D试题解析:a+3a=4a,a4•a4=a8,(a2)3=a6,(﹣a)3÷(﹣a)=(﹣a)2=a2,故选D.6.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°考点:多边形的内角与外角相交线、对顶角、邻补角答案:B试题解析:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=考点:分式方程的应用答案:B试题解析:设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得,=.故选B.8.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4B.x>﹣4C.x>2D.x>﹣2考点:一次函数与正比例函数的概念答案:B试题解析:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0时,x=﹣4,当x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,故选:B.9.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°考点:正方形的性质与判定答案:C试题解析:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.10.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A.B.2C.D.2考点:三角形中的角平分线、中线、高线答案:A试题解析:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故选:A.11.下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④考点:二次函数的图像及其性质反比例函数与一次函数综合答案:A试题解析:①:图中的函数为正比例函数,与坐标轴只有一个交点(0,0),由于缺少条件,无法求出阴影部分的面积;②:直线y=﹣x+2与坐标轴的交点坐标为:(2,0),(0,2),故S阴影=×2×2=2;③:此函数是反比例函数,那么阴影部分的面积为:S=xy=×4=2;④:该抛物线与坐标轴交于:(﹣1,0),(1,0),(0,﹣1),故阴影部分的三角形是等腰直角三角形,其面积S=×2×1=1;②③的面积相等,故选:A.12.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤考点:二次函数的图像及其性质答案:D试题解析:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为直线x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选:D.第II卷(非选择题)本试卷第二部分共有13道试题。
天津市 2018 年九年级数学中考模拟试卷一一、选择题 :1.若 |m|=3,|n|=5且m-n> 0,则 m+ n的值是 ()A. -2B.-8 或 -2C.-8 或 8D.8 或-22.如图 , 已知 Rt △ ABC中 , ∠ C=90° ,AC=6,BC=8, 则tanA 的值为()A. 0.6B. 0.8C.0.75D.3. 以下图形中,既是轴对称图形又是中心对称图形的是()4.地球七大洲的总面积约是149 480 000km2,对这个数据保存 3 个有效数字可表示为 ( )2B. 1.5 ×10828282A. 149km km C.1.49 × 10 km D. 1.50 × 10 km 5.以下几何体中,正视图、左视图、俯视图完好同样的是()A.圆柱B.圆锥C.棱锥D.球6.计算64的立方根是()A. 2B.± 2C.4D.± 47.计算:的结果为()8. 用配方法解方程 2x2+3=7x,方程可变形为()A.B.C.D.9.在数轴上表示a、b 两数的点以下图, 则以下判断正确的选项是()A. a+b> 0B. a+b<0C.ab> 0D. |a| > |b|10.如图 , 在矩形 ABCD中( AD> AB),点 E 是 BC上一点 , 且 DE=DA,AF⊥ DE,垂足为点 F, 在以下结论中 , 不必定正确的选项是()A.△ AFD≌△ DCE B. AF= AD C.AB=AF D. BE=AD﹣ DF11.已知一次函数y=kx ﹣ 3 与反比率函数y=﹣ kx -1,那么它们在同一坐标系中的图象可能是()12.二次函数 y=a(x ﹣ 3) 2+4( a≠ 0)的图象在1<x< 2 这一段位于x 轴的上方 , 在 5< x< 6 这一段位于 x 轴的下方 , 则 a 的值为()A. 1B. -1C.2D.﹣ 2二、填空题 :13.计算:﹣ 3x2?2x=______14.若 x2﹣ mxy+9y2是完好平方式,则m的值为.15.一只蚂蚁在如图 1 所示的七巧板上随意爬行,已知它停在这副七巧板上的任何一点的可能性都同样,那么它停在 1 号板上的概率是.16.直线 y=3x+6 与两坐标轴围成的三角形的面积是______.17.将完好同样的平行四边形和完好同样的菱形镶嵌成以下图的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则 y 与 x 的关系式是.18. 如图, 正六边形ABCD EF的边长为1, 它的 6 条对角线又围成一个正六边形1 1 1 1 1 1A2B2C2 D2 E2 F2,这样持续下去,则六边形A4 B4 C4 D4 E4 F4的面积是.三、解答题 :19. 解不等式组:,并在数轴上表示不等式组的解集.20.某高中学校为使高一重生入校后实时穿上称身的校服,现提早对某校九年级三班学生马上所穿校服型号状况进行了摸底检查,并依据检查结果绘制了如图两个不完好的统计图(校服型号以身高作为标准,共分为 6 个型号)依据以上信息,解答以下问题:( 1)该班共有名学生;( 2)在扇形统计图中,185 型校服所对应的扇形圆心角的大小为( 3)该班学生所穿校服型号的众数为,中位数为( 4)假如该校估计招收重生600 名,依据样本数据,估计重生穿多少名?;;170 型校服的学生大概有21.