初一数学上册所有内容复习资料上课讲义
- 格式:doc
- 大小:77.00 KB
- 文档页数:8
初一数学上册知识点复习
初一数学上册主要包括以下知识点的复习:
1. 数的除法:整除、余数及其性质、整数的分解因式
2. 有理数的加减乘除:有理数的加法、减法、乘法、除法和混合运算
3. 分数的加减乘除:分数的加法、减法、乘法、除法和混合运算、分数的约简和化简
4. 无理数:无理数的概念、无理数之间的大小比较
5. 数的整除与倍数:倍数的概念、公倍数与最小公倍数、约数的概念、公因数与最大公因数
6. 计算与估计:乘法公式、除法公式、整数和分数的混合运算、用除法求商与余、合理估算与控制误差
7. 排列与组合:排列的概念、排列的个数计算、组合的概念、组合的个数计算
8. 几何图形的认识:点、直线和线段、角的概念、图形的分类、平行线与垂直线、图形的变换
9. 长方体、正方体和圆柱的体积和表面积计算
10. 数据的整理与分析:频数与频率、统计图表的制作与分析
以上是初一数学上册的主要知识点,建议你按照教材的顺序进行复习,并结合做一些相关的练习题,加深对知识点的理解和掌握。
初一数学基础知识讲义初一数学基础知识讲义1. 数的基本概念- 自然数:1、2、3、4……- 整数:0、-1、-2、-3……- 有理数:可以表示为两个整数的比值,包括整数、分数和小数。
- 实数:包括有理数和无理数。
2. 数的运算- 加法:a + b = c,表示将a和b相加得到c。
- 减法:a - b = c,表示从a中减去b得到c。
- 乘法:a × b = c,表示将a和b相乘得到c。
- 除法:a ÷ b = c,表示将a除以b得到c。
3. 整数运算- 整数加法:整数和整数相加。
- 整数减法:整数减去整数。
- 整数乘法:整数和整数相乘。
- 整数除法:整数除以整数。
4. 分数运算- 分数加法:分数和分数相加。
- 分数减法:分数减去分数。
- 分数乘法:分数和分数相乘。
- 分数除法:分数除以分数。
5. 小数运算- 小数加法:小数和小数相加。
- 小数减法:小数减去小数。
- 小数乘法:小数和小数相乘。
- 小数除法:小数除以小数。
6. 不等式- 大于:a > b,表示a比b大。
- 小于:a < b,表示a比b小。
- 大于等于:a >= b,表示a大于等于b。
- 小于等于:a <= b,表示a小于等于b。
7. 几何图形- 点:没有长度、面积和体积,只有位置。
- 直线:由无数个点连成的无限延长线。
- 线段:直线两个端点之间的部分。
- 射线:一端起始,一端无限延长的直线段。
- 平行线:在同一个平面上,永远不会相交的直线。
- 垂直线:与另一条直线相交,形成90度的角。
1.1正数和负数(1)正数: 大于0的数;负数: 小于0的数;(2)0既不是正数, 也不是负数;(3)在同一个问题中, 分别用正数和负数表示的量具有相反的意义;(4) — a不一定是负数, +a也不一定是正数;(5)自然数: 0和正整数统称为自然数;(6) a>0 a是正数;a>0 a是正数或0 a是非负数;a< 0 a是负数;a< 0 a是负数或0 a是非正数.1.2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式, 这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:第一章有理数正有理数正整数正整数整数有理数零有理数负有理数负整数分数负整数正分数(4)数轴: 规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5) 一般地, 当a是正数时, 则数轴上表示数 a的点在原点的右边, 距离原点点在原点的左边, 距离原点 a个单位长度;(6)两点关于原点对称: 一般地, 设 a是正数, 则在数轴上与原点的距离为a的点有两个, 它们分别在原点的左右, 表示-a和a,我们称这两个点关于原点对称;(7)相反数: 只有符号不同的两个数称为互为相反数;(8) 一般地, a的相反数是一a;特别地, 0的相反数是0;(9)相反数的几何意义: 数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0 ;(即相反数之和为0)a ,b ,(11)a、b互为相反数一1或一1;(即相反数之商为—1)b a(12)a、b互为相反数|a|=|b| ;(即相反数的绝对值相等)(13)绝对值: 一般地, 在数轴上表示数a的点到原点的距离叫做 a的绝对值;([a|R)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;a (a 0)(15)绝对值可表示为: a 0 (a 0)a (a 0)(16) —1 a 0 ;— 1 a 0;a a(17)有理数的比较: 在数轴上表示有理数, 它们从左到右的顺序, 就是从小到大的顺序。
