2015年中考一模名校联考数学试题及答案(一)
- 格式:doc
- 大小:1.02 MB
- 文档页数:13
2015年中考模拟名校质量检测数学试题时间120分钟 满分150分 2015.5.22一、选择题(每小题3分,满分30分)1. 如果水位升高3m 时水位变化记作+3m ,那么水位下降3m 时水位变化记作( ) A .-3m B .3m C .6m D . -6m2. 如图,AB//CD ,EF 分别为交AB ,CD 于点E,F,∠1=50°,则∠2的度数为( ) A .50° B .120° C .130° D .150°3. 如右下图所示的几何体的俯视图为( )4. 下列运算正确的是( )A . 2x+6x=8x 2B . a 6÷a 2=a 3C .(﹣4x 3)2=16x 6D .(x+3)2=x 2+9 5. 已知三角形两边长分别为3和8,则该三角形第三边的长可能是( ) A . 5B . 10C . 11D . 126. 关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围为( ) A .B .C .D .7. 如图,在地面上的点A 处测得树顶B 的仰角为α度,AC=7米,则树高BC 为( )米A .αtan 7B .αtan 7C .αsin 7D .αcos 77题图 8题图 9题图 10题图 8. 如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2).以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的21后得到线段CD ,则端点C 的坐标为( ) A .(3,3) B .(4,3) C .(3,1) D .(4,1)9. 如图所示,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b >kx -1的解集在数轴上表示正确的是( )10. 如图,矩形纸片ABCD 中,点E 是AD 的中点,且AE =1,BE 的垂直平分线MN 恰好过点C ,则矩形的一边AB 的长度为( )A .1B .2C .3D .2二、填空题(每小题3分,满分18分.)11.因式分解:a a 32+= . 12.若3=a ,则a =13.在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 _________ . 14.在函数xx y 1+=中,自变量x 的取值范围是 . 15.如图,已知AB 为⊙O 的直径,∠CAB =30°,则sin D = .15题图 16题图16. 如图,在平面直角坐标系xoy 中,正方形OABC 的边长为2,写出一个函数)0(≠=k xky 使它的图象与正方形OABC 有公共点,这个函数的表达式为三、解答题(满分102分解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解方程:21312-2xx +=+;18.(本小题满分9分)如图,点C ,F 在线段BE 上,BF=EC ,∠1=∠2,请你添加一个条件,使△ABC ≌△DEF ,并加以证明.(不再添加辅助线和字母)19.(本小题满分10分)已知|a+1|+(b ﹣3)2=0,求代数式abb ab a a b 22)1122+-÷-(的值.20.(本小题满分10分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为_________,并把条形统计图补充完整;(2)扇形统计图中m=_________,n=________,表示“足球”的扇形的圆心角是________度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21.(本小题满分12分)如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上).(1)把△ABC 沿 BA 方向平移后,点 A 移到点 A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点 A1按逆时针旋转 90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为 1,求点 B 经过(1)、(2)变换的路径总长.22.(本小题满分12分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.23.(本小题满分12分)如图,点A (1,6)和点M (m ,n )都在反比例函数)0(>=k xky 的图像上. (1)k 的值为 .(2)当m =3时,求直线AM 的解析式;(3)当m>1时,过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,试判断直线BP 与直线AM 的位置关系,并说明理由.24.(本小题满分14分)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A 出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P 点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE 为等腰三角形?(3)探索△POE周长是否随时间t的变化[而变化,若变化,说明理由;若不变,试求这个定值.25.(本小题满分14分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.答案:一、选择题1.正确答案:A2.正确答案:C3.正确答案:C4.正确答案:C5.正确答案:B6.正确答案:B7.正确答案:A8.正确答案:A9.正确答案:A10.正确答案:C二、11.正确答案:a(a+3) 12.正确答案:3± 13.正确答案:314. 正确答案:x ≥﹣1且x ≠0 15.正确答案:23 16.正确答案:答案不唯一,如xy 4=三、解答题17.解:去分母,得12-2(2x+1)=3(1+x)去括号,得12-4x-2=3+3x 移项,合并同类项,得-7x=-7. 把系数化为1,得x=118.(本小题满分9分)解答: AC=DE . 证明:∵BF=EC ,∴BF ﹣CF=EC ﹣CF , ∴BC=EF ,在△ABC 和△DEF 中∴△ABC ≌△DEF .19.(本小题满分10分)解。
(第6题图)G山西省2015年中考模拟名校联考数学试题时间120分钟 满分120分 2015/3/1一、选择题(每小题3分,共计30分)1. 2-的相反数是( )(A) 2 (B) 21 (C) 12- (D) 2-2.已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为( ) (A) 0. 000124 (B) 0.0124 (C) 一0.00124 (D) 0.00124 3.下列运算正确的是( )(A)22212aa =- (B)ab b a 532=⋅ (C)3322=÷a a (D) 416±=4.下列几何体中,其主视图不是中心对称图形的是( )(A) (B) (C) (D)5.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( )(A)220cm (B)220cm π (C) 210cm π(D)25cm π6. 如图,直线AB∥CD,直线EF 与AB ,CD 分别交于点E ,F ,EC⊥EF,垂足为E ,若∠1=60°,则∠2的度数为( ) (A) 15° (B) 30° (C) 45° (D)60°7. 甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是( ) (A)91 (B)92(C)31 (D)948. 一个正多边形的每个外角都是36°,这个正多边形的边数是( ) A)9 (B) 10 (C) 11 (D)12 9.在半径为13的⊙O 中,弦AB∥CD,弦AB 和CD 的距离为7,若AB=24,则CD 的长为( ) (A)10 (B) 430 (C) 10或430 (D) 10或216510. 张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.下列四种说法:① 加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是y=﹣8t+25; ② 途中加油21升;③ 汽车加油后还可行驶4小时; ④ 汽车到达乙地时油箱中还余油6升.其中正确的个数是( ).(A)1个 (B)2个 (C)3个 (D) 4个二、填空题(每小题3分,共计30分)11. 在函数22x y x-=+中,自变量x 的取值范围是 .12. 因式分解:32x xy -= . 13.分式方程231xx =+的解为 .14. 不等式组21x x +⎧⎨-⎩ 的解集是___________________. (第10题图)>0 <0(第18题图) (第19题图)15. 某药品原价每盒25元,两次降价后每盒16元,则平均每次降价的百分率是 .16. 已知0113=+++b a ,则22014a b -+=_____________.17. 反比例函数ky x=的图象与一次函数y=2x+1的图象的一个交点是(1,k ),则反比例函数的解析式是______________________.18.矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合,设折痕为EF ,则重叠部分△AEF 的面积等于______________________.19.有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去…,第2014次输出的结果是 .20. 如图,Rt △ABC 中,∠C=90º, BD=CD=2,∠ADB=3∠ABD ,则AD=_____________.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分)21.(本题6分) 先化简,再求值:22212()(1)21m m m m m m m-+÷+-+-,其中m=-2cos30º+tan45º.(第20题图)B C AD22.