中考数学专题复习第十八讲 等腰三角形与直角三角形
- 格式:doc
- 大小:864.50 KB
- 文档页数:33
专题18 等腰三角形与直角三角形知识点高老师总结等腰三角形等腰三角形的性质理解等腰三角形的性质,并能解决等腰三角形的有关计算等腰三角形的判定掌握等腰三角形的判定方法,会证明一个三角形是等腰三角形等边三角形等边三角形的性质理解等边三角形的性质等边三角形的判定掌握等边三角形的判定方法,会证明一个三角形是等边三角形直角三角形直角三角形的性质理解直角三角形的有关性质直角三角形的判定掌握直角三角形的判定方法,会证明一个三角形是直角三角形勾股定理理解并掌握勾股定理及其逆定理☞2年中考1.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,2,3考点:勾股定理的逆定理.2.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°考点:等腰三角形的性质.3.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°考点:1.线段垂直平分线的性质;2.等腰三角形的性质.4.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°考点:1.等腰三角形的性质;2.平行线的性质.5.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.已知2是关于x的方程2230x mx m-+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.7.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°考点:等腰三角形的性质.8.如图,在边长为3的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A33B32C.3D.1考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.9.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A33B55C233D255考点:1.锐角三角函数的定义;2.勾股定理;3.勾股定理的逆定理;4.网格型.10.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.261cm C61D.234考点:1.平面展开-最短路径问题;2.最值问题.11.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°考点:1.直角三角形斜边上的中线;2.轴对称的性质.12.如图,在Rt△ABC中,∠B=900,∠A=300,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=l,则AC的长是()A.32B.2 C.34D.4考点:1.含30度角的直角三角形;2.线段垂直平分线的性质;3.勾股定理.13.如图,在△ABC中,∠BAC=Rt∠,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.13B.21-C.23-D.14考点:1.解直角三角形;2.等腰直角三角形.14.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A3B.1 C2D.2考点:1.含30度角的直角三角形;2.角平分线的性质;3.线段垂直平分线的性质.15.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km考点:1.直角三角形斜边上的中线;2.应用题.16.如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,2,点P在四边形ABCD 的边上.若点P到BD的距离为32,则点P的个数为()A.2 B.3 C.4 D.5考点:1.等腰直角三角形;2.点到直线的距离.17.如图,在边长为3的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A33B32C.3D.1考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.18.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5考点:1.勾股定理;2.等腰三角形的性质;3.动点型.19.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.32B.323C.3D.6考点:1.翻折变换(折叠问题);2.勾股定理.20.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分考点:1.轨迹;2.直角三角形斜边上的中线.21.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A.20122()B.20132C.20121()2D.20131()2考点:1.等腰直角三角形;2.正方形的性质;3.规律型;4.综合题.22.等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或10考点:1.根的判别式;2.一元二次方程的解;3.等腰直角三角形;4.分类讨论.23.下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有( )A .160B .161C .162D .163 考点:1.规律型;2.综合题.24.如图,在Rt △ABC 中,∠ACB=90°,点D ,E ,F 分别为AB ,AC ,BC 的中点.若CD=5,则EF 的长为 .考点:1.三角形中位线定理;2.直角三角形斜边上的中线.25.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O ,古塔位于点A (400,300),从古塔出发沿射线OA 方向前行300m 是盆景园B ,从盆景园B 向左转90°后直行400m 到达梅花阁C ,则点C 的坐标是 .考点:1.勾股定理的应用;2.坐标确定位置;3.全等三角形的应用. 26.如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC= 度. 考点:等腰三角形的性质.27.如图,在△ABC 中,CD 是高,CE 是中线,CE=CB ,点A 、D 关于点F 对称,过点F 作FG ∥CD ,交AC 边于点G ,连接GE .若AC=18,BC=12,则△CEG 的周长为 .考点:1.三角形中位线定理;2.等腰三角形的性质;3.轴对称的性质. 28.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 考点:1.等腰三角形的性质;2.分类讨论.29.