人教版·七年级上册数学讲义第3讲 数轴动点(二)疯狗问题知识导航疯狗问题的难度并不大,特征也很明显,即一个较高的速度动点(疯狗)不断在两低速动点间往返运动,两低速动点相遇时,高速度动点随之停止.在这个运动过程中,我们并不能清晰的分析出这里的运动状态,但可以通过两低速动点相遇所花费的时间来得到高速动点的运动时间,结合其速度求出它的路程.例题1点A 、B 、C 在数轴上表示的数a 、b 、c 满足:()()222240b c ++-=,且多项式32321a x y ax y xy +-+-是五次四项式.若数轴上有三个动点M 、N 、P ,分别从点A 、B 、C 开始同时出发,在数轴上运动,速度分别为每秒1个单位长度、7个单位长度、3个单位长度,其中点P 向左运动,点M 向右运动,点N 先向左运动,遇到点M 后回头再向右运动,遇到点P 后回头向左运动,……,这样直到点P 遇到点M 时三点都停止运动,求点N 所走的路程.练习1已知数轴上的点A 、B 对应的数分别为x 、y ,且()21002000x y ++-=.点P 为数轴上从原点出发的一个动点,速度为30单位长度/秒,若点A 沿数轴向右运动,速度为10单位长度/秒,点B 沿数轴向左运动,速度为20单位长度秒,点A 、B 、P 三点同时开始运动.点P 先向右运动,遇到点B 后立即掉头向左运动,遇到点A 后再立即掉头向右运动……如此往返.当A 、B 两点相距30个单位长度时,点P 立即停止运动,求此时点P 移动的路程为多少个单位长度? 挡板问题到达挡板后停止例题2已知点A 、B 在数轴上表示的数分别为a 、b ,且满足2a -与()290b -互为相反数.(1)a 值为_____,b 值为_____.(2)已知电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B出发,向左匀速运动,速度为每秒3个单位长度,且Q比P先运动2秒,已知在原点O处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动.问电子狗P经过多长时间,有P、Q 两只电子狗相距70个单位长度?练习2数轴上A、B两点对应的数分别为-80、20,一电子蚂蚁P从点A出发,以每秒1个单位长度的速度向右匀速运动,目的地为B点;另一电子蚂蚁Q从点B出发,以每秒4个单位长度的速度向左匀速运动,目的地为A点.(1)运动多长时间后,P、Q两只电子蚂蚁相距20个单位长度?(2)运动多长时间后,P、Q两只电子蚂蚁相距80个单位长度?到达挡板后返回例题3如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足++=.+a b a430(1)求A、B两点之间的距离.(2)若在原点O处放一挡板,一小球甲从点A处以2个单位/秒的速度向左运动;两秒后另一个小球乙从点处以3个单位秒的速度也向左运动,左碰到挡板后(忽略球的大小,可以看作一点)乙球以4个单位/秒的速度向相反的方向运动,设甲球的运动的时间为t(秒).①分别表示甲、乙两小球到原点的距离(用含的式子表示).②求甲、乙两小球到原点的距离相等时,甲球所在位置对应的数.数轴上有A、B、C三点,分别表示有理数-26、-10、20,动点P从A出发,以每秒1个单位的速度向右移动,当P点运动到C点时运动停止设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________.(2)当P点运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回A点.①用含t的代数式表示Q在由A到C过程中对应的数:__________.②当t=__________时,动点P、Q到达同一位置(即相遇).③当PQ=3时,求的值.练习32019~2020学年10月湖北武汉江岸区武汉市七一华源中学初一上学期月考第24题12分已知数轴上的A、B两点分别对应数字a、b,且a、b满足()2-+-=.440a b a(1)直接写出a、b的值.(2)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位长度的速度向点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向正方向运动,点P运动到点C立即返回再沿数轴向左运动.当10PQ=时,求P点对应的数.例题4已知多项式26233---中,多项式的项数为a,多项式的次数为b,常数项为c,且a、25320m n m n nb、c分别是点A、B、C在数轴上对应的数.(1)写出a=_____;b=_____;c=_____.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是1、2、3,(单位/秒),当乙追上甲时,甲、乙继续前行,丙此时以原速向相反方向运动,问甲、乙、丙三个动点分别从A、B、C三点同时出发到乙、丙相距2个单位长度时所经历的时间是多少秒?总结归纳无论是遇到挡板后停止的动点问题,还是遇到挡板后返回的动点问题,其本质都是,在遇到挡板的前后,该动点的运动状态发生了改变.因此,必须以到达终点或碰到挡板的时间为界,分别表示出在不同时间段内动点的位置表达式(含t的代数式),即分段讨论,在此基础上再来研究相关点的距离关系,这样才不会漏解.同学们可以体会挡板问题和一般的动点问题的不同之处,自己归纳易错点和相应解法,这样印象更深刻,能真正理解动点问题的本质以及各题型之间的异同.练习42018~2019学年10月湖北武汉洪山区武汉市卓刀泉中学初一上学期月考第24题12分已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足()2++++-=.动点a b c2410100P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,(1)求a、b、c的值.