如图,已知 BC为⊙ O的直径, BA均分∠ FBC交⊙ O于点 A, D是射线 BF上的一点,且知足BD:AB=AB:BC,过点 O作 OM⊥ AC于点 E,交⊙ O于点 M,连结 BM, AM.(1)求证: AD是⊙ O的切线;(2)若 sin ∠ ABM=0.6,AM=6,求⊙ O的半径.22.A. B 两市相距 150 千米 , 分别从 A.B 处测得国家级景色区中心 C处的方向角如图 , 景色区区域是以 C 为圆心 ,45 千米为半径的圆 ,tan α=1.627 ,tan β =1.373 .为了开发旅行 , 相关部门设计修筑连结 AB两市的高速公路 . 问连结 AB 高速公路能否穿过景色区,请说明原因.23.今年“五一”小黄金周时期,我市旅行企业组织50 名旅客分别到A. B、C三个景点游乐.三个景点的门票价钱如表所示:景点A B C门票单价305575所购置的 50 张票中, B种票张数是 A种票张数的 3 倍还多 1 张,设需购 A种票张数为 x, C种票张数为 y.(1)写出 y与 x之间的函数关系式;(2)设购置门票总花费为 w(元),求出 w与 x之间的函数关系式;(3)若每种票起码购置 1 张,且 A种票许多于 10 张,则共有几种购票方案?并求出购票总花费最少时,购置 A. B、C三种票的张数.24.已知四边形 ABCD是正方形,等腰直角△ AEF的直角极点 E在直线 BC上(不与点 B, C重合), FM ⊥ AD,交射线 AD于点 M.( 1)当点 E在边 BC上,点 M在边 AD的延伸线上时,如图①,请直接写出线段AB, BE,AM之间的数目关系:;( 2)当点 E在边 CB的延伸线上,点M在边 AD上时,如图②;请探究线段AB, BE, AM之间的数量关系,并证明;( 3)若 BE=,∠ AFM=15°,则AM=.25.如图甲, AB⊥ BD, CD⊥ BD, AP⊥ PC,垂足分别为 B、 P、 D,且三个垂足在同向来线上,我们把这样的图形叫“三垂图” .(1)证明: AB?CD=PB?PD.(2)如图乙,也是一个“三垂图” ,上述结论建立吗?请说明原因.(3)已知抛物线与 x 轴交于点 A(﹣ 1, 0),B( 3, 0),与 y 轴交于点( 0,﹣ 3),极点为P,如图丙所示,若Q是抛物线上异于A.B、 P 的点,使得∠QAP=90°,求 Q点坐标.0【.中考模拟】天津市2018 年九年级数学中考模拟试卷一(含答案 )答案分析一、选择题1.D2.B3.D4. A.5.A6.D7. B.8.B9.D10.B.11.B.12.D.13.答案为:﹣ 6x314.答案为:± 6.15.答案为: 0.25;16.答案为: 6.17.答案为: y=0.5x+90 .18.答案为:3..#^com] 1819.答案为: -17/9<x ≤ 1.20.解:( 1)该班共有的学生数 =15÷30%=50(人);(2)175 型的人数 =50×20%=10(人),则 185 型的人数 =50﹣ 3﹣ 15﹣ 10﹣ 5﹣5=12,因此在扇形统计图中,185 型校服所对应的扇形圆心角=360°×=14.4 °;( 3)该班学生所穿校服型号的众数为165 和 170,中位数为 170;故答案为 50,14.4 °, 165 和 170, 170;( 4)600×=180(人),因此估计重生穿 170型校服的学生大概有180 名.21.22. 解: AB不穿过景色区.原因以下:如图,过C 作CD⊥ AB于点D,依据题意得:∠ACD=α,∠ BCD=β,则在 Rt △ ACD中, AD=CD?tan α,在 Rt △ BCD中, BD=CD?tan β,∵ AD+DB=AB,∴ CD?tanα+CD?tan β =AB,∴ CD==(千米).∵ CD=50> 45,∴高速公路AB 不穿过景色区.23.略24.25.( 1)证明:∵ AB⊥ BD, CD⊥ BD,∴∠ B=∠ D=90°,∴∠ A+∠ APB=90°,∵AP⊥PC,∴∠ APB+∠ CPD=90°,∴∠ A=∠ CPD,∴△ ABP∽△ PCD,∴ AB:PD=PB:CD,∴ AB?CD=PB?PD;(2)AB?CD=PB?PD仍旧建立.原因以下:∵AB⊥BD, CD⊥BD,∴∠ B=∠ CDP=90°,∴∠ A+∠ APB=90°,∵AP⊥PC,∴∠ APB+∠ CPD=90°,∴∠ A=∠ CPD,∴△ ABP∽△PCD,∴ AB:PD=PB:CD,∴ AB?CD=PB?PD;。
2018年天津市五区联考中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.计算﹣2+3的结果是()A.1B.﹣1C.﹣5D.﹣62.计算tan30°的值等于()A.B.3C.D.3.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.4.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A.0.13×105B.1.3×104C.1.3×105D.13×1035.如图,由四个正方体组成的几何体的左视图是()A.B.C.D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算的结果是()A.B.C.D.18.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2B.2C.3D.﹣39.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.1610.已知反比例函数y=﹣,当1<x<3时,y的取值范围是()A.0<y<1B.1<y<2C.﹣2<y<﹣1D.﹣6<y<﹣211.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm12.