Realtime PCR检测原理和问题处理
- 格式:ppt
- 大小:4.36 MB
- 文档页数:57
real-time rt-pcr的原理
实时反转录聚合酶链式反应(real-time RT-PCR)的原理基于实时荧光定量PCR技术,结合了逆转录(RT)和聚合酶链式反应(PCR)两个技术。
首先,通过逆转录将RNA转录成cDNA。
这个过程由逆转录酶和引物完成,
引物与目标RNA序列的特异性序列互补。
当引物与目标RNA序列结合时,逆转录酶开始参与反应,通过循环变化的温度条件,使RNA序列转录成互补的DNA(cDNA)。
然后,这个cDNA作为模板进行PCR扩增。
PCR反应体系中含有荧光探针和
引物,引物与cDNA的特异性序列互补。
当引物与cDNA序列结合时,通过循环变化的温度条件,使DNA片段扩增。
在PCR扩增过程中,荧光信号发生器被激活,荧光信号开始释放。
荧光信号的释放与DNA片段的扩增相关联,通过检测荧光信号的强度,可以实时监测DNA片段的扩增情况。
通过比较荧光信号的强度与标准曲线,可以确定初始样品中目标RNA的量。
总之,实时反转录聚合酶链式反应是一种高灵敏度、高特异性的RNA检测技术,广泛应用于基因表达分析、病毒检测和基因突变研究等领域。
Real Time PCR 检测方法原理■嵌合荧光染料检测法(SYBR Green I)SYBR® Green I是荧光定量PCR最常用的DNA结合染料,能与双链DNA非特异性结合,结合后发出荧光,可以通过检测反应体系中的SYBR® Green I 荧光强度,达到检测PCR产物扩增量的目的。
通过PCR反应生成双链DNA,SYBR® Green I与双链DNA结合发出荧光,通过检测荧光不但可以检测反应体系中的DNA扩增量,同时还能测定扩增产物的DNA融解温度。
具体原理见下图。
嵌合荧光染料法原理图■双标记荧光探针法双标记荧光探针法是使用5’端带有荧光物质(如:FAM等),3’端带有淬灭物质(如:TAMRA等)的双标记荧光探针进行荧光检测的方法。
当探针完整时,5’端的荧光物质受到3’端的淬灭物质的制约,不能发出荧光。
而当双标记荧光探针被分解后,5’端的荧光物质便会游离出来,发出荧光。
当PCR反应液中加入荧光探针后,在PCR反应的退火过程中,荧光探针便会和模板杂交。
进一步在PCR反应的延伸过程中,Taq DNA聚合酶的5’→3’Exonuclease活性可以分解与模板杂交的荧光探针,游离荧光物质发出荧光。
通过检测反应体系中的荧光强度,可以达到检测PCR产物扩增量的目的。
具体原理见下图。
双标记荧光探针法原理图■ CycleavePCR法原理CycleavePCR法是由RNA和DNA构成的杂合Cycling 探针与RNase H组合使用的高灵敏度检测方法,能够高效率地检出目的基因。
Cycling 探针内部夹有RNA部分,一端标记荧光物质,另一端标记淬灭物质,当探针处于完整状态时,由于荧光淬灭作用抑制荧光物质发出荧光,但当探针与扩增产物中的互补序列杂交后,RNase H在RNA部分将探针切断,淬灭抑制作用解除,荧光物质发出荧光,通过测定荧光强度,能够实时监测扩增产物量。
如果探针的RNA部分与模板不匹配,RNase H就不能在RNA部分将探针切断,所以该检出方法是一种即使一碱基不同也能识别的高特异性检出方法,特别适合于SNP解析。
实时定量PCR的原理及应用一、什么是实时定量PCR?实时定量聚合酶链反应(Real-time quantitative Polymerase Chain Reaction),简称实时定量PCR,是一种高度敏感且快速的核酸检测技术。
它不仅可以定性地检测目标核酸序列的存在与否,还可以精确测量目标序列的数量。
二、实时定量PCR的原理实时定量PCR利用DNA聚合酶的酶活性,在双链DNA模板上合成新的DNA 链。
该技术的原理是:首先,通过一个DNA引物与目标DNA序列特异性结合,并将DNA聚合酶带有荧光标记的探针与其结合。
然后,在每一轮的PCR循环中,DNA聚合酶将合成新的DNA链,并释放一个荧光信号。
这个荧光信号可以实时地被特定的检测设备及时检测到。
根据荧光信号的量,可以判断目标DNA序列的数量。
实时定量PCR主要包含以下步骤:1.DNA模板的制备:包括从生物样本中提取DNA,如细胞、组织或血液等;2.引物的设计:设计两个与目标DNA序列特异性结合的引物,确保引物的长度和温度适宜;3.反应体系的准备:准备PCR反应体系,包括引物、荧光标记的探针以及DNA聚合酶等;4.PCR循环条件的设定:确定PCR循环的温度和时间条件以实现合成新的DNA链;5.实时检测和数据分析:通过特定的实时定量PCR设备实时检测荧光信号,并根据标准曲线计算目标DNA序列的数量。
三、实时定量PCR的应用实时定量PCR在生物医学研究和临床诊断中具有广泛的应用。
以下是实时定量PCR常见的应用领域:1. 生物学研究实时定量PCR可以用于研究基因表达的变化,从而揭示生物体内基因调控的机制。
它可以定量测量不同组织或细胞中特定基因的表达水平,帮助科研人员了解基因在不同生理状态下的功能和调控网络。
2. 分子诊断实时定量PCR在疾病的分子诊断中扮演着重要角色。
通过对人体样本中特定基因的定量检测,可以帮助医生确定某些疾病的存在,并评估疾病的严重程度。
实时荧光定量pcr检测原理实时荧光定量PCR(Quantitative Real-time PCR)是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。