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.例题52018~2019学年湖北武汉东湖高新区初一上学期期中第24题12分数轴上m,n,q所对应的点分别为点M,点N,点Q.若点Q到点M的距离表示为QM,点N到点Q的距离表示为NQ.我们有QM q m=-.=-,NQ n q(1)点A,点B,点C在数轴上分别对应的数为-4,6,c.且BC CA=,直接写出c的值_____.(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从A,C两点出发向右运动,甲的速度为4个单位每秒,乙的速度为1个单位每秒.求经过几秒,点B与两只蚂蚁的距离和等于7.(3)在(1)(2)的条件下,电子蚂蚁乙运动到点B后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至B点后也以原速返回,到达自己的出发点后又折返向B点运动,当电子蚂蚁乙停止运动时,电子蚂蚁甲随之停止运动,运动时间为多少时,两只蚂蚁相遇.练习52019~2020学年10月湖北武汉武昌区武昌首义中学初一上学期月考第24题12分如图,数轴上点A、C对应的数分别是a、c,且a、c满足()2a c++-=,点B对应的数是-3.410(1)求数a、c.(2)点A、B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间为t秒,在运动过程中,点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,求在此运动过程中,A、B两点同时到达的点在数轴上表示的数是_____(直接写出答案)挑战压轴题2017~2018学年湖北武汉江岸区武汉二中广雅中学初一上学期期中第24题如图,A、B两点在数轴上对应的数分别为-20、40,C点在A、B之间.在A,B、C三点处各放一个档板,M、N两个小球都同时从C处出发,M向数轴负方向运动,N向数轴正方向运动,碰到档板后则向反方向运动,一直如此下去(当N小球第二次碰到B档板时,两球均停止运动)(1)若两个小球的运动速度相同,当M小球第一次碰到A档板时,N小球刚好第二次碰到B档板求C点所对应的数.(2)在(1)的结论下,若M,N小球的运动速度分别为2个单位/秒,3个单位/秒,则N小球前三次碰到档板的时间依次为a,b,c秒钟,设两个球的运动时间为t秒钟.①请直接写出下列时段内小球所对应的数(用含t的代数式表示)当0t a≤≤时,N小球对应的数为_____,当a t b<≤时,N小球对应的数为_____,当b t c<≤时,N小球对应的数为_____.②当M、N两个小球的距离等于30时,求t的值.(3)移走A、B、C三处的挡板,点P从A点出发,以6个单位/秒的速度沿数轴向右运动,同时点Q从B点出发,以4个单位/秒的速度沿数轴向左运动.已知E为AP中点,点F在线段BQ上,且14QF BQ=,问出发多少秒后,点E到点F的距离是点E到原点O的距离的4倍?巩固加油站巩固12019~2020学年12月湖北武汉蔡甸区经济技术开发区第一中学初一上学期月考第24题12分如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴的正方向运动,3秒后,两点相距15个单位长度.已知动点A,B的速度之比为1:4(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A,B两点从原点出发运动3秒时的位置.(2)若A,B两点从(1)中的位置同时按原速度向数轴负方向运动,几秒后,两动点到原点的距离相等?(3)在(2)中若B在A的右侧,A、B两点继续同时开始向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后立即返回向B点运动,遇到B点后又立即返回向点A运动……如此往返,直到点B追上点A时,点C立即停止运动.若点C一直以20单位长度秒的速度匀速运动,那么点C从开始到停止运动,行驶的路程是多少个单位?巩固2数轴上A、B两点表示的有理数为a、b,且()2350a b-++=.小蜗牛甲以1个单位长度秒的速度从点B出发向其左边6个单位长度处的食物爬去,3秒后位于点A的小蜗牛乙收到它的信号,以2个单位长度秒的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D 点相遇,则点D表示的有理数是什么?从出发到此时,小蜗牛甲共用去多少时间?巩固3数轴上A点对应的数是-1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再以同样速度立即返回到A点,共用了4秒钟.(1)求点C对应的数.(2)若小虫甲返回到A点后再做如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位,第3次向右爬行7个单位,第4次向左爬行9个单位……依此规律爬下去,求它第10次爬行后停在点所对应的数.(3)回答下列各问:①若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t秒后,甲、乙两只小虫的距离为_____(用含t的整式表示).②若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B和点C出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位.假设运动t秒后,甲、乙、丙三只小虫对应的点分别是D、E、F,则32DE EF-是定值吗?如果是,请求出这个定值.巩固4如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对于的数分别是a、b、c、d,且214d a-=.(1)那么a=_____,b=_____.(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持23AB AC=.当点C运动到-12时,点A对应的数是多少?。