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.考点:1.正方形的性质;2.等边三角形的性质.30.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.考点:1.轴对称-最短路线问题;2.等边三角形的性质;3.最值问题;4.综合题.31.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=43,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.考点:等边三角形的判定与性质;三角形的重心;三角形中位线定理;综合题;压轴题.32.如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D 作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.考点:1.等腰直角三角形;2.等腰三角形的性质;3.等边三角形的性质;4.综合题.cm.33.在△ABC 中,AB=13cm,AC=20cm,BC 边上的高为12cm,则△ABC 的面积为__________2考点:1.勾股定理;2.分类讨论;3.综合题.34.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)考点:1.平面展开-最短路径问题;2.最值问题.35.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:2=1.41,3).考点:勾股定理的应用.36.如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于.考点:1.直角三角形斜边上的中线;2.勾股定理.37.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.考点:1.勾股定理;2.三角形中位线定理.38.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B 运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?考点:平行四边形的判定与性质;勾股定理的逆定理;直角梯形;动点型;分类讨论;综合题.☞考点归纳归纳 1:等腰三角形基础知识归纳:1、等腰三角形的性质 (1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
2013年中考数学专题复习第十八讲等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【名师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【名师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【名师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【名师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【名师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。
2023年中考数学一轮复习备考第18讲等腰三角形与直角三角形考点清单考点1 等腰三角形的性质与判定性质(1)两底角相等,即∠B=∠C(等边对等角);(2)两腰相等,即AB=AC;(3)是轴对称图形,有一条对称轴,即AD所在的直线;(4)“三线合一”(即顶角的①、底边上的中线和底边上的高互相重合)判定(1)两边相等的三角形是等腰三角形;(2)②相等的三角形是等腰三角形(等角对等边)周长、面积周长:C=a+2b;面积:S=③(其中a是底边长,b是腰长,h是底边上的高)【易错警示】等腰三角形中的分类讨论:(1)当顶角和底角不确定时,需要分类讨论,且需要用三角形内角和定理检验;(2)当腰长和底边长不确定时,需要分类讨论,且需要用三角形三边关系检验.考点2 等边三角形的性质与判定性质(1)等边三角形的三条边相等,即AB=BC=AC;(2)等边三角形的三个内角相等且每一个角都等于④,即∠B=∠C=∠BAC=60°;(3)等边三角形是轴对称图形,有⑤条对称轴;(4)等边三角形“三线合一”;(5)等边三角形的内心、外心重合判定(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是⑥的等腰三角形是等边三角形周长、面积周长:C=3a;面积:S=12ah=34a2(h=32a)(其中a是边长,h是任一边上的高)考点3 直角三角形的性质与判定性质(1)两锐角之和等于90°,即∠A+∠B=90°;(2)斜边上的中线等于斜边的⑦;(3)30°角所对的直角边等于斜边的⑧;(4)勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么⑨;【拓展】在直角三角形中,如果一条直角边长等于斜边长的一半,那么这条直角边所对的锐角等于⑩;外接圆半径R=c2,内切圆半径r=12(a+b-c)判定(1)有一个角为⑪的三角形是直角三角形;(2)有两个角互余的三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a,b,c满足⑫,那么这个三角形是直角三角形;【拓展】一条边上的中线等于这条边的一半的三角形是直角三角形周长、面积周长:C=a+b+c;面积:S△ABC=12ab=12ch(其中a,b分别为两个直角边长,c为斜边长,h为斜边上的高)考点4 等腰直角三角形的性质与判定性质(1)两直角边相等,即AC=BC;(2)两锐角相等且都等于45°;(3)是轴对称图形,有一条对称轴,即CD所在的直线;(4)“三线合一”判定(1)顶角为⑬的等腰三角形是等腰直角三角形;(2)有两个角为⑭的三角形是等腰直角三角形;(3)有一个角为⑮的直角三角形是等腰直角三角形;(4)两直角边相等的直角三角形是等腰直角三角形周长、面积 周长:C =2a +c ;面积:S =12a 2=12ch =22ah (其中a 为直角边长,c 为斜边长,h 为斜边上的高)强 化 演 练基础练1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,过点C 作 CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F .若DF 的长为23,则AE 的长为( )A .2B .2C .5D .2 52.已知a ,b 是等腰三角形的两边长,且a ,b 满足2a -3b +5+(2a +3b -13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或83.如图,在等腰三角形ABC 中,AB =AC =5,BC =8,AD ⊥AC 交BC 于点D ,则AD 的值为( )A .125B .154C .5D .2034.