已知二次函数y=﹣x2﹣4x﹣5,左、右平移该抛物线,顶点恰好落在正比例函数y=﹣x的图象上,则平移后的抛物线解析式为()A.y=﹣x2﹣4x﹣1B.y=﹣x2﹣4x﹣2C.y=﹣x2+2x﹣1D.y=﹣x2+2x﹣2二、填空题(本大题共6小题,每小题3分,共18分)13.计算a3÷a2•a的结果等于.14.计算()()的结果等于.15.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是.16.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是.(写出一个即可).17.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP 交正方形外角的平分线CP于点P,则PC的长为.18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足,S△P AB:S△PBC:S△PCA=2:1:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)“六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)该校有个班级,补全条形统计图;(Ⅱ)求该校各班留守儿童人数数据的平均数,众数与中位数;(Ⅲ)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.21.(10分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD 于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.22.(10分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC 的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41423.(10分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.(Ⅰ)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:型号A型B型购进数量(盏)x购买费用(元)(Ⅱ)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.(10分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A 顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(Ⅰ)如图①,当旋转角为90°时,求BB′的长;(Ⅱ)如图②,当旋转角为120°时,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)25.(10分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.(Ⅰ)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;(Ⅱ)P(m,t)为抛物线上的一个动点,①当点P关于原点的对称点P′落在直线BC上时,求m的值;②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.参考答案与试题解析一、选择题1.【解答】解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选:A.2.【解答】解:tan30°=,故选:C.3.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.4.【解答】解:将13000用科学记数法表示为:1.3×104.故选:B.5.【解答】解:图形的左视图为:,故选:B.6.【解答】解:∵<<,∴6<<7,∴的值在6和7之间;故选:C.7.【解答】解:===1,故选:D.8.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选:B.9.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.10.【解答】解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<x<﹣2,故选:D.11.【解答】解:如图,连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故选:C.12.【解答】解:∵y=﹣x2﹣4x﹣5=﹣(x+2)2﹣1,∴顶点坐标是(﹣2,﹣1).由题知:把这个二次函数的图象上、下平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,∵平移时,顶点的横坐标不变,即为(﹣2,2),∴函数解析式是:y=﹣(x+2)2+2=﹣x2+2x﹣2,即:y=﹣x2+2x﹣2;故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:原式=a3﹣2+1=a2,故答案为:a2.14.【解答】解:原式=7﹣5=2.故答案为2.15.【解答】解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是,故答案为:.16.【解答】解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取2,故答案为:217.【解答】解:在AB上取BN=BE,连接EH,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°,∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°,∵PC平分∠DCM,∴∠PCM=45°,∠ECP=135°,∵AB=BC,BN=BE,∴AN=EC,∵∠AEP=90°,∴∠AEB+∠PEC=90°,∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴AE=PE,∵∠B=∠PME=90°,∠BAE=∠PEM,∴△ABE≌△EMP(AAS),∴BE=PM=1,∴PC=PM=,故答案为18.