七年级上册数学知识点 (全册)单元一:数的概念和认识
- 自然数、整数、有理数、无理数的概念及其表示方法- 数轴的认识和使用
- 数的比较和大小的判断方法
- 数的分类和性质
单元二:整数的加减法
- 整数的加法和减法运算规则
- 整数的加减法计算方法
- 整数加减法的应用
单元三:小数的认识和运算
- 小数的概念和表示方法
- 小数和分数的转换
- 小数的加减乘除运算法则
- 小数的应用问题
单元四:比例与相等
- 比例的概念和性质
- 比例的表示方法和比例的简化- 比例的相等和比例的应用
单元五:百分数
- 百分数的概念和表示方法
- 百分数与比例的关系
- 百分数的转化和运算法则
- 百分数的应用问题
单元六:图形的认识
- 几何图形的基本概念和性质- 点、线、面、体的认识
- 常见平面图形的名称和特征
- 三角形的分类和性质
单元七:平面图形的性质和计算
- 四边形的分类和性质
- 平行四边形的性质和判定方法
- 直角、等腰和等边三角形的性质
- 平面图形的周长和面积的计算方法
单元八:数据的收集和整理
- 数据的收集方法和调查问题的设计
- 数据的整理和分类
- 数据的统计和分析
- 数据的应用和解读
以上是七年级上册数学的主要知识点,通过学习这些内容,你可以打下坚实的数学基础。
希望你在学习中能够发现数学的乐趣,不断提升自己的数学能力。
加油!。
第一章有理数1.3 有理数的加减法一、相关复习:1、相反数①定义:一般的,如a与-a这样的一对数,只有符号不相同,叫做互为相反数。
②特征:任何数都有且只有一个相反数,正数的相反数是负数,负数相反数是正数,0的相反数是0.③性质:若a和b互为相反数,则a+b=0;若a+b=0,则a和b互为相反数。
2、绝对值①定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
②运算:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.①如果a>0,那么|a|=a;②如果a=0,那么|a|=0;③如果a<0,那么|a|=-a.③性质:①互为相反数的两个数的绝对值相等,|a|=|-a|;②绝对值具有非负性,若几个数的绝对值的和为0,则这几个数同时为0,若|a|+|b|=0,则a=0,b=0。
二、知识解析:【知识点一】有理数的加法法则1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3.互为相反数的两个数相加得0.4.一个数同0相加,仍得这个数。
例1.直接写出答案:(1) (+50)+(+40)= (2) (-50)+(-40)=(3) (+50)+(-40)= (4) (-50)+(+40)=(5) (+0.5)+(-1/2)= (6) (-2.35)+(-0)=例2.用“>”或“<”填空:(1)如果a>0,b>0,那么a+b0; (2)如果a<0,b<0,那么a+b0;(3)如果a>0,b<0,|a|>|b|,那么a+b0; (4)如果a<0,b>0,|a|>|b|,那么a+b0.1.加法交换律:a+b=b+a.2.加法结合律:(a+b )+c=a+(b+c).例3. 计算:16+(-25)+24+(-35)例4.8箱苹果,以每箱15千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下:1.5,-0.7,2.3,-1.5,0.8,-0.55,1.2,0.25.问这8筐苹果总共重多少?随堂练习:1.已知||1a =,b 是2的相反数,则a b +的值为( )A .3-B .1-C .1-或3-D .1或3-2.已知||5a =,||2b =,且a b >,则a b +的值为( )A .7或3-B .7-或3C .7-或3-D .7或33.若||2x =,||3y =,则x y +的绝对值是( )A .5或5-B .1或1-C .5或1D .5,5-,1,1-4.如果||||||a b a b +<+成立,那么( )A .a 、b 为一切有理数B .a 、b 同号C .a 、b 异号或a 、b 中至少有一个为零D .a 、b 异号 5.a ,b ,c 三个数的位置如图所示,下列结论不正确的是( )A .0a b +<B .0b c +<C .0b a +>D .0a c +>6.如图,从左到右,在每个小格子中都填入一个整数,使其中任意三个相邻格中所填整数之和都相等,则c = ,第2012个格子中数为 .7.(1) (-0.6)+(-2.7)= (2) 3.7+(-8.4)=(3) 7+(-3.3)=(4) (-1.9)+(-0.11)= (5) (-9.18)+6.18= (6) 4.2+(-6.7)=减去一个数,等于加这个数的相反数。