(本题6分)图①、图②都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在每个网格中标注了5个格点.按下列要求画图:(1)在图①中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个; (2)在图②中,以格点为顶点,画一个正方形,使其内部已标注的格点只有3个,且边长为无理数.23.(本题6分)(第22题图)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.⑴ 请将甲校成绩统计表和图2的统计图补充完整; ⑵ 经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好. 24.(本题6分)如图,小明在教学楼上的窗口A 看地面上的B 、C 两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D 与点C 、B 在同一条直线上,且B 、C 两花坛之间的距离为6m .求窗口A 到地面的高度AD .(结果保留根号)(第24题图) 甲校成绩统计表分数 7分 8分 9分 10分 人数118(第23题图)乙校成绩条形统计图8分 9分 分数人数10分7分 084510分9分 8分7分72°54°2 4 6 8 图2乙校成绩扇形统计图图125.(本题8分)如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O交AE于点F.(1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.(第25题图)26.(本题8分)某校社会实践小组在开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(2)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于...85%,求其中所含碳.水化合物....质量的最大值.(第26题图)27.(本题10分)已知抛物线21(0)2y x mx n n =++≠与直线y=x 交于两点A 、B ,与y 轴交于点C ,OA=OB ,BC ∥x 轴.(1) 抛物线的解析式;(2) 设D 、E 是线段AB 上异于AB的两个动点(点E在点D的右上方),2DE =,过点D作y轴的平行线,交抛物线于F.设点D 的横坐标为t ,△EDF 的面积为s ,把s 表示为t 的函数,并求自变量t 的取值范围;(3) 在(2)的条件下,再过点E 作y 轴的平行线,交抛物线于G ,试问能不能适当选择点D 的位置,使EG=DF ?如果能,求出此时点D 的坐标;如果不能,请说明理由.yxOD E ABC FyxOD EABCF28. (本题10分)如图,等边△ABC 中,D 、E 分别在边AB 、AC 上,且AD=CE ,连接并延长BE 、CD ,交点为P ,并使BG = CF ,直线GA 、BF 交于点Q,过点A 作AH ⊥BF 交BF 延长线于H.(1)如图(1),求证:∠GAH=∠BPC+30º;(2)如图(2),在(1)的条件下,若D 为AB 中点,试探究线段QD 与线段QC的数量关系,并加以证明.(第27题图)图1BCH FG QPDE ADQ BCAH FEPG图2(第28题图)数学试卷参考答案与评分标准题号 1 2 3 4 5 6 7 8 9 10 选项 A D C B C B B B D C二、(每小题3分,共计30分)三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分) 21. (本题满分6分) 原式=[+]÷ ( 1分)=(+)÷( 1分) =•( 1分)=,( 1分)当m=3212-⨯+=31-+时,( 1分) 原式=31311-+-+-=1-33.( 1分) 22. (本题满分6分)(1)部分画法如图所示:(3分)(2)部分画法如图所示:( 3分)23. (本题满分6分)设窗口A 到地面的高度AD 为xm .由题意得:∠ABC=30°,∠ACD=45°,BC=6m .( 1分) ∵在Rt△ABD 中,BD==xm , ( 1分) 在Rt△ABD 中,BD==xm ,( 1分)∵BD﹣CD=BC=6, ( 1分) ∴x ﹣x=6, ( 1分) ∴x=3+3. 答:窗口A 到地面的高度AD 为(3+3)米.( 1分)24.(本题满分6分)⑴ 1; ( 1分)画图正确 (2分)⑵ 甲校的平均分=8.3分,中位数是:7分,(2分)题号 11 12 13 14 15 选项 x ≠-2x(x+y)(x-y)x=2 -2<x <1 20%题号 16171819 20选项98 3y x=751686217平均分相同,乙的中位数较大,因而乙校的成绩较好 (1分)25. (本题满分8分) 解:(1)∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4,( 1分)∵AB=5,BD=3,∴AD=8,∵∠ACB=90°,DE⊥AD,∴∠ACB=∠ADE,( 1分)∵∠A=∠A,∴△ACB∽△ADE,∴==∴==∴DE=6,AE=10,( 1分)即⊙O 的半径为3;过O 作OQ⊥EF 于Q ,则∠EQO=∠ADE=90°,∵∠QEO=∠AED, ∴△EQO∽△EDA,( 1分)∴=,∴=,∴OQ=2.4,即圆心O 到弦EF 的距离是2.4;( 1分)(2)连接EG ,∵AE=10,AC=4,∴CF=6( 1分),∴CF=DE=6,( 1分)∵DE 为直径,∴∠EGD=90°,∴EG⊥CD,∴点G 为CD 的中点.( 1分) 26. (本题满分8分)(1)设所含矿物质的质量为x 克,由题意得:x+4x+20+400×40%=400,( 3分)∴x=44,∴4x=176答:所含蛋白质的质量为176克.( 1分)(2)设所含矿物质的质量为y 克,则所含碳水化合物的质量为(380-5y)克, ∴4y+(380-5y)≤400×85%,( 3分)∴y≥40,∴380-5y ≤180,∴所含碳水化合物质量的最大值为180克.( 1分) 27. (本题满分10分)(1)令x=0,得y=n,则得C (0,n )( 1分),则得B (n ,n ),则得A (-n ,-n )( 1分),代入21(0)2y x mx n n =++≠,求得2122y x x =+-( 1分)(2)过E 作EH ⊥DF,H 为垂足,EH=1( 1分),D(t,t), 2211(2)2,22DFt t t t =-+-=-∴2114s t =- ( 1分),-2<t <1( 1分)(3)E(t+1,t+1),G(t+1, 21(1)(1)22y t t =+++-),( 1分)2211(1)(1)2(2)22t t t t +++--+-=1( 1分),解得12t =-( 1分),11(,)22D --( 1分)28. (本题满分10分)(1)证△ABE ≌△BDC ,( 1分)∠ABE =∠DCB ,∠DPB=∠PBC+∠PCB=60º,∠BPC=120°( 1分),△DBF ≌△EAG( 1分),∠ABH=∠EAG ( 1分),∠GAH=150°( 1分)(1) 连接HD ,HD=21AB=21AC( 1分), QH=21AQ ( 1分), ∠QHD=∠QAC( 1分)△QHD ∽△QAC ( 1分) QD=21QC( 1分)。
第6题 P B AOx2015中考一模名校联考数学试题时间:120分钟 满分150分2015、2、12一、 选择题(每小题3分,共24分.)1的值等于( )A .一2 C . D 2、下列运算中,结果正确的是 ( ) A .a 6÷a 3=a 2B .(2ab 2)2=2a 2b 4C . a ·a 2=a 3D .(a+b)2=a 2+b 23、一组数据按从小到大排列为2,4,8,x ,10,14.若这组数据的中位数为9,则这组数据4、的是 ( )A .∠CDB =∠CBA B .∠CBD =∠AC .BC ·AB =BD ·AC D . BC 2=CD ·AC5、若圆的半径是5,圆心的坐标是(0,0),点P 的坐标是(-4,3),则点P 与⊙O 的位置关系是 ( )A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .点P 在⊙O 外或⊙O 上6、如图, AB 是⊙O 的直径, CD 是弦, 且CD ⊥AB, 若BC=4, AC=2, 则sin ∠ABD 的值为A.15( )7、如图,直线1y kx b =+过点(0,2)且与直线2y mx =交于点(1,)P m --,则关于x 的不等式组2mx kx b mx >+>-的解集为 ( ) A .x<-1 B .-2<x<0 C .-2<x<-1 D .x<-28、如图,PA 、PB 是⊙O 的两条切线,A 、B 为切点,直线OP 交⊙O 于C 、D ,交AB 于E ,AF 为⊙O 的直径,有下列结论: ( ) ①∠ABP =∠AOP ;; ③AC 平分∠PAB ; ④2BE 2=PE ·BF ,其中结论正确的有A .1个B .2个C .3个D .4个二、填空题(每小题3分,共30分)第7题 A 第4题 第8题9、截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元. 10、函数x y 23+=中自变量x 的取值范围是 . 11、分解因式:2282b a -=_______.12、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是 .13、圆锥的母线长为6cm ,底面圆半径为4cm ,则这个圆锥的侧面积为___________cm 2. 14、已知关于x 的一元二次方程(k +1)x 2+2x -1=0有两个实数根,则k 的取值范围是 。
山西省2015年中考模拟考试名校联考第一次考试数学试题时间120分钟满分120分 2015、2、6一、选择题(每小题3分,共24分)1.2014的相反数是【】A.-2014 B.±2014 C.2014 D.-︱-2014︱2.如图,如图,已知AB∥CD,AD平分∠BAE,则∠AEC的度数是【】A.19° B.38°C.72°D.76°3.已知反比例函数-5y=x,下了结论中不正确的是【】A .图像必过点(1,-5) B.y随x的增大而增大C.图像在第二、四象限 D.若x>1,则-5<y<04. 将1、2、3三个数字随机生成的点的坐标,列成下表。
