最新人教版小学六年级数学下册《反比例》导学案
- 格式:doc
- 大小:510.00 KB
- 文档页数:3
人教版数学六年级下册用比例解决问题导学案推荐3篇〖人教版数学六年级下册用比例解决问题导学案第【1】篇〗教学目标1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。
进一步培养学生观察、学析、综合和概括等能力。
初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学过程一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。
下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新(出示:十二个小方块)师:同学们,这十二个小方块有几种排法?(生答后,老师板书下表的排列过程)每行个数 1 2 3 4 6 12行数 12 6 4 3 2 1师:请你观察上表中每行个数与行数成正比例关系吗?为什么?生:……师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)三、合作自学探知1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?B、怎样随着每小时加工的数量变化C、每两个相对应的数的乘积各是多少学生讨论……生反馈:……师:能不能举出三个例子生:10×20=600 20×30=600 30×20=600……师:这里的600是什么数量你能说出这里的数量关系式吗生: ……[板书出示: 每小时加工数×加工时间=零件总数(一定)]2、自学例5:(1)出示例5:师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?生: ……师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)生: ……3、讨论准备题:(1)请你根据例4的方法,四人小组内说一说。
《反比例函数》导学案一、知识要点1. 反比例定义:一般地,形如 函数,叫做反比例函数,其 x 是自变量,y 是函数自变量x 的取值范围是不等于0的一切实数。
2. 反比例函数的三种表达形式:① ② ③3. 利用待定系数法求反比例函数解析式。
4. 建立反比例函数模型解决实际问题。
二、同步练习1.在函数y =x 2,y =-4x ,y =23x ,y =2x -7,y =4x 2中,y 是x 的反比例函数的有( )A .1个B .2个C .3个D .4个2.若函数y =(m +1)xm 2+3m +1是反比例函数,则m 的值为( ) A .m =-2 B .m =1 C .m =2或1 D .m =-2或-1 3.下列说法正确的是( )A .在圆的面积公式S =πr 2中,S 与r 成正比例关系.B .在三角形的面积公式S =12ah 中,当S 是常量时,a 与h 成反比例关系.C .y =1x +1中,y 与x 成反比例关系.D .y =x -12中,y 与x 成反比例关系.4. 已知一个函数满足下表(x 为自变量):则这个函数的解析式为( ) A .y =9x B .y =-9x C .y =x 9 D .y =-x95.(1)若xm y 1-=是反比例函数,则m 的取值范围是 (2)若()xm m y 2+=是反比例函数,则m 的取值范围是6.已知函数y =(5m -3)x 2-n +(n +m).(1)当m ,n 为何值时,该函数是一次函数? (2)当m ,n 为何值时,该函数是正比例函数? (3)当m ,n 为何值时,该函数是反比例函数? 7.已知y 是x 的反比例函数,并且当x=2时,y=6.(1)写出y 关于x 的函数解析式; (2)当x=4时,求y 的值. 变式1:已知y 与x+1成反比例,并且当x=3时,y=4.(1)写出y 关于x 的函数解析式; (2)当x=7时,求y 的值.变式2:在物理学中,由欧姆定律知,电压U 不变时,电流I 与电阻R 成反比例,已知电压U 不变,当电阻R =20Ω时,电流I 为0.25A.(1)求I 关于R 的函数表达式; (2)当R =12.5Ω时,求I.。
第3课时反比例原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!师者,所以传道,授业,解惑也。
韩愈教学内容教材第47~48页例2。
教学目标知识与技能通过感知生活中的事例,理解并掌握反比例的意义,能够正确判断两种相关联的量是不是成反比例的量。
过程与方法经历探索成反比例关系的两种量的变化规律的过程,体验观察、比较和归纳的能力和学习方法的迁移能力。
情感态度与价值观通过一系列富有探究性的问题,渗透与他人交流、合作的意识,培养探究精神。
重点、难点重点理解反比例的意义。
难点会判断两种相关联的量是不是成反比例的量。
教法与学法教法创设情境,质疑引导。
学法小组合作探究。
教学准备多媒体课件。
课时安排1课时教学环节导案学案达标检测一、引入新课。
1.说一说什么是成正比例的量。
2.判断下面各题中的两种量是否成正比例。
(投影展示,指名回答)(1)三角形的高一定,面积和底。
(2)总钱数一定,花的钱数和剩余的钱数。
(3)圆的周长和半径。
这节课我们一起来学习另一种常见的数量关系——成反比例的量。
(板书课题:反比例)1.学生回顾成正比例的量的意义。
2.学生完成复习练习。
1.同学们做广播操,每行站的人数与站的行数的关系如下表。
每行站的人数与站的行数是否成反比例关系?为什么?答案:成反比例关系。
因为每行站的人数与站的行数是两种相关联的量,每行站的人数随站的行数的变化而变化,且两者对应的数的积一定。
2.判断下面各题中的两种量是否成反比例。
(1)汽车的速度一定,行驶的路程和时间。
(2)住房面积一二、自主探索,体验新知。
1. (1)课件出示教材第47页例2情境图和统计表。
说一说,从中你获得哪些信息。