【解答】解:(1)AB==.故答案为.(2)如图线段AB与网格相交,得到点D、E,取格点F,连接FC并且延长,与网格相交,得到M,N,G.连接EN,EM,DG,EN与DG相交于点P,点P即为所求.理由:平行四边形AENC的面积:平行四边形DENG的面积:平行四边形DBCG的面积=3:2;1,△PAC的面积=平行四边形AENC的面积,△PBC的面积=平行四边形CBDG的面积,△PAB 的面积=6×△PDE的面积=平行四边形DEMG的面积,∴S△P AB:S△PBC:S△PCA=2:1:3.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.【解答】解:(Ⅰ)解不等式①,得x>1;(Ⅱ)解不等式②,得x≤2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:1<x≤2;故答案为:x>1;x≤2;1<x≤2.20.【解答】解:(Ⅰ)该校的班级数是:2÷12.5%=16(个).则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).条形统计图补充如下图所示:故答案为16;(Ⅱ)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+12×2)÷16=9,将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,12,12,故这组数据的众数是10,中位数是(8+10)÷2=9,即统计的这组留守儿童人数数据的平均数是9,众数是10,中位数是9;(Ⅲ)该镇小学生中,共有留守儿童60×9=540(名).答:该镇小学生中共有留守儿童540名.21.【解答】解:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OCE=45°;②作OG⊥CE于点G,则CG=FG=OG,∵OC=2,∠OCE=45°,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E=30°,∴GE=2,∴.22.【解答】解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=45°,BC=4,在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2,∵∠CBD=45°,∴BD=CD=2,在Rt△ACD中,sinA=,tanA=,∴AC=≈≈4.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.414≈3.87﹣2.83=1.04≈1.0,答:新传送带AC的长为4.8m,新、原传送带触地点之间AB的长约为1.0m.23.【解答】解:(Ⅰ)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得,,解得,答:应购进A型台灯75盏,B型台灯25盏,故答案为:30x;y;50y;(Ⅱ)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.24.【解答】解:(Ⅰ)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(Ⅱ)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,在Rt△AHO'中,∠HAO'=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'(,);(Ⅲ)由旋转知,AP=AP',∴O'P+AP'=O'P+AP,如图3,作A关于y轴的对称点,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小,∵点C与点A关于y轴对称,∴C(﹣3,0),∵O'(,),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D,∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'(,),25.【解答】解:(Ⅰ)∵抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,0),C(0,﹣3),∴,解得,,∴该抛物线的解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)①由P(m,t)在抛物线上可得,t=m2﹣2m﹣3,∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=0时,0=x2﹣2x﹣3,解得,x1=﹣1,x2=3,由已知可得,点B(3,0),∵点B(3,0),点C(0,﹣3),设直线BC对应的函数解析式为:y=kx+d,,解得,,∴直线BC的直线解析式为y=x﹣3,∵点P′落在直线BC上,∴﹣t=﹣m﹣3,即t=m+3,∴m2﹣2m﹣3=m+3,解得,m=;②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>0,﹣t>0,∴m<0,t<0,∵二次函数的最小值是﹣4,∴﹣4≤t<0,∵点P(m,t)在抛物线上,∴t=m2﹣2m﹣3,∴t+3=m2﹣2m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,0),又∵A(﹣1,0),则P′H2=t2,AH2=(﹣m+1)2,在Rt△P′AH中,P′A2=AH2+P′H2,∴P′A2=(﹣m+1)2+t2=m2﹣2m+1+t2=t2+t+4=(t+)2+,∴当t=﹣时,P′A2有最小值,此时P′A2=,∴=m2﹣2m﹣3,解得,m=,∵m<0,∴m=,即P′A2取得最小值时,m的值是,这个最小值是.。