如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是【】A.0.3 B.0.5 C.13D.235.下图中所示的几何体的主视图是【】6.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是【】A.1:6 B.1:5C.1:4D.1:27. 已知 k1<0<k2,则函数 y=k1x 和 y=k2x的图象大致是【】A(第2题)BC DEAB CD(第5题)F (第6题) OBCDEAn=3(第14题)n=1n=28.如图,在四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=P 在四边形ABCD 的边上,若P 在BD 的距离为1,则点P 的个数为【 】 A .1 B. 2 C. 3 D. 4二、填空题 (每小题3分,共18分)9. 请写出一个比小的整数 .10. 国际统计局发布2013年宏观数据显示,2013年国内生产总值约为472000亿元,这个数据用科学记数法可表示为 .11..某长途汽车站的显示屏,每隔5分钟显示某班汽车的信息,显示时间持续1分钟,某人到汽车站时,显示屏上正好显示该班次信息的概率是 .12.如图,先将一平行四边形纸片ABCD 沿AE ,EF 折叠,使E ,B ’ ,C ’,在同一直线上,再将折叠的纸片沿EG 折叠,使AE 落在EF 上,则∠AEG= 度.13. 在ABC Rt ∆中,︒=∠90C ,如果4:3:=BC AC ,那么A cos 的值为14.如图,是用同样大小的正方形按一定的规律摆放而成的一系列图案,则第n 个图案中正方形的个数是 个.(第8题)ABCD(第12题)FABCDC'B' DFAGEA 'A B C D15.如图,在△ABC 中,AB=AC ,D ,E 分别是AB ,AC 的中点,M ,N 为BC 上的点,连接DN ,EM.若AB=10cm ,BC=12cm ,MN=6cm ,则图中阴影部分的面积为 2cm三、解答题 (本大题共8个小题,满分78分)16.(8分)先化简,再求值:221a -a-2a -4²22+a a -2a,其中17.(9分)我市某区对参加模拟考试的8000名学生的数学成绩进行抽样调查,抽取了部分学会上的数学成绩(分数为整数)进行统计,绘制成频率分布直方图(如图10),已知从左到右五个小组的频数之比为6:7:11:4:2,第五小组的频数为40. (1)本次调查共抽调了多少名学生?(2)若72分以上(含72分)为及格,96分以上(含96分)为优秀,那么抽取的学生中及格的人数、优秀的人数各占所抽取人数的百分之多少?(3)根据(2)中的结论,该区所以参加市模拟考试的学生,及格、优秀人数各约是多少人?(第15题)18.(9分) 已知:如图在四边形ABCD 中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB DC BC 、、的延长线于点E M N F 、、、.(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明; (2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?19.(9分)甲、乙两条轮船同时从港口A 出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求: (1)港口A 与小岛C 之间的距离 (2)甲轮船后来的速度.EB MOD NFC(第18题)A20.(9分)已知:如图一次函数y=12x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.21.(10分)某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.(第20题)22.(10分)如图6,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连结CM并延长交x 轴于N。
xy O(第7题图)-3412015年中考名校联考调研检查数 学 试 题满分:150分;时间:120分钟 2015.4.28一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.) 1.52011-的相反数是( ). A .5201 B .5201- C .52011D .52011-2.下列运算正确的是( ).A .523a a a =+B .22223=-a a C .523a a a =⋅ D .236a a a =÷ 3.下列左图所示的立体图形的主视图...是( ).4.对于解不等式2332>-x ,正确的结果是( ). A .49-<x B .49->x C .1->xD .1-<x5.下列四边形不是..轴对称图形的是( ). A .正方形B .矩形C .菱形D .平行四边形6.若一个多边形的内角和︒900,则这个多边形的边数为( ). A .5B .7C .9D .127.若二次函数()02<++=a c bx ax y 的图象如图所示, 且关于x 的方程k c bx ax =++2有两个不相等的实根, 则常数k 的取值范围是( ). A .40<<k B .13<<-k C .3-<k 或1>k D .4<kA.B. C. D.(第17题图)B(第9题图)AT(第15题图)二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答.8.据报道,春节期间微信红包收发高达3270000000次,则3270000000用科学记数法表示为 .9.如图,直线OB AO ⊥于点O ,OT 平分AOB ∠, 则=∠AOT °.10.计算:___________111=---m m m . 11.已知点()3,2-A 在双曲线xky =上,则______=k .12.在学生演讲比赛中,六名选手的成绩(单位:分)分别为:80、85、86、88、90、93,则这组数据的中位数为 分.13.如图,直线a ∥b ,直线c 与直线a 、b 都相交,︒=∠1151,则=∠2 °.14.如图,在等腰ABC ∆中,AC AB =,若︒=∠100A ,则︒=∠______B . 15.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,点M 是CD 边的中点,连结OM ,若cm OM5=,则菱形ABCD 的周长为cm ________.16.如图,在矩形ABCD 中,AC DE ⊥于点E ,12=AB ,20=AC ,则________cos =∠ADE .17.如图,CD 是半圆O 的直径, AB 是弦,且6=CD ,︒=∠30ADB , 则︒=∠_____AOB ;若用扇形AOB 围成一个圆锥,则该圆锥的底面圆的半径为________.三、解答题(共89分):在答题卡上相应题目的答题区域内作答. 18.(9分)计算:5312)15(6410--⨯+---.(第13题图)(第14题图)(第16题图)19.(9分)先化简,再求值:())3(3)4(2-+++a a a ,其中5=a .20.(9分)如图,AB ∥CD , AB =CD ,点E 、F 在AD 上,且AE DF =.求证:ABE ∆≌DCF ∆.21.(9分)如图(一)(二),现有两组扑克牌,每组3张扑克,第一组分别是红桃5、红桃6、红桃7,第二组分别是梅花3、梅花4、梅花5.(1)现把第一组扑克牌背面朝上并搅匀,如图(一)所示,若从第一组中随机抽取一张牌, 求“抽到红桃6”的概率;(2)如图(一)(二),若把两组扑克牌背面朝上各自搅匀,并分别从两组中各抽取一张牌, 试求“抽出一对牌(即数字相同)”的概率(要求用树状图或列表法求解).22.(9分)如图,在等腰OAB ∆中,OB OA =,以点O 为圆心,作圆与底边AB 相切于点C .(1)求证:BC AC =;(2)若42=AB ,9=OC ,求等腰OAB ∆的周长.(图一)(图二)第一组第二组(第21题图)(第22题图)BABC DEF(第20题图)23.(9分)如图,某校合作学习小组随机抽样统计部分高年级男同学对必修球类“篮球、足球、排球”三大球的喜爱程度的人数,绘制出不完整的统计图表如下:(2)试利用上述表格中的数据,补充完成条形统计图的制作(用阴影部分表示); (3)若再随机抽查该校高年级男学生一人,则该学生喜爱的三大球最大可能是什么?(第23题图)球类篮球足球排球三大球喜爱人数分布直方图三大球喜爱人数扇形统计图(第23题图)t (时)(第24题图)d 学生队伍 通讯员OAC0.9 4.5B(千米)3.1524.(9分)一队学生从学校出发去劳动基地军训,行进的路程与时间的图象如图所示,队伍走了0.9小时后,队伍中的通讯员按原路加快速度返回学校拿材料,通讯员经过0.5小时后回到学校,然后随即按原来加快的速度追赶队伍................,恰好在劳动基地追上学生队伍.设学生队伍与学校的距离为1d ,通讯员与学校的距离为2d ,试根据图象解决下列问题: (1)填空:学生队伍的行进速度______=v 千米/小时;(2)当15.39.0≤≤t 时,求2d 与t 的函数关系式; (3)已知学生队伍与通讯员的距离不超过3千米时, 能用无线对讲机保持联系,试求在上述过程中 通讯员离开队伍后........他们能用无线对讲机保持联 系时t 的取值范围.25.(13分)已知抛物线c bx x y ++=231与直线BC 相交于B 、C 两点,且()0,6B 、()3,0C .(1)填空:_____=b ,_____=c ;(2)长度为5的线段DE 在线段CB 上移动,点G与点F 在上述抛物线上,且线段EF 与DG 始 终平行于y 轴.①连结FG ,求四边形DGFE 的面积的最大值, 并求出此时点D 的坐标;②在线段DE 移动的过程中,是否存在GF DE =?若存在,请直接写出....此时点D 的 坐标,若不存在,试说明理由.(第25题图)26.