(2)观察表中数据,组织学生研讨:①表中有几种量?它们是相关联的量吗?②水的高度是怎样着杯子的底面积的变化而变化的?③水的高度和杯子的底面积的变化有什么规律?④这个积表示什么?2.明确成反比例的量及反比例关系的意义。
(1)引导学生明确:因为水的体积一定,所以水的高度随着杯子的底面积的变1.(1)杯子的底面积是10cm2时,水的高度是30cm;杯子的底面积是15cm2时,水的高度是20cm……(2)①表中有杯子的底面积和水的高度这两种量。
人教版数学六年级下册反比例导学案(推荐3篇)人教版数学六年级下册反比例导学案【第1篇】一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。
因此反比例函数的概念与意义的教学是基础。
二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式.难点:反比例函数表达式的确立.五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。
此时y就不是反比例函数了。
举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
人教版数学六年级下册反比例导学案(精推3篇)〖人教版数学六年级下册反比例导学案第【1】篇〗教学重点:理解和领会反比例函数的概念.教学难点:领悟反比例的概念.教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生:①能否积极主动地合作交流.②能否用语言说明两个变量间的关系.③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n 是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数.二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.师生行为学生先独立思考,在进行全班交流.教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念.分析及解答:(1);(2);(3)概念:如果两个变量x,y之间的关系可以表示成的`形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.活动3做一做:一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:①生能否理解反比例函数的意义,理解反比例函数的概念;②学生能否顺利抽象反比例函数的模型;③学生能否积极主动地合作、交流;活动4问题1:下列哪个等式中的y是x的反比例函数?问题2:已知y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值.师生行为:学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:①学生能否领会反比例函数的意义,理解反比例函数的概念;②学生能否积极主动地参与小组活动.分析及解答:1.只有xy=123是反比例函数.2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.解:(1)设,因为x=2时,y=6,所以有解得k=12三、巩固提高活动51.已知y是x的反比例函数,并且当x=3时,y=?8.(1)写出y与x之间的函数关系式.(2)求y=2时x的值.2.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.〖人教版数学六年级下册反比例导学案第【2】篇〗教学内容:教材第66~67页的实践活动“大树有多高”。
第4单元第6课时反比例(导学案)2023-2024学年六年级数学下册同步备课(人教版)一、教学目标1. 理解反比例的概念,掌握反比例的基本性质。
2. 学会判断两个相关联的量之间成什么比例,是比值一定还是乘积一定。
3. 能根据反比例的意义,解决相关的实际问题。
二、教学重点1. 理解反比例的概念,掌握反比例的基本性质。
2. 学会判断两个相关联的量之间成什么比例,是比值一定还是乘积一定。
三、教学难点1. 理解反比例的概念,掌握反比例的基本性质。
2. 学会判断两个相关联的量之间成什么比例,是比值一定还是乘积一定。
四、教学过程1. 导入:回顾正比例的意义,引导学生思考,如果两个相关联的量之间不是比值一定,而是乘积一定,那么这样的量之间是什么关系?2. 新课:讲解反比例的概念,引导学生理解反比例的意义。
通过实例,让学生掌握反比例的基本性质。
3. 活动一:让学生举例说明反比例在实际生活中的应用,加深对反比例的理解。
4. 活动二:让学生判断两个相关联的量之间成什么比例,是比值一定还是乘积一定,并说明理由。
5. 练习:让学生独立完成练习题,巩固所学知识。
6. 课堂小结:总结本节课所学内容,强调反比例的意义和判断两个相关联的量之间成什么比例的方法。
五、作业布置1. 完成课后练习题。
2. 预习下一节课内容。
六、教学反思1. 教师要关注学生在学习过程中的困难,及时给予指导和帮助。
2. 在讲解反比例的概念时,要注意与正比例的区别和联系,帮助学生建立完整的比例观念。
3. 在课堂活动中,要鼓励学生积极参与,培养学生的合作意识和解决问题的能力。
注:本导学案适用于2023-2024学年六年级数学下册同步备课(人教版),教学内容仅供参考。
重点关注的细节是“教学过程”部分,尤其是“活动一”和“活动二”。
这两个环节是学生理解和应用反比例知识的关键步骤,需要教师精心设计和引导。
以下是对这两个重点细节的详细补充和说明:活动一:实例探究与应用在活动一中,教师应设计一系列实例,引导学生观察和思考反比例在现实生活中的应用。
最新人教版小学数学六年级下册《反比例》优秀导学案最新人教版小学数学六年级下册《反比例》优秀导学案导学案设计课题反比例课型新授课设计说明本节课的教学内容是“反比例”。
鉴于正比例与反比例在研究意义的时候存在一定的共性,且正比例和反比例是学生今后学习函数的重要基础,根据本节课的教学内容和特点,特做如下设计:1.重视知识间的内在联系。