如图,AD 是等边三角形ABC 的中线,AE =AD ,则∠EDC 的度数为( )A .30°B .20°C .25°D .15°5.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10 m ,AD 为支柱(即底边BC 上的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于( )A .10 mB .5 mC .2.5 mD .9.5 m6.如图,在△ABC 中,AB =BC ,由图中的尺规作图痕迹得到的射线BD 与AC 交于点E ,点F 为BC 的中点,连接EF .若BE =AC =2,则△CEF 的周长为( )A .3+1B .5+3C .5+1D .47.如图,在4×4的正方形网格中有两个格点A ,B ,连接AB ,在网格中再找一个格点C , 使得△ABC 是等腰直角三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .58.如图,在△ABC 中AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 作AH ⊥BC 于点H ,交DE 于点F .若∠C =40°,则∠AFE 的度数为( )A .60°B .65°C .75°D .80°9.如图,在△ABC 中,点O 是角平分线AD ,BE 的交点.若AB =AC =10,BC =12,则tan ∠OBD 的值是( )A .12B .2C .63D .6410.如图,在Rt △ABC 中,CD 为斜边AB 上的中线.若CD =2,则AB = .11.如图,在△ABC 中,AB =AC =2,P 是BC 上任意一点,PE ⊥AB 于点E ,PF ⊥AC 于点F .若S △ABC =1,则PE +PF = .12.如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=.13.如图,EA=EB=EC,∠AEB=70°,则∠ACB=°.14.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于点D,E为垂足,连接CD.若BD=1,则AC的长是 .15.如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C =45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.16.如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至点E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.强化练17.如图,在等边三角形ABC中,AB=10,E为AC的中点,点F,G为AB边上的动点,且FG=5,则EF+CG的最小值是()A.57 B.5 6 C.53+5 D.1518.如图,在△ABC中,AD和BE是高,∠ABE=45°,F是AB的中点,AD与FE,BE分别交于点G,H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC·AD=2AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2个C.3个D.4个提升练19.七巧板是大家熟悉的一种益智类玩具,用七巧板能拼出许多有趣的图案.小聪同学将一个直角边长为20 cm的等腰直角三角形纸板,切割七块,正好制成一副七巧板,则图中阴影部分的面积为cm2.20.如图,在△ABC中,AB=AC=6,∠BAC=120°,P是BC上的动点,Q是AC上的动点(Q不与A,C重合).(1)线段P A的最小值为;(2)当△ABP 为直角三角形,△PCQ 也为直角三角形时,CQ 的长度为 .参 考 答 案考点清单①两角 ②两角 ③12ah ④60° ⑤三 ⑥60° ⑦一半 ⑧一半 ⑨a 2+b 2=c 2 ⑩30° ⑪90° ⑫a 2+b 2=c 2 ⑬90° ⑭45° ⑮45°强化演练1. C2. D3. B4. D5. B6. C7. B8. C9. A 10. 4 11. 1 12. 54° 13. 35 14. 2 3 15. (1)证明:∵BD 平分∠ABC ,∠ABC =60°,∴∠DBC =12∠ABC =30°. ∵∠C =45°,∴∠ADB =∠DBC +∠C =75°,∠BAC =180°-∠ABC -∠C =75°,∴∠BAC =∠ADB ,∴AB =BD .(2)解:在Rt △ABE 中,∵∠ABC =60°,AE =3,∴BE =AE tan ∠ABC = 3. 在Rt △AEC 中,∵∠C =45°,AE =3,∴EC =AE tan C =3,∴BC =3+3,∴S △ABC =12BC ·AE =9+332.16. (1)证明:在△ADB 和△ADC 中,⎩⎪⎨⎪⎧AD =AD ,∠ADB =∠ADC ,BD =CD ,∴△ADB ≌△ADC (SAS),∴∠B =∠ACB .(2)解:在Rt △ADB 中,∵AB =5,AD =4,∴BD =AB 2-AD 2=52-42=3,∴BD =CD =3,AC =AB =CE =5,∴BE =2BD +CE =2×3+5=11,DE =CD +CE =8. 在Rt △ADE 中,由勾股定理,得AE =AD 2+DE 2=42+82=45,∴C △ABE =AB +BE +AE =5+11+45=16+45,S △ABE =12BE ·AD =12×11×4=22.17. A 18. D 19.25420. (1)3 (2)4.5或4或3。
2013年中考数学专题复习第十八讲等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【名师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【名师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【名师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【名师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【名师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例1(2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.对应训练1.(2012•广安)已知等腰△ABC中,AD⊥BC于点D,且AD=12△BC,则ABC底角的度数为()A.45°B.75°C.45°或75°D.60°考点二:线段垂直平分线例2(2012•毕节地区)如图.在△Rt ABC中,∠A=30°,DE垂直平分斜边AC,交AB 于D,E是垂足,连接CD,若BD=1,则AC的长是()A.23B.2C.43D.4思路分析:求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出对应训练2.