(13分)已知直线b x y +=43与x 轴、y 轴分别相交于A 、B 两点,点D 在x 轴正半 轴上,且6=OD ,点C 、M 是线段OD 的三等分点(点C 在点M 的左侧). (1)若直线AB 经过点()6,4, ①求直线AB 的解析式; ②求点M 到直线AB 的距离; (2)若点..Q 在.x 轴上方的直线......AB 上.,且 CQD ∠是 锐角,试探究:在直线 AB 上是否存在符合条件的点Q ,使得54sin =∠CQD ;若存在,求出b的取值范围,若不存在,请说明理由.2015年初中学业质量检查数学试题参考答案及评分标准xyA B OC DM (备用图)xAB OC D My(第26题图)说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.C 2.C 3.A 4.A 5. D 6.B 7.D 二、填空题(每小题4分,共40分)8.91027.3⨯ 9.45 10.1 11.6- 12.87 13.65 14.40 15.20 16.53 17.60; 21 三、解答题(共89分) 18.(本小题9分) 解:原式=5418-+- ………………………………………………………………………………8分 =6 ………………………………………………………………………………………… 9分 19.(本小题9分) 解:原式=916822-+++a a a ……………………………………………………………………4分 =7822++a a ……………………………………………………………………………6分当5=a 时,原式758)5(22+⨯+⨯=75852++⨯=5817+=………………………………………9分20.(本小题9分)证明:∵AB ∥CD ,∴A D ∠=∠, ……………………………………4分又∵AB =CD ,AE DF =………………………………………………6分 ∴ABE ∆≌DCF ∆.………………………………………………9分A BC DF21.(本小题9分) 解:(1)P (抽到红桃6)31=;……………………………………4分 (2)方法一:画树状图如下:……………………………………………………………………………………………8分 由树状图可知,共有9种机会均等的情况,其中抽出一对牌(即数字相同)只有一种情况,∴P (抽出一对牌)=91. ……………………………………………………………9分 方法二:列表如下:………………………………………………………………………………………8分由树状图可知,共有9种机会均等的情况,其中抽出一对牌(即数字相同)只有一种情况,∴P (抽出一对牌)=91. ………………………………………………9分 22.(本小题9分) (1) 证明:∵AB 与⊙O 相切于点C ,∴AB OC ⊥.…………………………………………………………………………………2分 又∵OAB ∆是等腰三角形,∴BC AC =. …………………………………………………………………………………4分 (2)解:由(1)得:BC AC =,又42=AB , ∴12242121=⨯===AB BC AC .………………………………………………………6分第一组 5 67第二组 3 5 3 4 5 3 45在OCB Rt ∆中,9=OC ,12=BC ,由勾股定理得:151292222=+=+=BC OC OB …………………………………………………8分∴等腰OAB ∆的周长54152415=++=++=OB AB OA .……………………………9分 23.(本小题9分)…………………………………………6分(2)补全条形统计图如图所示:……………………………………………8分 (3)篮球…………………………………9分 24.(本小题9分)解:(1)5;………………………………2分 (2)设线段AB 的解析式为:()02≠+=k b kt d ()4.19.0≤≤t ,又过点()5.4,9.0A 、()0,4.1B ,(第23题图)球类篮球 足球 排球 三大球喜爱人数分布直方图∴⎩⎨⎧=+=+04.1,5.49.0b k b k ,解得⎩⎨⎧=-=6.129b k ,∴线段AB 的解析式为:6.1292+-=t d ()4.19.0≤≤t .………………………………………………………………………………………4分 ∵通讯员按原来的速度随即追赶队伍,∴速度为9千米/小时.设线段BC 的解析式为:m t d +=92()1.4 3.15t <≤,又过点()0,4.1B , m +⨯=4.190,6.12-=m ,∴线段BC 的解析式为:6.1292-=t d ()1.4 3.15t <≤. ∴2912.6(0.9 1.4)912.6(1.4 3.15)t t d t t -+≤≤⎧=⎨-<≤⎩ ……………………………………6分(3)设线段OC 的解析式为:()01≠=n nt d ,又过点()5.4,9.0A ,∴n 9.05.4=,5=n .∴线段OC 的解析式为:t d 51=.………………………………………………………………7分设时间为t 小时,学生队伍与通讯员相距不超过3千米,下面分两种情况讨论:①当4.19.0≤<t 时,321≤-d d ,即()36.1295≤+--t t ,解得:3539≤t ,∴35399.0≤<t . ②当1.4 3.15t <≤时,321≤-d d ,即()36.1295≤--t t ,解得:512≥t ,∴2.43.15t ≤≤.故通讯员离开队伍后他们能用无线对讲机保持联系时t 的取值范围为35399.0≤<t 或2.4 3.15t ≤≤.……………………………………………………………………………………9分(注:若第②种情况答案如下,则不扣分:当1.4 3.15t <<时,321≤-d d ,即()36.1295≤--t t ,解得:512≥t ,∴2.4 3.15t ≤<). 25.(本小题13分)(1) 25-=b ,3=c ;……………………………………………………………4分 (2) ①设直线BC 的解析式为:()110y k x b k =+≠ ,又过点()0,6B 、()3,0C ,∴11160,3k b b +=⎧⎨=⎩,解得:111,23k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为:321+-=x y .……………………………………………………………7分∵点D 、E 在直线321+-=x y 上,∴设⎪⎭⎫ ⎝⎛+-321,p p D 、⎪⎭⎫⎝⎛+-321,q q E ,其中p q >,如图,过点E 作DG EH ⊥于点H ,则p q EH -=,EH ∥x 轴,则CBO DEH ∠=∠∴CBO DEH ∠=∠tan tan ,OB CO HE DH =,2163==HE DH , 在DHE Rt ∆中,令DH t =,则2EH t =,由勾股定理得:222DE EH DH =+,即()2222t t +=,解得:1t =(舍去负值),则1=DH ,2=EH .2=-p q ……………9分 ∵DG ∥y 轴∥EF ,∴⎪⎭⎫ ⎝⎛+-32531,2p p p G ,⎪⎭⎫ ⎝⎛+-32531,2q q q F ∴p p p p p DG 2313253132122+-=⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛+-=,q q q q q EF 2313253132122+-=⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛+-=.∴(第25题图)()()()q p q p q q p p EH EF DG S DGFE+++-=⋅⎪⎭⎫⎝⎛+-+-=⋅+=2312223123122222梯形 把2+=p q 代入上式,得:()()()222212882162222333333DGFE S p p p p p p p ⎡⎤=-+++++=-++=--+⎣⎦四边形.当2=p 时,DGFE S 四边形有最大值,最大值为316.∴此时点D 的坐标为()2,2………………………………………………………………………………………11分 ②符合条件的点D 的坐标为()2,2或⎪⎭⎫⎝⎛45,27. ……………………………………………………………………………………………13分26.(本小题13分)解:(1) ①把()6,4代入b x y +=43中,得:b +⨯=4436,解得:3=b . ∴直线AB 的解析式为:343+=x y .……………………………………………………3分②∵6=OD ,点C 、M 是线段OD 的三等分点. ∴463232=⨯==OD OM , ∴点M 的坐标为()0,4.过点M 作AB ME ⊥于点E ,则ME 的长是点M 到直线AB 的距离.在343+=x y 中,令0=x ,则3=y , ∴3=OB (4)分令0=y ,则4-=x ,∴4=OA .(第26题图)在AOB Rt ∆中,由勾股定理,得:53sin ==∠AB OB BAO , 在EAM Rt ∆中,sin AM EM MAE =∠∴点M 到直线AB 的距离524.……………………………7(2)在CD 的垂直平分线上取点I (1.5)以I 为圆心,ID 为半径作圆,则⊙I 过点C ,在MID Rt ∆中,由勾股定理,得5.25.1222=+=ID .54sin ==∠ID MD MID …………8分当直线AB 与⊙I 限)时,直线AB 条件的点Q (切点),使得sin ∠在直线b x y +=43中,令0=y ,则x 由勾股定理,得:b AB 35=.∵QNI ABO ∠=∠,IQN ∠=∠∴ABNIAO IQ =,b NI b 35345.2=,=NI ∴252512371.58888NM =+=+=,⎪⎭⎫ ⎝⎛837,4N .…………………………………10分则把⎪⎭⎫⎝⎛837,4N 代入b x y +=43中,得:813=b ,此时直线AB 的解析式为:81343+=x y . 若直线AB 过点C ,则把()0,2C 代入b x y +=43中,得:23-=b ,若直线AB 过点D ,则把()0,6D 代入b x y +=43中,得:29-=b ,∴当813>b 或29-≤b 时,点Q 不存在;当813=b 或2329-≤-b <时,存在符合条件的一个点Q ;当81323<-b <时,存在符合条件的两个点Q .…………………………………………………………………………13分。
九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。
2015年中考模拟名校检测联考数学试题卷时间 120分钟.满分150分 2015。
3。