数学是一门逻辑性很强、前后知识联系很紧密的学科,联系旧知识学习新知识是学习数学的重要方法,因此,我们在教学中要善于把握新旧知识间的联系,让学生在已有知识的基础上学习新知识,降低学生学习的难度,激发学生学好数学的自信心。
正比例和反比例是刻画变量之间关系的两个重要模型,它们的概念虽不相同,但在知识上有内在的联系,因此在对比中学习反比例更有利于学生对反比例意义的理解。
2.重视学生思维能力的培养。
爱因斯坦认为,所谓教育受益,应是在学校知识全部忘光后,仍能留下的那部分东西——思维能力。
教学中,通过不断提问引导学生积极思考,使学生在回答问题的过程中思维逐渐活跃,思维能力得到培养。
通过让学生独立思考、填写数据等方式,使学生初步了解两种相关联的量之间的对应关系。
3.重视学生合作能力的培养。
知识建构论认为:人的知识结构的形成离不开个人主体的活动,也离不开主体交往。
为此,教学中,通过引导学生共同探讨成反比例关系的两种量的变化规律,使学生在合作交流中得到启示,充分体会反比例的规律,理解反比例的意义。
课前准备教师准备PPT课件学生准备玻璃杯直尺水实验记录单教学过程教学环节教师指导学生活动效果检测一、复习铺垫。
(5分钟)引导学生思考:下面两种量是否成正比例?为什么?(1)数量一定,单价和总价。
(2)总钱数一定,花的钱数和剩下的钱数。
回答教师提出的问题。
(1)成正比例。
符合成正比例关系的条件。
(2)不成正比例。
虽然花的钱数与剩下的钱数是两种相关联的量,且一种量变化,另一种量也随着变化,但它们是和一定,而不是比值一定,所以不成正比例。
人教版数学六年级下册反比例优秀教案(优选3篇)〖人教版数学六年级下册反比例优秀教案第【1】篇〗教学内容:教科书第58页的例2,“练一练”和练习十的第4、5题。
教学目标:1.能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2.使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3.使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
教学重点:能认识正比例关系的图像。
教学难点:利用正比例关系的图像解决实际问题。
教学资源:课件、直尺、铅笔、橡皮教学过程:一、复习激趣1.判断下面两种量能否成正比例,并说明理由。
数量一定,总价和单价和一定,一个加数和另一个加数比值一定,比的前项和后项2.折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?今天我们就来探究这些问题。
二、互动新授1.认识正比例图像。
(1)出示教材第58页例2的方格图。
提问:表中的横轴表示什么?纵轴表示什么?每格表示多少千米?(2)出示例1的表格。
教师引导学生画图。
①指导学生描点。
让学生在图中找一找“1小时行80千米”的这个点,并请学生上黑板指一指。
引导:表示1小时的竖线与表示80千米的横线相交的点,就表示“1小时行80千米”。
让学生在方格纸中找一找代表其它几组数据的点,并指名板演。
②连线。
让学生连接图中各点,说说有什么发现。
根据学生的回答小结:我们发现图中所描的点都在同一条直线上。
这条直线就是正比例的图像。
从直线上的每个点中,我们既能知道汽车行驶的时间,又能知道行驶的路程。
这两个量紧密联系,对应的时间和路程用同一个点,点不同,时间和路程也都发生变化,但是它们的比值却是不变的,所以我们就说它是正比例图像。
2.正比例图像的应用。
问题一:根据图像判断,这辆汽车2.5小时行驶多少千米?小组讨论交流方法。
人教版数学六年级下册反比例导学案(推荐3篇)人教版数学六年级下册反比例导学案【第1篇】教学目标1、知识与技能目标:通过对反函数的学习,在具体情境中感受反函数的解决实际问题,与生活息息相关,加深对函数概念的理解。
2、过程与方法目标:通过带领学生解决实际问题,体验反函数的学习过程,并且能够运用反函数解决实际问题。
3、情感、态度与价值观目标:在整个教学过程中照顾到全体学生,创造平等的教学氛围和环境。
教学重点理解反函数的概念,体验学习反函数概念的过程。
教学难点理解反函数的概念,会运用反函数去解决实际问题。
教学准备:多媒体课件教学过程一、导入活动内容:教师提出问题,引导学生复习函数及一元一次函数的相关知识。
问题1:上次课我们学习了函数,那么有谁知道一次函数和正比例函数表达式么?师:同学们能用语言和字母分别表示一次函数和正比例函数:生:一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.师:如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,如果速度是恒定的,我们关心的是花费的时间,那么时间是如何去求的呢?生:师:那么这里的t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?二、新授活动内容:师:同学们可以根据以下三个具体的问题列出表达式吗?京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t 单位:h)的变化而变化;某住宅小区要种植一个面积为1000的矩形草坪,草坪的长y( 单位:m)随宽度x 单位:m)的变化而变化;已知北京市的总面积为平方千米,人均占有的土地面积S(单位:平方千米/人)随全市总人口n 单位:人)的变化而变化。
生: 1) 2) 3)师:同学们你们还记得函数的定义吗?一起回顾下。