初一上期数学复习资料 第一章:有理数知识要求:1、有具体情境中,理解有理数及其运算的意义;2、能用数轴上的点表示有理数,会比较有理数的大小。
3、借助数轴理解相反数与绝对值的意义,会求有理数的相反数与绝对值。
4、经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能利用运算律简化运算,及能运用有理数及其运算律解决简单的实际问题。
知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
知识点:一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。
2、有理数的分类:(1)按定义分类: (2)按性质符号分类: ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数03、数轴数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。
4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。
0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。
5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a aa(3)两个负数比较大小,绝对值大的反而小。
七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。
- 整数具有加法、减法、乘法和除法等基本运算性质。
1.1.2 整数的分类- 自然数:正整数和0。
- 整数:包括自然数、负整数和0。
1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。
- 分数具有加法、减法、乘法和除法等基本运算性质。
1.2.2 分数的分类- 正分数:分子大于分母的分数。
- 负分数:分子小于分母的分数。
- 零分数:分子等于分母的分数。
1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。
- 小数具有加法、减法、乘法和除法等基本运算性质。
1.3.2 小数的分类- 有限小数:小数部分有限的小数。
- 无限小数:小数部分无限的小数。
第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。
2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。
2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。
- 变量可以取不同的数值。
2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。
- 代数式的加减法:同类项之间进行加减运算。
2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。
第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。
3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。
3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。
初一数学上册所有内容复习资料收集于网络,如有侵权请联系管理员删除初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a 3的形式;(6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 . 有理数1.有理数:收集于网络,如有侵权请联系管理员删除(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=.收集于网络,如有侵权请联系管理员删除5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;收集于网络,如有侵权请联系管理员删除(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.收集于网络,如有侵权请联系管理员删除3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 . 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.收集于网络,如有侵权请联系管理员删除7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程的最简形式: ax=b (x 是未知数,a 、b 是已知数,且a ≠0).9.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率;收集于网络,如有侵权请联系管理员删除 (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.。