18一、选择题(每小题3分,满分30分)1.2-的绝对值是(*). A .2B .2-C .21D .42.下列二次根式中,最简二次根式是(*). A .50B .5.0C .5D .b a 23.已知一个正多边形的每个内角都是144°,则该正多边形的边数是(*). A .7 B .8C .9D .104.顺次连接等腰梯形四边中点所得四边形一定是(*). A .矩形 B .菱形C .正方形D .梯形5.要判断马力同学的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的(*). A .方差 B .中位数 C .平均数 D .众数6.抛物线1162---=x x y 的顶点坐标是(*). A .(3,2) B .(3,2-) C .(2-,2) D .(3-,2-)7.函数xx y -+-=4142中自变量x 的取值范围是(*). A .4>xB .2≥xC .42<<xD .42<≤x8.若20a c +=,则关于x 的方程02=+-c bx ax (a ≠0,且a ≠2c )的根的情况是(*). A .没有实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .无法判断9.如图1是一个正六棱柱的主视图和左视图,则图中的a =(*A .3B .32C .2D .110.如图2,在矩形ABCD 中,E为AD 的中点,EF ⊥EC 交边AB于F ,连FC ,下列结论不正确...的是(*). A .AB ≥AE B .△AEF ∽△DCE左视图主视图图1 图2F EDCBAC .△AEF ∽△ECFD .△AEF 与△BFC 不可能相似二、填空题(每小题3分,满分18分.)11.当01<<-x 时,|1|2++x x = * .12.两个图形关于原点位似,且一对对应点的坐标分别为(3,6-)、(2-,b ),则b = * . 13.某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计, 4月份则4月份这100户节电量的中位数是 * .14.圆锥的底面半径是1,母线长是4,一只蜘蛛从底面圆周上的一点A 出发沿圆锥的侧面爬行一周后回到A 点,则蜘蛛爬行的最短路径的长是 * . 15.观察下列各等式:①2121=,②434121=+,③87814121=++,④1615161814121=+++,…,猜想第n (n 是正整数)个等式是 * .16.如图3,将矩形纸片ABCD 沿着AE 折叠,使点B 落在直角梯形AECD 的中位线FG 上,若AB =3,则AE 的长为 * .三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分)先化简22)1111(2-÷+--x xx x ,然后从2,1,1-中选一个你认为合适的数作为x 的值 代入求值.18.(本小题满分9分)如图4,已知△ABC (AB >AC ).G B'FE DC BA 图3(1)利用尺规作边BC的垂直平分线l以及∠A的平分线m,记l与m的交点为O(要求保留作图痕迹,不写作法);(2)过O点画AB的垂线,垂足为D,过O点画AC的垂线,垂足为E,求证:BD=CE.AB C图4 19.(本小题满分10分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.20.(本小题满分10分)如图5,为了测量不能到达对岸的河宽,在河的岸边选两点A、B,测得AB =100米,分别在A 点和B 点看对岸一点C ,测得∠A =43°, ∠B =65°,求河宽(河宽可看成是点C 到直线AB 的距离).21.(本小题满分12分)一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,每天的施工费乙公司比甲公司少1500元.(1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费用较少?22.(本小题满分12分)如图6,直线b kx y +=分别交x 轴、y 轴于A (1,0)、B (0,1-),交双曲线xmy =于点C 、D ,且AB =AC . (1)求k 、b 、m 的值; (2)求D 点的坐标;(3)直接写出不等式xmb kx >+的解集. CBA图5图623.(本小题满分12分)如图7,AB 是⊙O 的直径,AB =6,D 是⊙O 上的动点(不 同于A 、B ),过O 作OC //AD 交过B 点⊙O 的切线于点C . (1)求证:CD 与⊙O 相切;(2)设AD=x ,OC=y ,求y 关于x 的函数关系式; (3)当AD =2时,求sin ∠ACO 的值.24.(本小题满分14分)已知:在平面直角坐标系中,抛物线1l 的顶点为(2,5-),且经过点(0,4-),先将1l 向上平移5个单位,再向左平移2个单位,得抛物线2l .设A 、B 是抛物线2l 上的两个动点,横坐标分别为a 、b . (1)求2l 的解析式;(2)探究:当a 、b 满足什么关系时,OA ⊥OB ?(3)当a 、b 满足(2)中的关系时,求证 :直线AB 经过定点,并求出线段AB 长度的最小值.图725.(本小题满分14分)如图8,在△OAB 中,∠A =90°,△OCD 是把△OAB 以O 为旋转中心,顺时针旋转而得到的(其中C 与A 对应),记旋转角为α,OBA ∠为β.(1)如图,当旋转后满足BD ∥AO 时,求α与β之间的数量关系; (2)当旋转后满足OC ⊥OB 时,取BD 的中点P ,探究线段PO 与PC 的数量关系并予以证明.参考答案与评分标准一、选择题(本大题共10小题,每小题3分,满分30分.)ACDBA DDCAD二、填空题(本大题共6小题,每小题3分,满分18分.请将答案写在各题号的横线上.11.1;12. 4;13. 40; 14.24; 15.n n 21121...21212132-=++++; 16. 2 . 三、解答题(本大题共9小题,满分102分.解答题写出文字说明、证明过程或演算步骤.)17.(本小题满分9分) 解:22)1111(2-÷+--x xx x )1(21222-÷-=x xx 原式—————————————2分 DCBAO图8x x x )1(21222-∙-=————————————————2分x4=———————————————————————2分 当2=x 时,24=原式—————————————1分22=—————————————2分18.(本小题满分9分)(1)垂直平分线————————————2分;角平分线—————————————2分 (2)证明:连OB 、OC , ∵l 是BC 的垂直平分线,∴OB=OC ,———————————————1分 ∵OD ⊥AB ,OE ⊥AC ,且O 在BAC ∠的角平分线m 上, ∴OD=OE ,———————————————1分 在Rt △OBD 和Rt △OCE 中, ∵⎩⎨⎧==OE OD OCOB ,—————————————1分∴Rt △OBD ≌Rt △OCE ,——————————1分 ∴BD=CE.————————————————1分 19.(本小题满分10分)(1)0.251;————————————————1分 0.25;—————————————————1分 (2)设袋中白球为x 个,4111=+x ,——————————————2分 x=3,—————————————————1分 答:估计袋中有3个白球。
2015年中考模拟考试名校联考数学试题时间120分钟 满分120分 2015、2、19一、选择题(每小题3分共45分)1.下列计算正确的是A .030=B .33-=--C .331-=-D .39±= 2. 自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测, 在会展期间,参观中国馆的人数估计可达到14 900 000,此数(保留两个有效 数字)用科学记数法表示是A. 61.5010⨯B.810149.0⨯C.7109.14⨯D. 71.510⨯ 3.不等式组的解集在数轴上表示正确是的是(5. 菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为A .(21),B .(12),C .(211)+,D .(121)+,6. 如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于(A )(B )(C ) (D )220,10x x ->⎧⎨+⎩≥xyO C B AA .42°B .48°C .52°D .58°7.如图所示的物体的俯视图是( )ABCD8.已知△ABC 的外接圆O 的半径为3,AC=4,则 B sin ( )A. 31B. 43C. 54D. 329.如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是 A BCD10.(贵州黔东南州)抛物线y =x 2-4x +3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为( ) A .(4,-1) B .(0,-3) C .(-2,-3) D .(-2,-1)火车隧道oy xoy x oyxoyx11. 受季节的影响,某种商品每件按原售价降价10%,又降价a 元,现每件售价为b 元,那么该商品每件的原售价为( )A a bB a b ..()+--+110%110%)(元元C b a D b a ..()----110%110%)(元元())等于(,则已知βαβα+=-+-01tan 21sin ..122A. 105°B. 75°C. 60°D. 90°13. 在矩形ABCD 中,AB =3cm ,AD =2cm ,则以AB 所在直线为轴旋转一周所得的圆柱的表面积为( ) A c m B c m ..172022ππC c mD c m..213022ππ 14如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的 顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为 A .-3 B .1 C .5 D .813.关于这15名同学每天使用的零花钱,下列说法正确的是( )A .众数是5元B .平均数是2.5元C .极差是4元D .