(2012•贵阳)如图,在△Rt ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3B.2C.3D.1考点三:等边三角形的判定与性质例3(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.对应训练3.(2012•湘潭)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.考点四:角的平分线例4(2012•梅州)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=.对应训练4.(2012•常德)如图,在△Rt ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D 到AB边的距离是.8考点五:勾股定理例 5 (2012•黔西南州)如图,在△ABC 中,∠ACB=90°,D 是 BC 的中点,DE ⊥BC , CE ∥AD ,若 AC=2,CE=4,则四边形 ACEB 的周长为 .对应训练5. (2012•新疆)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积 S 1=25 π,S 2=2π,则 S 3 是.【备考真题过关】 一、选择题1.(2012•肇庆)等腰三角形两边长分别为 4 和 8,则这个等腰三角形的周长为( )A .16B .18C .20D .16 或 202.(2012•攀枝花)已知实数 x ,y 满足|x-4|+ y 8 =0,则以 x ,y 的值为两边长的等腰三角形的周长是( ) A .20 或 16 B .20 C .16 D .以上答案均不对 3.(2012•江西)等腰三角形的顶角为 80°,则它的底角是( ) A .20° B .50° C .60° D .80°4.(2012•三明)如图,在平面直角坐标系中,点 A 在第一象限,点 P 在 x 轴上,若以 P , O ,A 为顶点的三角形是等腰三角形,则满足条件的点 P 共有( ) A .2 个 B .3 个 C .4 个 D .5 个5.(2012•本溪)如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接△AE,则ACE的周长为()A.16B.15C.14D.13 6.(2012•荆门)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2B.23C.3D.37.(2012•黔东南州)如图,矩形A BCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.(5-1,0)C.(10-1,0)D.(5,0)1.(2012铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()(A .6B .7C .8D .92.(2012 佳木斯)如图,△ ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交 BC 于点 D , 点 E 为 AC 的中点,连接 DE △,则 CDE 的周长为()A .20B .12C .14D .13二、填空题8.(2012•随州)等腰三角形的周长为 16,其一边长为 6,则另两边为 . 9. 2012•泉州)如图,在△ABC 中,AB=AC ,BC=6,AD ⊥BC 于 D ,则 BD=. 10.(2012•钦州)已知等腰三角形的顶角为 80°,那么它的一个底角为 . 11.(2012•黑龙江)等腰三角形一腰长为 5,一边上的高为 4,则底边长 . 12.(2012•贵阳)如图,在△ABA 1 中,∠B=20°,AB=A 1B ,在 A 1B 上取一点 C ,延长 AA 1 到 A 2,使得 A 1A 2=A 1C ;在 A 2C 上取一点 D ,延长 A 1A 2 到 A 3,使得 A 2A 3=A 2D ;…,按此 做法进行下去,∠A n 的度数 .13.(2012•海南)如图,在△ABC 中,∠B 与∠C 的平分线交于点 O ,过点 O 作 DE ∥BC , 分别交 AB 、AC 于点 D 、E .若 AB=5,AC=4,则△ADE 的周长是 .14.(2012•黄冈) 如图,在△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线交 AC 于点 E ,垂足为点 D ,连接 BE ,则∠EBC 的度数为 .15.(2012•黔东南州)用 6 根相同长度的木棒在空间中最多可搭成 个正三角形.(16.(2012•泰州)如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是.17.2012•佳木斯)等腰三角形一腰长为5,一边上的高为3,则底边长为.4.(2012•鸡西)△Rt ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A、B的一点,且∠ACP=30°,则PB的长为4或或.5.(2012•无锡)如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD 沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于3cm.6.(2012•朝阳)下列说法中正确的序号有①②③④.①在△Rt ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;②八边形的内角和度数约为1080°;③2、3、4、3这组数据的方差为0.5;④分式方程的解为x=;⑤已知菱形的一个内角为60°,一条对角线为2,则另一条对角线长为2.三、解答题18.(2012•益阳)如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.19.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点△F,判断ADF的形状.(只写结果)( B20.(2012•常州)如图,在四边形 ABCD 中,AD ∥BC ,对角线 AC 的中点为 O ,过点 O 作 AC 的垂线分别与 AD 、BC 相交于点 E 、F ,连接 AF .求证:AE=AF .7. 2012•淮安)如图,△ ABC 中,∠C=90°,点 D 在 AC 上,已知∠BDC=45°,BD=10AB=20.求∠A 的度数.,21.(2012•南京)如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与 A 、B 重 合)、我们称∠APB 是⊙O 上关于点 A 、B 的滑动角. (1)已知∠APB 是⊙O 上关于点 A 、B 的滑动角, ①若 AB 是⊙O 的直径,则∠APB= °;②若⊙O 的半径是 1,AB=2 ,求∠APB 的度数;(2)已知 O 2 是⊙O 1 外一点,以 O 2 为圆心作一个圆与⊙O 1 相交于 A 、 两点,∠APB 是⊙O 1 上关于点 A 、B 的滑动角,直线 PA 、PB 分别交⊙O 2 于 M 、N (点 M 与点 A 、点 N 与点 B 均不重合),连接 AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.1.(2012•河池)如图,在 10×10 的正方形网格中,△ ABC 的顶点和线段 EF 的端点都在边 长为 1 的小正方形的顶点上.(,(1)填空:tanA=,AC=2(结果保留根号);(2)请你在图中找出一点D(仅一个点即可),连接DE、DF,使以D、E、F为顶点的三角形与△ABC全等,并加以证明.2.(2012•鄂州)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.3.2012•北京)如图,在四边形ABCD中,对角线AC BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.。