这种方法通过内参或者外参法对待测样品中的特定DNA序列进行定量分析。
Real-timePCR是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。
由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。
实时荧光定量PCR的基本原理是利用DNA聚合酶的5’-3’外切酶活性,在DNA合成过程中检测荧光信号的变化。
当DNA聚合酶与特定荧光染料标记的DNA引物结合时,荧光染料会被标记在引物的3’端。
在PCR反应过程中,每当DNA聚合酶添加一个核苷酸到引物3’端时,聚合酶的外切酶活性将荧光染料从引物上切割下来,释放出荧光。
通过实时检测荧光信号的变化,可以实时监测DNA的合成过程。
实时荧光定量PCR的定量原理是利用PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系。
在PCR扩增的指数时期,随着循环次数的增加,DNA产物的量呈指数增长。
在这个阶段,每个循环的DNA产物量与上一个循环的DNA产物量成比例。
因此,通过实时检测荧光信号的变化,可以确定PCR进程中的DNA产物量。
由于每个模板的起始拷贝数不同,因此不同模板的Ct值也不同。
通过比较不同模板的Ct值,可以确定模板的起始拷贝数。
实时荧光定量PCR具有许多优点,如高灵敏度、高特异性和高自动化程度。
它可以用于多种类型的样本检测,包括血液、组织、细胞培养液等。
此外,实时荧光定量PCR还可以用于基因表达分析、突变检测和病原体鉴定等应用。
实时荧光定量PCR是一种非常有用的技术,可以用于多种类型的样本检测和分析。
它的基本原理是利用DNA聚合酶的外切酶活性和荧光染料标记的引物来实时监测DNA的合成过程。
通过比较不同模板的Ct值,可以确定模板的起始拷贝数,从而实现定量分析。
Real-time PCR 原理介绍实时荧光定量PCR技术于1996年由美国Applied Biosystems公司推出,由于该技术不仅实现了PCR从定性到定量的飞跃,而且与常规PCR相比,它具有特异性更强、有效解决PCR污染问题、自动化程度高等特点,目前已得到广泛应用。
本文试就其定量原理、方法及参照问题作一介绍。
一.实时荧光定量PCR原理所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。
1.Ct 值的定义在荧光定量PCR技术中,有一个很重要的概念 —— Ct值。
C代表Cycle,t代表threshold,Ct值的含义是:每个反应管内的荧光信号到达设定的域值时所经历的循环数(如图1所示)。
图1. Ct值的确定2.荧光域值(threshold)的设定PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍,即:threshold = 10 ´ SDcycle 6-153.Ct值与起始模板的关系研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系〔1〕,起始拷贝数越多,Ct值越小。
利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值(如图2所示)。
因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。
图2. 荧光定量标准曲线4.荧光化学荧光定量PCR所使用的荧光化学可分为两种:荧光探针和荧光染料〔2〕。
现将其原理简述如下:1)TaqMan荧光探针:PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。
探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5’-3’外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。
real-time pcr原理
实时聚合酶链反应(real-time PCR)是一种广泛应用于分子生
物学研究中的技术,用于检测和定量DNA或RNA的存在。
与传统聚合酶链反应(PCR)相比,实时PCR能够提供更快、更准确的结果。
实时PCR基于聚合酶链反应原理,通过扩增目标DNA或
RNA序列来检测其存在。
实时PCR使用一对特异性引物,即
前向引物和反向引物,与目标序列的两侧结合。
在反应过程中,DNA聚合酶会复制模板DNA,并在每个引物的结合位点依次
合成新的DNA链。
然而,与传统PCR不同的是,实时PCR在反应混合物中加入
了一种叫做探针的荧光探测剂。
这种探针通常由一个引物和一个荧光信号发生器组成。
当探针与目标序列结合时,引物会选择性地与模板DNA结合,并将荧光信号发生器离开。
在PCR
反应进行的同时,荧光信号会产生,并且可以实时监测到
PCR反应的进程。
实时PCR设备一般配备了一个光学系统,可以记录PCR反应
过程中产生的荧光信号。
光学系统能够定量检测荧光信号的强度,并将其转化为DNA或RNA的相对数量。
这使得实时
PCR能够定量目标DNA或RNA序列在样本中的存在量。
总的来说,实时PCR结合了PCR的增幅特性和荧光技术的快
速检测特性,可以在PCR反应进行的同时实时监测和定量目
标DNA或RNA序列的存在量。
这使得实时PCR成为现代分子生物学研究中的重要工具。