人教版数学六年级下册反比例教案模板(优选3篇)〖人教版数学六年级下册反比例教案模板第【1】篇〗一、知识与技能1.能灵活列反比例函数表达式解决一些实际问题.2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.二、过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.三、情感态度与价值观1.积极参与交流,并积极发表意见.2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.教学重点:掌握从实际问题中建构反比例函数模型.教学难点:从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.教具准备1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等).2.学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料.教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y 随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系.而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题.师生行为:先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动.在此活动中,教师有重点关注:①能否从实际问题中抽象出函数模型;②能否利用函数模型解释实际问题中的现象;③能否积极主动的阐述自己的见解.生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=所以储存室的底面积S是其深度d的反比例函数.104 生:根据函数S= ,我们知道给出一个d的值就有唯一的S 的值和它相d对应,反过来,知道S的一个值,也可求出d的值.题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104 ,得500=,解得d=20. dd即施工队施工时应该向下挖进20米.生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?104 根据S=,把d=15代入此式子,得 dS=104 ≈666.67. 15104. d当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要. 师:大家完成的很好.当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,三、巩固练习1、(基础题)已知某矩形的面积为20cm2:(1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少?2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?设计意图:让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望.师生行为:由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题.生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米.13000 所以,S·d=1000, S= . 3d(2)根据题意把S=100cm2代入S=30003000中,得100= .d=30(cm). dd所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.(1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?(2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?四、小结1、通过本节课的学习,你有哪些收获?列实际问题的反比例函数解析式(1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;(2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。
第4单元比例
第6课时反比例
【学习目标】
1. 理解反比例的意义,体会两个相关联的量成反比例关系的条件,掌握反比例关系式。
2.能正确判断两种相关联的量是否成反比例。
【学习过程】
一、知识铺垫
下面两种量是否成正比例?为什么?
(1)数量一定,单价和总价。
(2)总钱数一定,花的钱数和剩下的钱数。
二、自主探究
1.学习例2:
观察表中的数据,思考如下问题:
(1)表中有哪两种量?这两种量是相关联的量吗?为什么?
(2)水的高度是否随着杯子的底面积的变化而变化?是怎么变化的?
(3)求出相对应的杯子的底面积与水的高度的乘积分别是多少。
2.想一想:例1与例2有什么不同?
3.尝试表达反比例关系:
两种相关联的量,一种量变化,另一种量(),如果这两种量中相对应的两个数的()一定,这两种量就叫做成反比例的量,它们的关系叫做()关系。
4.用字母表示反比例关系:
三、课堂达标
1.课本p51页第8题。
2.课本p51页第10题。
3.判断下面两种量是否成正比例、反比例或不成比例。
(1)烧煤的天数一定,每天的烧煤量和煤的总量。
()(2)修路的总米数一定,修好了的米数和剩下的米数。
()(3)排印一本书,每页的字数和页数。
()(4)图上距离一定,实际距离和比例尺。
()(5)长方形的周长一定,它的长和宽。
()拓展提升:
4.根据关系式填空:
工作总量除以工作效率等于工作时间
如果()一定,()和()成反比例。
如果()一定,()和()成反比例。
后序:
亲爱的朋友,你好!很高兴和你再次相遇。
满足您的需求,能够帮到你是我最大的快乐。
愿在知识的海洋里,你我携手共同进步。
请您阅读此文章后,对该文档进行点赞或留言。
文档如有不妥或需改进的地方,请您告诉我,我将尽快更新或完善,以便更好的提高文档质量,为您服务。
在此我深表感谢!
孔子曰,三人行必有我师焉,尺有所长,寸有所短。
你的宝贵意见,是我前进的方向。
其目的是文档能给您提供一份参考,哪怕只是一点点,我也倍感欣慰。
人生就像一场旅行,愿你我相伴。
共同欣赏沿途的风景,走向美好的未来。