中考数学专题复习第十八讲等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【名师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【名师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【名师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【名师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【名师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长解:(1)当AB=AC时,对应训练考点二:线段垂直平分线例2 (2012•毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB 于D,E是垂足,连接CD,若BD=1,则AC的长是()A.B.2 C.D.4点评:本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.对应训练2.(2012•贵阳)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.D.12.B分析:连接AF,求出AF=BF,求出∠AFD、∠B,得出∠BAC=30°,求出AE,求出∠FAC=∠AFE=30°,推出AE=EF,代入求出即可.解答:解:连接AF,∵DF是AB的垂直平分线,∴AF=BF,∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°-30°=60°,∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°-30°=30°,∵DE=1,∴AE=2DE=2,∵∠FAE=∠AFD=30°,∴EF=AE=2,故选B.点评:本题考查了含30度角的直角三角形,线段垂直平分线,角平分线的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强考点三:等边三角形的判定与性质例3 (2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向22对应训练考点四:角的平分线例4 (2012•梅州)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF= .思路分析:作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.解答:解:如图,作EG⊥OA于F,∵EF∥OB,∴∠OEF=∠COE=15°,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∵EG=CE=1,∴EF=2×1=2.故答案为2.点评:本题考查了角平分线的性质和含30°角的直角三角形,综合性较强,是一道好题.对应训练4.(2012•常德)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D 到AB边的距离是.4.2分析:过D作DE⊥AB于E,得出DE的长度是D到AB边的距离,根据角平分线性质求出CD=ED,代入求出即可.解答:解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=2(角平分线性质),故答案为:2.点评:本题考查了对角平分线性质的应用,关键是作辅助线DE,本题比较典型,难度适中.考点五:勾股定理【聚焦山东中考】1.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.81.C专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD-AE=4-x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4-x)2,解得x=2.5,即CE的长为2.5.故选C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.2.(2012•济宁)如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()∵点A在x轴的负半轴上,∴点A的横坐标介于-4和-3之间.故选A.点评:本题考查的是勾股定理及估算无理数的大小,根据题意利用勾股定理求出OP的长是解答此题的关键.【备考真题过关】一、选择题1.(2012•肇庆)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或201.C分析:由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.解答:解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.点评:本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.A.20或16 B.20C.16 D.以上答案均不对2.B分析:根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.解答:解:根据题意得4088xy-=⎧⎨-=⎩,解得48xy=⎧⎨=⎩,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.点评:本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.3.(2012•江西)等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°3.B分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°-80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.