中位数是3元每天使用零花钱(单位:元) 0 1 3 4 5 人数 1 3 5 42yxOD CB (4,4)A (1,4)二.填空题(每题3分共21分)16.把代数式 322363x x y xy -+分解因式,结果正确的是( )17.已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为_____. 18.把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:. 19.通过平移把点A(2,-3)移到点A ’(4,-2),按同样的平移方式,点B(3,1)移到点B ′, 则点B ′的坐标是 ________20.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为________.21.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段L1、L2分别表示小敏、小聪离B 地的距离y (km )与已用时间x (h )之间的关系,则A 、B 两地的距离是_______km.ABCEFD(第20题图)22.观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )个正方形的左下角三 解答题(54分)23.(6分)已知x 是一元二次方程0132=-+x x 的实数根,那求代数式)252(6332--+÷--x x xx x 的值.24.(8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.25.(10)如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E 点,AE=2,ED=4.(1)求证: ABE∆~ABD∆;(2) 求tan ADB∠的值;(3)延长BC至F,连接FD,使BDF∆的面积等于83,求EDF∠的度数FOEADBC26.(10分).2011年,山东济南被教育部列为“减负”工作改革试点地区。
2015年初中毕业生升学模拟考试(一)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-3的绝对值是 A .3B .-3C .13D .13-2.一个等腰三角形的两边长分别是3和7,则它的周长为 A .17 B .15 C .13D .13或173.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水 300 000吨.将300 000用科学记数法表示应为A .60.310⨯B .5310⨯C .6310⨯D .43010⨯4.如图1,AB ∥CD ,EF ⊥AB 于点E ,EF 交CD 于点F ,已 知∠1=60°,则∠2的度数为 A .20° B .60° C .30°D .45°CDBAE F1 2 图151的值在A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.如图2是某几何体的三视图,该几何体是A .圆锥B .三棱柱C .圆柱D .三棱锥7.下列计算中,正确的是A .x 2+x 4=x 6B .2x +3y =5xyC .(x 3)2=x 6D .x 6÷x 3=x 29.如图3,△ABC 的顶点都在正方形网格的格点上, 则cos C 的值为 A .12B .C .D .10. 方程23+x =11+x 的解为 A .x =54B .x = -21 C .x =-2D .无解图3ABC图211.某篮球队12名队员的年龄如下表所示:则这12名队员年龄的众数和中位数分别是 A .18,19 B .18,19.5C .5,4D .5, 4.512.二次函数()20y ax bx c a =++≠的大致图象如图4所示,关于该二次函数,下列说法错误的是 A .函数有最小值B .对称轴是直线x =21 C .当x <21时,y 随x 的增大而减小 D .当 -1 < x < 2时,y >013.如图5,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半 径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠B =250,则∠ACB 的度数为 A .90° B . 95° C . 100°D . 105°14.如图6是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于 A . 210 B .20 C . 18D . 220图5AB图615.如图7,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使CE =31CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F . 若AB =6,则BF 的长为 A .6B . 7C . 8D . 1016. 已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是图72015年邯郸市初中毕业生升学模拟考试(一)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.分解因式:2x 2-4x +2= .18.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数xk y的 图象上.若点A 的坐标为(-2,-2),则k 的值 为________.19.如下图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π).图9坐标是.6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)已知代数式:A=23+x,B=25624322+-+-÷+-xxxxx.(1)试证明:若A、B均有意义,则它们的值互为相反数;(2)若代数式A、B中的x是满足不等式3(x-3)<6-2x的正整数解,求A-B的值.22.(本小题满分10分)某校为了调查学生书写汉字的能力,从八年级800名学生中随机抽选了50名学生参加测试,这50名学生同时听写50个常用汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:频数分布直方图请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请你估计该校八年级汉字书写优秀的人数?(4)第一组中的A、B、C、D四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习,请用列表法或画树状图的方法,求A与B名同学能分在同一组的概率.23.(本小题满分11分)在图11-1——图11-4中,菱形ABCD 的边长为3,∠A =60°,点M 是AD 边上一点,且DM =31AD ,点N 是折线AB -BC 上的一个动点. (1)如图11-1,当N 在BC 边上,且MN 过对角线AC 与BD 的交点时,则线段AN 的长度为________.(2)当点N 在AB 边上时,将△AMN 沿MN 翻折得到△A′MN ,如图11-2,①若点A′ 落在AB 边上,则线段AN 的长度为________;②当点A′ 落在对角线AC 上时,如图11-3,求证:四边形AM A′N 是菱形;③当点A′ 落在对角线BD 上时,如图11-4,求NA BA ''的值.图11-1图1224.(本小题满分11分)如图12,在平面直角坐标系中,矩形ABCD 的顶点A 、B 、C 的坐标分别为(0,5)、(0,2)、(4,2),直线l 的解析式为y = kx +5-4k (k > 0).(1)当直线l 经过点B 时,求一次函数的解析式;(2)通过计算说明:不论k 为何值,直线l 总经过点D ; (3)直线l 与y 轴交于点M ,点N 是线段DM 上的一点, 且△NBD 为等腰三角形,试探究:①当函数y = kx +5-4k 为正比例函数时,点N 的个数有 个;②点M 在不同位置时,k 的取值会相应变化,点N 的个数情况可能会改变,请直接写出点N 所有不同的个数情况以及相应的k 的取值范围.25.(本小题满分11分)如图13-1,在△ABC 中,∠ACB =90°,AC =BC =2,以点B 为圆心,以1为半径作圆. 设点P 为⊙B 上一点,线段CP 绕着点C 顺时针旋转90°,得到线段CD ,连接DA ,PD ,PB ,(1)求证:AD =BP ;(2)若DP 与⊙B 相切,则∠CPB 的度数为_________°; (3)如图13-2,当B ,P ,D 三点在同一直线上时,求BD 的长; (4)BD 的最小值为________,此时tan ∠CBP =_________;BD 的最大值为 ,此时tan ∠CPB =_________.备用图BCABCD P图13-2ABC D P图13-126.(本小题满分13分)某公司经销农产品业务,以3万元/吨的价格向农户收购农产品后,以甲、乙两种方式进行销售,甲方式包装后直接销售;乙方式深加工后再销售.甲方式农产品的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为y = -m+14(2≤m≤8);乙方式农产品深加工等(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系是S=3n+12,平均销售价格为9万元/吨.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a)(1)该公司收购了20吨农产品,其中甲方式销售农产品x吨,其余农产品用乙方式销售,经销这20吨农产品所获得的毛利润为w万元(毛利润=销售总收入-经营总成本).①直接写出:甲方式购买和包装x吨农产品所需资金为_________万元;乙方式购买和加工其余农产品所需资金为_________万元;②求出w关于x的函数关系式;③若农产品全部销售该公司共获得了48万元毛利润,求x的值;④若农产品全部售出,该公司的最小利润是多少.①其中甲方式经销农产品x吨,则总经销量p为__________吨(用含x的代数式表示);②当x为何值时,使公司获得最大毛利润,并求出最大毛利润.参考答案及评分标准一、选择题1.A2.A3.B4.C5.D6.B7.C8.B9. D 10.B 11.A 12.D 13.D 14.B 15.C 16.A 二、填空题17. 2(x-1)2 18.4 19.3π 20.(8,-8) 三、解答题21.(1)证明:B =25)2)(2()3(232+--++⨯+-x x x x x x =2522+-+x x ………………………………………… 2分 =23+-x =A - ………………………………………… 4分 ∴A 、B 互为相反数………………………………………… 5分(证明A+B=0均可得分) (2)解:解不等式得x<3, x 为正整数,且x ≠2,∴x=1 ………………………………………………………… 7分则A-B=2x 32+⨯=2132+⨯=2 …………………………………………… 10分22.解:(1)a=12 …………………………………………………… 2分 (2)如图………………………………… 4分(3)估计该校八年级汉字书写优秀的人数为⨯+501212800=352人 ……… 6分 (4)根据题意画树形图如下:B C DB C D A C D A B D A B C ……… 9分 共有12种情况,A 与B 两名同学分在同一组的情况有4种,∴A 与B 两名同学能分在同一组的概率为P (同组)=124=10分 23. (1)13…………………………………………………………………… 2分 (2)① 1 ……………………………………………………………………4分②在菱形ABCD 中AC 平分∠DAB ,∠DAB=60°,∴∠DAC=∠CAB=30°,∵△AMN 沿MN 翻折得到△A′MN , ∴AC ⊥MN ,AM= A′M ,AN= A′N ,∴∠AMN=∠ANM=60°∴AM=AN∴AM= A′M=AN= A′N∴四边形AM A′N 是菱形 …………………………………… 7分③在菱形ABCD 中,∠A=60°,AB=AD , ∴∠ADB=∠ABD=60°∵ △AMN 沿MN 翻折得到△A′MN , ∴∠NA′M=∠A=60°∵∠BA′M=∠DMA′+∠ADB ∴∠NA′B=∠DMA′ ∴△DMA′∽△BA′N ∴'DM A BA M A N'=' ∵DM=31AD=1,AM=2, ∴A′M=AM =2∴12A B A N '=' ………………………………………………11分 24.解:(1)将点B (0,2)代入y=kx+5-4k 得34k =………………………… 2分(2)由题意可得:点D 坐标为(4,5) 把x=4代入y=kx+5-4k 得y=5∴不论k 为何值,直线l 总经点D ; ……………………………………… 5分 (3)①2…………………………………………………………… 7分②当k≥2时,有3个点当34<k <2时,有2个点, 当k=34时,有0个当0<k <34时,有1个。
2015年中考模拟考试名校联合考试数学试题时间120分钟 满分130分 2015、2、17 一、选择题(每小题3分,共24分)1.下列运算结果为负数的是A .(-3)0B .-3-C . ()23- D .()23--2A .+5B .5C .-5D .625 3.x 2·x 3=( )A .x 5B .x 6C .x 8D .x 9 4.计算6tan45°-2cos60°的结果是A .4B .4C .5D .55.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是A .15mB .60mC .20mD .m6.在平面直角坐标系中,若将抛物线y =2x 2-4x +3先向右平移3个单位,再向上平移2个单位,则经过两次平移后的抛物线的顶点坐标是 A .(-2,3) B .(-1,4) C .(1,4) D .(4,3)7.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是8.将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A 与DC 边的中点M 重合,折痕为EF ;②翻折纸片,使C 落在ME 上,点C 的对应点为H ,折痕为MG ;③翻折纸片,使B 落在ME 上,点B 的对应点恰与H 重合,折痕为GE .根据上述过程,长方形纸片的长宽之比的值为A .32B C D二、填空题(每小题3分,共30分)9.分解因式:x 2y -y 3= ▲ .10,若锐角α满足2sin(α-15°)-1=0,则tan α= ▲ . 11.如图,在△ABC 中,DE ∥BC ,23DE BC =,△ADE 的面积是8,则△ABC 的面积为 ▲ .12.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于D ,已知cos ∠ACD =35,BC =4,则AC 的长为 ▲ .13.小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 ▲ 米.14.现定义运算“★”,对于任意实数a 、b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5,若x ★2=6,则实数x 的值是 ▲ . 15.某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有 ▲ 名学生.16.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A 、B 两点间的距离为 ▲ 米.17.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A(m ,n),B(m +6,n),则n = ▲ .18.如图,在平面直角坐标系xOy 中,已知抛物线y =-x(x -3)(0≤x ≤3)在x 轴上方的部分,记作C 1,它与x 轴交于点O ,A 1,将C 1绕点A 1旋转180°得C 2,C 2与x 轴交于另一点A 2.请继续操作并探究:将C 2绕点A 2旋转180°得C 3,与x 轴交于另一点A 3;将C 3绕点A 2旋转180°得C 4,与x 轴交于另一点A 4,这样依次得到x 轴上的点A 1,A 2,A 3,…,A n ,…,及抛物线C 1,C 2,…,C n ,…则C n 的顶点坐标为 ▲ (n 为正整数,用含n 的代数式表示).三、解答题(共76分)19.(本题6分)(1)计算:()2012015sin 6023π-⎛⎫+-+- ⎪⎝⎭.(2)先化简,再求值:22144111x xx x-+⎛⎫-÷⎪--⎝⎭,其中x=3.20.(本题6分)解方程:(1)x(x+3)=7(x+3) (2)312 22x x-= +-21.(本题6分)已知关于x的方程mx2-(m+2)x+2=0 (m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.22.(本题7分)为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了本市全部5000名司机中的部分司机后,整理相关数据并制作了右侧两个不完整的统计图:克服酒驾——你认为哪一种方式更好?A.司机酒驾,乘客有责,让乘客帮助监督B.在车上张贴“请勿喝酒”的提醒标志C.签订“永不酒驾”保证书D.希望交警加大检查力度E.查出酒驾,追究就餐饭店的连带责任根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中m=▲;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机抽取100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被抽中的概率是多少?23.(本题7分)4张相同的卡片上分别写有数字1,2,3,4,将卡片的背面向上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号1,2,3的3个小球,这些球除标号外都相同,搅匀后从中任意摸出一个球,将摸到的球的标号作为减数.(1)求这两个数的差为0的概率;(2)如果游戏规则规定:当抽到的这两个数的差为非负数时,则甲获胜;否则,乙获胜,你认为这样的规则公平吗?如果不公平,请说明理由.24.(本题8分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船c的求救信号.已知A、B两船相距+3)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处200海里范围内有暗礁.若巡逻船A沿直线AC去营救船C≈1.41≈1.73)25.(本题7分)如图,AD 是△ABC 的中线,点E 在AC 上,BE 交AD 于点F .某数学兴趣小组在研究这个图形时得到如下结论:(1)当12AF AD =时,AE AC =13; (2)当13AF AD =时,AE AC =15;(3)当14AF AD =时,AE AC =17;...猜想:当11AF AD n =+时,AEAC=?并说明理由.26.(本题8分)某班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元. (1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3)该商品在销售过程中,共有 ▲ 天每天销售利润不低于4800元.(请直接写出结果)27.(本题10分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE·CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=,求⊙O的半径.28.(本题11分)如图1,在平面直角坐标系xOy中,直线l:y=34x+m与x轴、y轴分别交于点A和点B(0,-1),抛物线y=12x2+bx+c经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB在平面内经过一定的平移得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标为▲.。
2015年中考一模名校联考数学试题(一)
时间120分钟 满分120分
2015、2、27
一、填空题(每小题3分,共计24分)
1.1
3
-
= .