(2012•三明)如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个4.C分析:分为三种情况:①OA=OP,②AP=OP,③OA=OA,分别画出即可.解答:解:以O为圆心,以OA为比较画弧交x轴于点P和P′,此时三角形是等腰三角形,即2个;以A为圆心,以OA为比较画弧交x轴于点P″(O除外),此时三角形是等腰三角形,即1个;作OA的垂直平分线交x轴于一点P1,此时三角形是等腰三角形,即1个;2+1+1=4,故选C.点评:本题考查了等腰三角形的判定和坐标于图形性质,主要考查学生的动手操作能力和理解能力,注意不要漏解啊.5.(2012•本溪)如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为()A.16 B.15 C.14 D.135.分析:首先连接AE,由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,又由DE是AB边的垂直平分线,根据线段垂直平分线的性质,即可得AE=BE,继而可得△ACE的周长为:BC+AC.A.2 B.C.D.3A.(2,0) B1,0)C1,0)D0)1.(2012•铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()2.(2012•佳木斯)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()BC=4AC=5二、填空题8.(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为.8.6和4或5和5分析:此题分为两种情况:6是等腰三角形的腰或6是等腰三角形的底边.然后进一步根据三角形的三边关系进行分析能否构成三角形.解答:解:当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理,故该等腰三角形的另两边为6和4或5和5.故答案为:6和4或5和5.点评:本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.点评:本题考查的是等边三角形的性质,解答此题时要注意题中是求空间图形而不是平面图形.16.(2012•泰州)如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是.16.4分析:过点D作DE⊥AB于点E,然后根据角平分线上的点到角的两边距离相等可得DE=CD,即可得解.解答:解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.点评:本题考查了角平分线上的点到角的两边距离相等的性质,作出图形并熟记性质是解题的关键.4.(2012•鸡西)Rt△ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A、B的一点,且∠ACP=30°,则PB的长为4或或.cosB=PB==BC=2,PB=2﹣2BP=或5.(2012•无锡)如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD 沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于3cm.AD=BD=CD=AD=BD=CD==,即=6.(2012•朝阳)下列说法中正确的序号有①②③④.①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;②八边形的内角和度数约为1080°;③2、3、4、3这组数据的方差为0.5;④分式方程的解为x=;⑤已知菱形的一个内角为60°,一条对角线为2,则另一条对角线长为2.∵平均数是(∴方差是=x=x==AB BO=时,AO=三、解答题18.(2012•益阳)如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.18.分析:根据角平分线的定义可得∠1=∠2,再根据两直线平行,同位角相等可得∠1=∠B,两直线平行,内错角相等可得∠2=∠C,从而得到∠B=∠C,然后根据等角对等边即可得证.解答:证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.点评:本题考查了等腰三角形的判定,平行线的性质,是基础题,熟记性质是解题的关键.19.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线..∵EF 是线段AC 的垂直平分线, ∴AE=CE ,OA=OC , ∵AE ∥BC ,∴∠ACB=∠DAC , 在△AOE ≌△COF 中,∵ACB DAC OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF , ∴AE=CF ,∴四边形AFCE 是平行四边形, ∵AE=CE ,∴四边形AFCE 是菱形, ∴AE=AF .点评:本题考查的是线段垂直平分线的性质及菱形的判定定理,根据题意作出辅助线,构造出平行四边形是解答此题的关键. 7.(2012•淮安)如图,△ABC 中,∠C=90°,点D 在AC 上,已知∠BDC=45°,BD=10,AB=20.求∠A 的度数.BD=10BDC=10×A==,(2)根据点P在⊙O1上的位置分为以下四种情况.第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图①∵∠MAN=∠APB+∠ANB,∴∠APB=∠MAN-∠ANB;第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图②.∵∠MAN=∠APB+∠ANP=∠APB+(180°-∠ANB),∴∠APB=∠MAN+∠ANB-180°;第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图③.∵∠APB+∠ANB+∠MAN=180°,∴∠APB=180°-∠MAN-∠ANB,第四种情况:点P在⊙O2内,如图④,∠APB=∠MAN+∠ANB.点评:综合考查了圆周角定理,勾股定理的逆定理,点与圆的位置关系,本题难度较大,注意分类思想的运用.1.(2012•河池)如图,在10×10的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.(1)填空:tanA=,AC=2(结果保留根号);(2)请你在图中找出一点D(仅一个点即可),连接DE、DF,使以D、E、F为顶点的三角形与△ABC全等,并加以证明.=2,=;=2=2,;22.(2012•鄂州)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.=8DF=4,MD=FM=BM=4.3.(2012•北京)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.,BE=2AC=2+1+=3+)×3+=。