2.某班48名学生的年龄统计结果如下表所示:
这个班学生年龄的众数是
.
3.我国南方一些地区的农民戴的斗笠是圆锥形.已知圆锥的母线长为30cm ,
底面圆的半
径为24cm ,则圆锥的侧面积为
2cm .(结果用
π表示)
4.如图,AE AD =,要使ABD ACE △≌△,请你增加一个..
条件是
.(只需要填一个..
你认为合适的条件) 5.若双曲线k
y x
=过点(32)P ,
,则k 的值是 .
6.因季节变换,某商场决定将一服装按标价的8折销售,此时售价为24元,则
该服装的标价为
元.
7.按下列规律排列的一列数对:(21),
,(54),,(87),,,则第
5个数对中的
两个数之和是 .
8.已知a b ,是关于x 的方程2(21)(1)0x k x k k -+++=的两个实数根,则22a b +的
最小值是
.
二、选择题(,每小题3分,共计30分)
第4题图
9.下列计算正确的是( ) A.110-+=
B.110--=
C.1
313
÷=
D.236=
10.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ) A.229a y +
B.229a y -+
C.229a y -
D.229a y --
11.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A.24cm
2
C.2
D.23cm
12.左图是一几何体,某同学画出它的三视图如下(不考虑尺寸),你认为正确
的是( )
A.①②
B.①③
C.②③
D.③
13.不等式组24010x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )
A.
B.
C.
D.
①正视图
②俯视图
③左视图
14.下列图形中,既是轴对称图形又是中心对称图形的是()
15.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y 桶,则所列方程组中正确的是()
A.
86250
75%
x y
y x
+=
⎧
⎨
=
⎩
B.
86250
75%
x y
x y
+=
⎧
⎨
=
⎩
C.
68250
75%
x y
y x
+=
⎧
⎨
=
⎩
D.
68250
75%
x y
x y
+=
⎧
⎨
=
⎩
16.将一张矩形纸片ABCD如图所示折叠,使顶点C落在C'点.已知2
AB=,A.B.C.D.
30DEC '∠=,则折痕DE 的长为( )
A.2 B.2
3 C.
4 D.1
17.2014年6月,世界杯足球赛决赛在巴西拉开战幕,6月5日,某班40名
学生就哪支队伍将夺冠进行竞猜,统计结果如图.若把认为巴西队将夺冠的
这组学生人数作为一组的频数,则这一组的频率为( ) A.0.1
B.0.15
C.0.25
D.
0.3
18.一个装有进出水管的水池,单位时间内进、出水量都是一定的.已知水池
的容积为800 升,又知单开进水管20
分钟可把空水池注满;若同时打开进、出水管,20分钟可把满水池的水放完,现已知水池内有水200升,先
Q
第16题图 第17题图
三、解答题(共计66分)19.(本题满分10分,每小题5分)
(10
+
4sin60(51)
(2)解方程:5311
x x =-+
20.(本题满分7分)先化简,再求值:
2
62933
m
m m m ÷---+ 其中2m =
21.(本题满分7分)如图,是从一副扑克牌中取出的两组牌,分别是红桃1,2,
3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张.
(1)用列举法列举所有可能出现的结果;
(2)求摸出的两张牌的牌面数字之和不小于5的概率.
22.(本题满分9分)如图甲,四边形ABCD是等腰梯形,AB DC
∥.由4个这样的等腰梯形可以拼出图乙所示的平行四边形.
(1)求梯形ABCD四个内角的度数;
(2)试探梯形ABCD四条边之间存在的数量关系,并说明理由.
图甲
图乙
23.(本题满分9分)如图,小鹏准备测量学校旗杆的高度.他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面BC 和斜坡坡面CD 上,测得旗杆在水平地面上的影长20BC =米,在斜坡坡面上的影长8CD =米,太阳光线AD 与水平地面成30角,且太阳光线AD 与斜坡坡面CD 互相垂直.请你帮小鹏求出旗杆AB 的高度(精确到1米).
1.4=
1.7=)
24.(本题满分12分)如图,在直角坐标系中,点O '的坐标为(20)-,,O '与x 轴相交于原点O 和点A ,又B C ,两点的坐标分别为(0)b ,,(10),. (1)当3b =时,求经过B C ,两点的直线的解析式;
(2)当B 点在y 轴上运动时,直线BC 与O '有哪几种位置关系?并求每种位置关系时b 的取值范围.
25.(本题满分12分)如图:已知抛物线213
442
y x x =+-与x 轴交于A ,B 两点,与y 轴 交于点C ,O 为坐标原点.
(1)求A
B C ,,三点的坐标; (2)已知矩形DEFG 的一条边DE 在AB 上,顶点F G ,分别在BC ,AC 上,设OD m =,矩形DEFG 的面积为S ,求S 与m 的函数关系式,并指出m 的取值范围;
(3)当矩形DEFG 的面积S 取最大值时,连结对角线DF 并延长至点M ,使
2
5
FM DF =
. 试探究此时点M 是否在抛物线上,请说明理由.
参考答案及评分标准
一、填空题
1.13
2.15 3.720π 4.B C ∠=∠
5.6
6.30
7.27
8.
12
二、选择题
三、解答题
19.(1)解:原式1= 1=
(2)解:去分母得:5(1)3(1)x x +=-
解之得4x =- 经检验,4x =-是原方程的根
20.(1)所有可能出现的结果可用下表表示:
(2)由上表可知牌面的数字之和不小于5的概率为:31
93
=.
22.解:(1)如图123∠=∠=∠,123360∠+∠+∠=,
即1120∠=,所以图甲中梯形的上底角均为120,下底角均为60.
(2)由EF 既是梯形的腰,又是梯形的上底可知,梯
形的腰等于上底.连结MN ,则
30FMN FNM ∠=∠=,从而30HMN ∠=,90HNM ∠=,所以1
2
NH MH =
,因此梯形的上底等于下底长的一半,且等于腰长. 23.解:延长AD ,BC 相交于点E ,则30E ∠=,,16CE =∴. 在ABE △A中,36BE BC CE =+=,由tan AB
AEB BE
∠=,
得3612 1.7203
AB =⨯
==⨯≈ 24.解:(1)经过B C ,两点的直线的解析式为:33y x =-+ (2)点B 在y 轴上运动时,直线BC 与O '的位
置关系有相离、相切、相交三种.
当点B 在y 轴上运动到点E 时,恰好使直线
BC 切
O '于点M ,连结O M ',则
O M M C '⊥.
在Rt CMO '△中,3CO '=,2O M '=,
CM =∴
由Rt Rt CMO COE '△∽△,可得OE CO
O M CM
=',
OE =
∴
E
F H
M
1
2
3
由圆的对称性可知,当5b =±
时,直线BC 与圆相切;当5
b >或
5
b <-
时,直线BC 与圆相离;当55b -<<
时,直线BC 与圆相交.
25.解:(1)(20)A ,,(80)B -,,(04)C -, (2)由ADG AOC △∽△,可得AD OG AO OC =,2(2)DG m =-∴
由BEF BOC △∽△得EF BE
OC BO
=,又2(2)E F D G m ==-,4(2)BE m =-∴,5DE m =∴
22(2)52010S D G D E m m m m
=⨯=-=-∴ S ∴与m 的函数关系式为21020S m m =-+,且02m <<.
(3)由21020S m m =-+可知1m =时,S 有最大值10,此时(1
0)D ,,5DE =,2EF =.
过点M 作MN AB ⊥,垂足为N ,则有MN FE ∥,
DE EF DF
DN MN DM
==∴,又有
57DF DM =,得7DN =,145MN =(60)N -,∴,14
(6)5
M --, 在二次函数213442y x x =+-中,当6x =-时,14
45y =-≠-,
∴点M 不在抛物线上.。